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Abstract—Biomass from agriculture production can be con-
verted to biochar using the pyrolysis gasification process, which
reduces the carbon footprint when added to soil. How to precisely,
promptly, cost-effectively, and on a large scale map, the effect
of biochar applied to soil in terms of water holding capacity
continues to be a significant challenge. This paper is the first
to reveal a comprehensive study demonstrating the feasibility of
adding biochar to enhance the quantifying of soil temperature
and soil moisture using image indexes (Visible Atmospherically
Resistant Index (VARI) and Normalized Difference Vegetation
Index (NDVI)). The significance of this work is that it provides
the foundation for the subsequent assessments of carbon-negative
technologies. We evaluated the correlation of VARI, NDVI,
and soil temperature, Volumetric Water Content (VWC) under
different treatments. Results show that the correlations of NDVI,
VARI, and soil temperature and VWC in the treatment with
biochar were 52.94% and 46.77% higher than those in the soil
without biochar.

Index Terms—Biochar, Remote Sensing, sUAS, NDVI, VARI,
VWC

I. INTRODUCTION

Biochar is a solid material generated during the pyrolysis
of biomass. Biochar can be applied to soil to enhance soil
functions and offset greenhouse gas emissions caused by
biomass that would otherwise decay naturally into greenhouse
gas (GHG). The benefits of biochar to soil fertility include the
extraordinarily high binding affinity of nutrients for biochar
and other molecules (adsorption), and the biochar’s remarkable
retention in the ground (stability) [1]. Additionally, sustained
biochar application can generate oil and gas byproducts col-
lected and used as fuel, resulting in clean, renewable energy
and soil improvement. This is one of the negative emissions
technologies (NETs) [2] that ensures that the final product
becomes the real meaning of “carbon negative”.

Unmanned aerial vehicles (UAVs) have been widely em-
ployed in agricultural applications as a novel remote sensing
platform, including crop yield estimation [3], irrigation man-
agement [4], [5], and pest control [6], [7]. In comparison to
satellites, UAVs may fly more freely and often in the field.
The UAVs fly at a lower height and capture pictures of crops
at a greater resolution [8]. Additionally, UAVs reduce the cost

*Address all correspondence to this author.

of data collecting compared with using other remote sensing
methods such as satellite sensing.

In addition, one of our objectives of our field study is to
reveal the relationship of affection between soil temperature
and soil moisture with soil amendment (biochar). This inves-
tigation requires the ground truth data to map the temperature
and moisture in the temporal and spatial domain, respectively.
The UAV with the benefits we mentioned earlier is the great
platform to implement our mission and would not be able to
miss the growing season.

Previous research on soil temperature and moisture has con-
centrated chiefly on obtaining a soil sample and then analyzing
it using a multimillion-dollar analyzer [9] to isolate the various
components of soil [10]. Several researchers embedded carrier-
able devices on soil fields and inserted sensors in the soil
to detect [11]. Additionally, a few studies employ remote
sensing technology such as satellites and unmanned aerial
systems (UAS) [12], [13] to assess soil conditions and carbon
emissions (such as GHG). These prior attempts are mainly
relied on the expensive analyzer and limited to the environment
variable (which means cannot operate their analyzer or collect
valid samples due to the rainy day, human activities, etc [14]).
Some works using UAV and NDVI index to evaluate the
growth, especially soil moisture, evapotranspiration, and their
minor element contents [15]–[20]. However, these attempts
didn’t explain which level of soil moisture can be accurately
predicted by NDVI, and also whether these image indexes can
correlate with soil temperature for further explaining of carbon
activities (such as GHG emissions). Therefore, we designed
our field study with three benefits (innovations):

• The UAV equipped with thermal and near infrared (NIR)
cameras helps us monitor the soil amendment effects on
large-scale soil in real-time.

• Compared with the different depths of VWC with NDVI
to find the better correlation.

• Introduced the VARI to build a relationship with soil
temperature even if there are disturbances (green plants)
in between.

