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Abstract

Smart Predictive Maintenance Enabled by Digital Twins and Physics
Informed Smart Big Data

by Furkan Guc

Doctor of Philosophy in Mechanical Engineering, University of California,
Merced

In classical control engineering, optimality and robustness have been the main
concerns of the control design and maintaining good performance. On the
other hand, the third main concern can be considered as smartness with the
inevitable grow of Digital Transformation and Industry 4.0 together with the
influence of key enabling technologies like Artificial Intelligence (AI), Machine
Learning (ML), Big Data (BD) and Edge Computing (EC). These core tech-
nologies enable users to increase capabilities of the systems not only for the
design of the complex structures with smart control applications but also for
maintaining a successful operation afterwards. For this reason, smartness
can be considered as one of the most important requirements of maintenance
strategies. Many engineering applications require a proper maintenance strat-
egy to address the degradation and failure in the machines, processes and
complex systems. In this context, maintenance methodologies play a key role
depending on the application type and complexity of the requirements. Reac-
tive and preventive maintenance strategies lead high downtime or waste useful
life where they are not handy for a proper maintenance of complex systems. On
the other hand, predictive maintenance strategy enables users to find optimal
time and part selection to reduce downtime and maximize equipment lifetime.
With the introduction of smartness to the predictive maintenance, a new fron-
tier of Smart Predictive Maintenance (SPM) is aimed in this thesis to address
main obstacles of traditional predictive maintenance workflow. To introduce
smartness into the predictive maintenance framework, key enabling technolo-
gies of Digital Twins (DT) and physics-informed Smart Big Data (SBD) is
utilized. To enhance the framework, development of the Digital Twin with be-
havioral matching process and utilization of existing knowledge in the Smart
Big Data is demonstrated. The argument of the SPM is supported by a set
of case studies including physics-informed transfer learning for fault classifi-
cation, smart selection of control elements and error recovery for the Radio
Frequency Impedance Matching (RFIM) system. Results of the example stud-
ies show that SPM is a new and effective systematic approach that can improve
maintenance strategies, health monitoring and fault diagnosis applications.
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