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INTRODUCTION

Natural gas is one of our main methods to gener-
ate power today. Utility companies that provide
this gas are tasked with maintaining and survey-
ing leaks. These leaks are referred to as fugitive
methane emissions and detecting these fugitive
gases can be pivotal to preventing incidents such
as the San Bruno explosion, killing 8 and injur-
ing dozens due to a gas leak going undetected.
Recently, using NASA technology onboard low
cost vertical takeoff and landing (VIOL) small
unmanned aerial systems (sUAS) we can detect
fugitive methane at 1 ppb (parts per billion) lev-
els.

CHALLENGES IN DETECTION

General challenges include: FAA regulations (no
flights over people), battery life, and complex dy-
namic plume behavior. Factors that impact de-
tection can be: propeller wash, sensor placement,
wind, and mechanical/electrical noises. Even

distance to source and flight altitudes can change
the probability of detection (Sigmoid like) scal-
ing with topology and atmospheric stability. Lo-
calization by CFD approaches are costly making
real-time estimations and visualizations difficult.
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QUASI-STEADY INVERSION

Following the work by Matthes et al (2005),
Carslaw (1959), and Roberts (1923) the solution
to a single point source advection diffusion equa-
tion (ADE) can be solved for a dynamic system
approximately by making a quasi-steady state as-
sumption if the variance and transient behavior
of the wind small. W is the Lambert function.
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ADAPTIVE SEARCH MODEL

In the foraging literature the Levy walk has been
shown to be effective at searching sparse environ-
ments. However, Brownian motion is more effi-
cient in dense areas. This adaptive search model
[5] can switch dynamically from Levy to Brown-
ian based on finding targets using tumble proba-
bility P(z(t)), z(t) is governed by the stochastic
differential equation (SDE) below

F' =1, found target

F = 0, otherwise.

ar = Cro_1 + ki F {

we extend [D5] by adding, fGn, defined as Y, =
Br(j+1)— Bg(j) and fraction Brownian motion
is given below.

ADAPTIVE SEARCH AND LOCALIZATION

The adaptive search model has shown to adjust
from Brownian motion to Levy walks in a 2D ran-
dom search. By reducing the problem to a 1D
path problem (i.e. survey route) adding decision
trees and modeling fugitive gas with a small time
scale filament model [4] we have the opportunity
to optimize random search for application. Gather
enough information to form a sample(s) to use in
the inversion method for a Zeroth order approxi-
mation of source localization (x¢,y9) and quantifi-
cation (qp).
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EXPERIMENTAL RESULTS

«10° Inversion method: experiental data set
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Using the quasi-steady inversion method on ex-
perimental data we can see the results from just
two samples (blue) in the presence of two sources
(red). Only taking a small section of raw data
from each longitudinal pass we can approximate
the source (green) from our measurement with

the OPLS [3].

FUTURE RESEARCH

This work hopes to optimize this adaptive search
strategy efficiency n = N/L (N is the number
of targets found and L is the total distance trav-
eled) through transition parameters (Cy, Amin,
and k;) the potential (h), and the choice of noise
(i.e. Gaussian or fGn) by means of evolution-
ary algorithms. Furthermore, we want to answer
how the level of noise 0 and how the Hurst pa-
rameter [{, stochastically shift the tumble prob-
ability through z(¢). Once we have an optimal
model we look to compare with current methods
(i.e. Zig-Zag, spiral surge [2]), and other gradi-
ent or flux based approaches (stochastic gradient
descent, fluxotaxis, infotaxis etc.).
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