As a result, we target two challenges in this paper: 1) what’s
the best sensing mechanism for using NDVI and VARI to
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reflect different depths of soil water content 2) what’s the
optimized fitting model of these indexes with soil temperature
and moisture. The contributions of this work are as follows:

1) To the best of our knowledge, this is the first time study
validating the optimized depth of VWC correlated by
the NDVI.

2) After adding biochar amendment, we revealed a solid
potential correlation between vegetation index and soil
temperature.

3) We validated a field study in the winter growing season
by conducting a series of intense sUAS flight and ground
truth data collection.

II. MATERIALS AND METHODS

A. Study Field Site and UASs Remote Sensing Configuration
We established a field experiment at a wheat (winter)

rotational cropping system near the Philip Verwey Farm in
Madera, CA (36.94◦ N, 120.378◦ W) in October 2021. The
study site exhibits a Mediterranean climate with a mean annual
temperature of 18.2◦C and mean annual precipitation of
311mm. Summer is hot and dry (e.g., July average temperature
is 29.3◦C with an average precipitation of 0 mm) while winter
is relatively cool and damp ( e.g., January average temperature
is 8.5◦C with a 56 mm monthly average precipitation).

Biochar used in the field trial was the Rogue biochar
produced by Oregon Biochar Solution (White City, OR, USA).
The feedstock of biochar consisted of approximately 85%
Douglas fir and ponderosa pine wood waste mixture, 14-15%
almond and walnut tree pruning, and less than 1% of nutshells.
Biochar particles had diameters ranging from 3 mm to 1 cm.
Manure compost and biochar manure co-compost were pre-
pared on-site at the Verwey farm during August - September
2021. Briefly, the manure-only pile consisted of approximately
15.34t of fresh solid manure and 1.32t of orchard clipping
residues. The biochar co-compost pile consisted of 15.35t of
fresh solid manure, 1.32t orchard clipping residues, and 1.0t
of biochar.

Replicated treatment plots (2m x 12m with 2m buffer in
between) were laid out in a randomized block design (n = 4)
at our study site (Figure 1a). Treatments were applied to plots
(a total of 16 plots) one week prior to seeding. All plots
were seeded to winter wheat for the winter growing season
on October 29th, 2021. The four treatments employed in this
field trial were: 1) Control with no additional amendment; 2)
Manure compost applied at 20 t/ha; 3) Biochar applied at 10
t/ha, and 4) Biochar manure co-compost applied at 17.5t/ha.
All treatments were applied at equivalent C rates of 8 MgC/ha,
see Figure 1b. Treatments were applied to the surface soil and
incorporated to approximate 15cm depth with a rake and tines
of a pitchfork. We also gently raked control plots to ensure
consistency. A single time of flood irrigation was adopted
following the landowners’ common practices on November
11th, 2021. Our study site received no fertilizer input during
the winter growing season, and the nutrient source for winter
wheat was solely from the decomposition of crop residues left
from the previous growing season.

(a) Biochar plots locates at Verwey Farm

(b) Four treatments of soil and their plants growth

Fig. 1: (a) Replicated treatment plots (2 m x 12 m with a 2 m buffer)
were laid out in a randomized block design in four blocks. biochar (10
t/ha), compost (20 t/ha), and co-compost (17.5 t/ha) were surface applied
and incorporated. (b) Control, biochar, compost, and co-compost plots in one
replicated block.

We employed a Hover quadcopter1 as our UAV platform.
A Pixhawk flying controller, GPS, and telemetry antenna
were installed on the Hover. Additionally, it is capable of
flying over a biochar treatment field utilizing the waypoints
setting (designed by using Mission Planner software2). The
Hover’s lithium battery has a capacity of 9500 mAh, which
is adequate for a 30-minute flight mission with the Hover’s
cameras mounted (this battery also powers the camera).

In this field study, multi-spectral images were collected by
Survey 2 (MAPIR, USA)3cameras with 4 bands, blue, green,
red (RGB), and near-infrared (NIR). The MAPIR camera has
a resolution of 4608 x 3456 pixels and a spatial resolution
of 1.01 cm/pixel. Besides, thermal images of the biochar
treatment field were collected using the ICI 9640 P-Series
thermal camera (ICI, USA). The thermal camera has a 640
x 480 pixel resolution. The precision was expected to be 1◦C.
The thermal camera will verify whether the soil temperature
can be measured through different treatments and plants.
Furthermore, the flight height of the three cameras was settled
at 30m, 30m, and 40m, respectively. The overlap of Field of
View (FOV) was adjusted to 75% for all aircraft missions to
ensure that the photos could be stitched together during image
pre-processing. From late October 2021 to early February
2022, we did the flight mission biweekly on our biochar

1https://www.foxtechfpv.com/foxtech-hover-1-
quadcopter.html

2https://ardupilot.org/planner/
3https://www.mapir.camera/collections/survey2
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treatment field. All cameras’ reflectance was calibrated before
the flight by using a color panel.

B. Geospatial Interpolation with Kriging

In geostatistics, one of the common problems encountered
is to spatially interpret and estimate a set of unknown data
locations, z(s0), from a set of sparse observations, z(si), at
locations s0 and si, respectively. These N sparse sampling
points, are taken inside a domain Ω ∈ R2 and aim to find
a set of weights, λi, to estimate the value at the unknown
locations,

ẑ(s0) =

N∑
i=1

λiz(si). (1)

For ordinary kriging [21], a semivariogram is used to represent
the spatial variability. For a given spatial distance between
observations, h, the point support semivariogram is written
as,

γ̂(h) =
1

2N(h)

N(h)∑
i=1

(z(si)− z(si + h))2, (2)

such that N(h) is the number of observartions with distance of
h. Using this experimental semivariogram data (2) a semivari-
ogram model is typically fit using one of the several common
functions (circular, spherical, exponential, Gaussian, or linear).
Finally, given the semivariogram model, the kriging weights
can be determined by solving the linear system,

N∑
j=1

λjC(si−sj)+µ(s0) = C(si−s0), for i = 1, 2, ..N, (3)

where C(·) represents the point support covariance matrix.
This covariance matrix has an important relationship to the
semivariogram, such that, γ(h) = C(0) − C(h) [21]. The
estimation error variance is shown to be σ2

e = V ar(z(s0) −
ẑ(s0)), which for ordinary kriging, is minimized to make the
estimated values ẑ(s0) optimal. In order for the estimator to be
unbiased (e.g. E[ẑ(s0)] = E[z(s0)]), kriging requires

∑
λi =

1 and the spatial mean to be stationary E[z(s)] = µ, ∀s ∈ Ω.
In this work we utilize kriging with the ground truth

temperature measurements to compare with TIR imagery and
ice water calibration. The workflow is illustrated in Fig. 2.

C. Statistical Analysis

We decided to use The VARI and NDVI are used to verify
whether these two indexes can indicate the soil temperature
and its moisture at different treatments based on multiple-
spectral images collected. The default equation to generate
these indexes are as referred (4) and (5), respectively.

VARI =
Green− Red

Green+ Red− Blue
(4)

NDVI =
NIR− Red

NIR+ Red
(5)

The VARI method is a vegetation index that enables a quan-
titative estimate of vegetation proportions using only visible
light. In other words, this index highlights the green vegetation

Fig. 2: The TIR imagery is cropped in this diagram to enclose only
the biochar plots. The geolocations of the ground truth measurements are
identified and used to fit an experimental exponential semivariogram with a
lag of 700 pixels. The resulting semivariogram is used to krige the ground
truth measurements to match the TIR imagery size. Lastly, the pixel by pixel
correlation plot between the cropped TIR image and ground truth kriging
is constructed with the best fit line. This best fit line’s y-intercept is then
corrected using the pixel intensity and a known temperature ice bath.

on the ground to make the soil, rocks, and plants clearly
distinguishable. The NDVI method is a standardized index that
permits the construction of a visual representation of the de-
gree of greenness in a given area (relative biomass). This index
uses the contrast between chlorophyll pigment absorptions in
the red band and the high reflectivity of plant components in
the near-infrared region of a multispectral dataset. This index
returns values in the range of [-1.0, 1.0] [22].

To illustrate the variety of different treatments, we would
plot all the data and use a linear regression model to seek the
relationship between the index, soil temperature, and VWC at
different depths of soil. The R2 and standard deviation (STD)
would be used to evaluate the strength of the relationship
between soil temperature, VWC and image indexes.

III. EXPERIMENTS AND RESULTS

We scheduled our flight missions bi-weekly during the
winter growing season. Every time we captured RGB, NIR,
and thermal information from the ground, the ground truth data
such as soil temperature and VWC would also be collected by
thermometer and soil suction lysimeter 4. The scatter would
be first to plot to observe their potential trends relationship
between these information. We extracted two points (Kriging,
see details in section II-B) of VARI and NDVI values from
our total plots individually. Please see details in the following
sections.

A. Correlation analysis of the VARI and NDVI indexes versus
temperature

In general, the soil temperature in November is higher than
in January. The temperature in the middle of California was
still suffering from the dry season, and the farmers had just
seeded the wheat in the early part of November, which meant
the soil was exposed to sunlight, and there were no green
plants on the ground. From Figure 8a, we can see that the
average R2 is the maximum (R2 = 0.5), and its dispersion is

4https://www.hannainst.com/suction-lysimeter-for-
root-level-soil-monitoring.html
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the minimum (STD = 0.19), which indicates the VARI index
has the potential ability to predict the soil temperature within
biochar amendment.

The NDVI has a weaker indicating ability than VARI for
the soil temperature. However, the plots of adding biochar
amendment still have the most significant difference in R2 and
STD, which also verified that NDVI has the remarkable ability
to predict the temperature better than the other treatment
blocks.

Overall, the VARI and NDVI can both reveal the soil
temperature. Biochar as an amendment would help quantify
the soil temperature and VWC based on UAV sensing. The
average enhanced correlation rate of VARI from biochar treat-
ment is 46.77%, compared with control, manure, and mixture
treatments. Relative to the mixture treatment, the NDVI from
biochar treatment enhanced the correlation rate was 52.94%.
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Fig. 3: VARI Vs Temperature. The x-axis indicates the VARI and NDVI
values, and the y-axis indicates the ground truth of soil temperature, The dark,
red, blue, and green lines are represented by control, biochar, manure, and
mixture treatments, respectively.
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Fig. 4: NDVI Vs Temperature. The x-axis indicates the VARI and NDVI
values, and the y-axis indicates the ground truth of soil temperature, The dark,
red, blue, and green lines are represented by control, biochar, manure, and
mixture treatments, respectively.

B. Correlation analysis of the NDVI index versus different
depths of VWC

As we all know, biochar has strong water retention abil-
ity [1]. However, quantifying the biochar water retention
ability on a large scale is still a challenge. Fortunately, the
soil moisture can be indicated by the health and growth of the
biomass (NDVI). Therefore, we compared different depths of
VWC with NDVI values, see Figures 5, 6, and 7.

In Figure 8b, the correlation of NDVI and VWC at 7.5 cm
is the most significant. Even if the control treatment has the
maximum difference in STD and averages R2, the biochar
treatment has the minimum STD and is not too low in R2.
We believe the most reliable method is essential to improve

the quantifying accuracy by using NDVI. In Figure 5 and
Figure 6. The average VWC from biochar treatments is higher
than the other treatment plots, which verifies that biochar
could enhance water conservation and crop productivity. As
of Figure 7, there is barely any relationship in these different
treatments where VWC is at 15cm.

IV. DISCUSSION AND CHALLENGES

At Nov 17th, we can see the fitting lines of treatments
are pretty short (Figure 4). Based on our literature review,
biochar can reflect the near-infrared wave [23], this mechanism
may affect the reflectance of biochar and natural green plants.
However, how it affects the reflectance of the biochar, mixture,
and green plants needs more exploration in the future.

In November, the VWC is much higher than the rest of the
month due to farmers did flood irrigation once on the whole
field. Although wheat growth is related to soil water content,
correlation directions are different where VWC is at 4 cm and
7.5 cm. All biochar treatments have a positive correlation with
VWC at 4 cm. However, the correlations of VWC at 7.5cm
are various. This would also need to be further explored.

In the future, we will provide further statistic analysis for
our proposed regression model. We would plan to train the
comprehensive model as well to fit these indexes with soil
temperature and moisture so that we can use these indexes
to explain soil carbon activities, such as methane and CO2
emissions. We believe an effective method of quantifying
carbon emissions still needs to be explored.

V. CONCLUSIONS

In this paper, we validated a field study in which UAVs
were used to check on the soil for a whole growing season
after biochar was added as a soil amendment. The relationship
revealed between soil temperature and volume water content
is able to be described by linear regression models. After
applying different treatments, we illustrated that the soil tem-
perature and VWC can still be reflected by the VARI and
NDVI indexes. The addition of biochar as a soil amendment
would enhance the sensing accuracy, and the correlation rate
using VARI is about 46.77% higher than the non-treatment
plots, and the NDVI index is 52.94% higher than the other
treatments. The NDVI has a comprehensive prediction where
VWC will be measured at 7.5cm. All in all, our results show
that image index analysis has a lot of potential to become a
fast way to measure the condition of soil by adding biochar.

ACKNOWLEDGMENT

We wish to thank Brendan Harrison, Melinda Gonzales, and Touyee Thao
for sampling field trials ground-truth data. Thanks Haoyu Niu for flight
mission help. This work is partly supported by SGC project5 entitled “Mobile
Biochar Production for Methane Emission Reduction and Soil Amendment.”
Grant Agreement #CCR20014.

5https://mechatronics.ucmerced.edu/mobilebiochar



54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

54 pt
0.75 in

19.1 mm

Margin requirements for the other pages
Paper size this page US Letter

0.16 0.20 0.24 0.28 0.32

y = -0.30978*x+0.41286

y = 2.68435 *x+0.03241

y = -0.61708*x+0.4687

y = -0.54018*x+0.45803

NDVI at Dec 3rd, 2021

0.58 0.59 0.60

y = -3.04244*x+2.28803

y = 12.1701*x-6.77144

y = -4.02534*x+2.88348

y = 3.43576 *x-1.58753

NDVI at Jan 12th, 2022

-0.13 -0.12 -0.11 -0.10

y = -5.90216*x-0.17493

y = 12.04032*x+2.61588

y = 2.78364*x+0.77076

y = -6.27834*-0.25443

NDVI at Dec 15th, 2022

0.55 0.56

y = -3.02618*x+1.87214

y = 3.06094*x-1.21556

y = -1.29194*x+0.85176

y = 3.49924*x-1.77446

NDVI at Jan 26th, 2022

-0.065 -0.060

y = -7.20534*x-0.22376

y = 38.20493*x+3.21845

y = 2.33582*x+0.32859

y = -4.70555*x-0.06166

NDVI at Feb 9th, 2022

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.14 0.16 0.18
0.0

0.4

0.8

y = 2.69353 *x+0.6906

y = -1.54564*x+0.7527

y = -3.4735*x+1.13344

y = -2.0129*x+0.87758

NDVI at Nov 17th, 2021

V
W

C
 P

e
rc

e
n

ta
g

e
Volumetric Water Content at 4cm Vs NDVI Linear Fitting

Fig. 5: VWC at 4cm. The x-axis is represented as the NDVI value, and the y-axis is represented as the VWC (range from 0
to 2. VWC > 1 means water is greater than soil in the same unit, same unit of y-axis for the rest of the VWC figures
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Fig. 6: VWC at 7.5cm. The x-axis is represented as the NDVI value, and the y-axis is represented as the VWC
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Fig. 7: VWC at 15cm. The x-axis is represented as the NDVI value, and the y-axis is represented as the VWC
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(a) The R2 of VARI and NDVI versus temperature (b) The R2 of VWC versus NDVI at different depth level

Fig. 8: a) The R2 and STD for the VARI and NDVI versus soil temperature. b) The R2 and STD of NDVI versus three different depths of the VWC.
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