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Abstract—This paper presents a parallel Self Optimizing Con-
trol (SOC) framework that combines parallel intelligence, Digital
Twin, and derivative-free optimization to enable smart capabili-
ties in classic process control. The parallel SOC framework sup-
ports the interaction between the physical system and its Digital
Twin via Simultaneous Perturbation Stochastic Approximation
(SPSA) derivative-free optimization algorithm. The framework is
tested using the Digital Twin of a thermoelectric heating system.
Obtained results show that using parallel intelligence with Digital
Twin and SPSA optimization method, the SOC can improve the
system performance by introducing a developmental behavior on
the classic process control system.

Index Terms—Parallel Control, Self Optimizing Control, Si-
multaneous Perturbation Stochastic Approximation, SPSA, Dig-
ital Twin, Process Control.

I. INTRODUCTION

The new manufacturing processes for Industry 4.0 require

smart control capabilities that make systems aware of their

current health status, performing developmental control ac-

tions that satisfy a desired performance cost function. In that

context, novel technologies like Digital Twin (DT), Parallel

Intelligence, and derivative-free optimization algorithms can

support smartness in industrial process control through Self

Optimizing Control (SOC) schemes.

The SOC is a control strategy designed initially for choosing

the control variables for chemical plants control with tens

or hundreds of these satisfying a cost function in terms of

economic performance [1]. There are Different scopes of SOC

like Extremum Seeking [2], Iterative Learning Control [3], or

Run 2 Run control [4]. In these approaches, the controller

parameters are adjusted according to the evolution of the

economic cost function.

However, a SOC problem may take a long time before

reaching an acceptable solution based on an economical cost

function due to the nature of the optimization problem and

the system dynamics, for example, thermal processes. In that

case, parallel intelligence and control as a novel paradigm that

looks for the integration of complex systems under the ACP

approach (Analysis, Control, Parallel Execution) to improve

the system performance can be integrated into the SOC to

accelerate the system learning, and optimization [5]–[7].

In order to introduce parallel capabilities to SOC, a different

optimization algorithm is required to handle the presence

of multiple simultaneous executions to enhance the system

performance and optimization speed. In that sense, the Simul-

taneous Perturbation Stochastic Approximation (SPSA) algo-

rithm can be used [8], which is a derivative-free optimization

technique that performs a stochastic approximation of the

function gradient using only two measurements of the cost

function. It has applications in controls for offline controllers

tuning [9], [10] and feature extraction in machine learning

[11], [12]. However, the most important property of SPSA

is that it can be implemented for parallel execution [13],

[14]. Thus, SPSA can be used as bridge between virtual and

real systems to enhance SOC performance by simultaneous

evaluation of multiple models of a system represented by

instances of Digital Twins.

This paper presents a parallel Self Optimizing Control

framework enabled by Digital Twins and the SPSA algorithm

for the control of a stable closed-loop system based on an

economic cost function. The framework uses the parallel

implementation of the SPSA algorithm supported by a pool of

Digital Twins of the real system to increase the optimization

speed. Likewise, the SPSA handle the interaction between a

physical system and a parallel Digital Twin, monitoring the

closed-loop system behavior and updating the controller pa-

rameters according to an economic performance cost function.

A Peltier thermoelectric system [15] is employed as a case

study to evaluate the parallel SPSA framework. Two tests are

performed for the system, one using only the real and virtual

Digital Twin, and another with the support of the Digital Twin

pool to leverage parallel capabilities of the SPSA.

The main contribution of this paper is proposing a parallel

SOC framework using the SPSA algorithm, Parallel Intelli-

gence and Digital Twin to perform smart control of a closed-

loop system, enhancing its performance based on an economic

cost function.

II. PARALLEL SELF OPTIMIZING CONTROL FRAMEWORK

The parallel SOC framework is shown in Fig. 1. As can be

observed, a Parallel control architecture is employed, differen-

tiating the real domain and virtual domain where the Digital

Twin is located. In the real domain, a closed-loop system

operates using a controller C(θ) which tuning parameters θ
ensure the system stability. Likewise, In the virtual domain,

the Parallel Digital Twin 1 replicates the configuration of the

physical system using a multiphysics model of the process.
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The goal of the parallel SOC framework is to continuously

update the controller parameters θ based on an economic

cost function, which considers the current performance of the

closed-loop system. In this paper, the economic cost function

employed is given by (1), where Ts is the system settling

time, OV is the overshoot percentage, θ is a vector with

the controller parameters, W1,2,3 are the weights for the

Overshoot, Settling time and the Integral Square Error index

respectively.

min
θ∈R

J = W1 OV (θ) +W2 Ts(θ) +W3

∫ t

0

e(t, θ)2 dt. (1)

The Simultaneous Perturbation Stochastic Approximation

optimization algorithm is employed to find the optimal values

of the controller tuning parameters θ. After each optimization

step, executed in a different and higher timescale than the

process closed-loop control, the result of the SPSA algo-

rithm is updated to the Virtual and Real domains enabling

a simultaneous interaction between domains. Considering that

the SPSA algorithm can be executed in parallel, a pool of

Digital Twins can be enabled in the virtual domain as shown

in Fig. 1 to improve the convergence of the SOC. These

Digital Twins act as slaves of the parallel system (Real system

and Digital Twin in virtual system (DT#1), evaluating one

of the multiple simultaneous perturbations required for the

parallel SPSA optimization at each iteration, increasing the

convergence speed of the algorithm. Thus, the SOC control

using SPSA acts as an integrating rule for the parallel system.

A. Parallel SPSA Algorithm

SPSA is a stochastic optimization algorithm proposed by

Spall [8], which considers the following optimization problem

arg min
x∈Rn

f(x), (2)

that uses the recursive form of a general Stochastic Approxi-

mation algorithm:

xk+1 = xk − akḡk(xk), (3)

where xk represents the estimate of x at the k-th iteration,

where ak is a sequence of positive scalar coefficients. So the

approximation of the gradient at xk is

ḡk(xk) =

⎡
⎢⎢⎢⎢⎣

f(xk+ckΔk)−f(xk−ckΔk)
2ckΔk1

f(xk+ckΔk)−f(xk−ckΔk)
2ckΔk2

...
f(xk+ckΔk)−f(xk−ckΔk)

2ckΔkn

⎤
⎥⎥⎥⎥⎦
,

(4)

where n is the size of the input x, Δk = [Δk1,Δk2, . . . ,Δkn]
are the elements of the random perturbation vector Δk gen-

erated using a sub Bernoulli distribution, which are assumed

to be independent and symmetrically distributed around zero,

ck is a positive scalar that change its value per each iteration,

f(xk + ckΔk), f(xk − ckΔk) are the cost function values

evaluated with a different sign of the perturbation. According

to [8], the values of ak and ck are given by (6), where

A, a, c > 0, using α = 0.602, γ = 0.101 as suggested

by [8].

ak =
a

(k + 1 +A)α
(5)

ck =
c

(k + 1)γ .

(6)

The traditional SPSA [8] calculates for each iteration k
the simultaneous perturbation vector Δkn and performs two

evaluations f(xk + ckΔk), f(xk − ckΔk) of the cost function

(4) to estimate the gradient and update the optimization

parameters. However, the parallel implementation proposed

by [14] uses i slave processes, each one with its own per-

turbation vector Δk to increase the number of cost function

evaluations per iteration. Thus, for each i process, the values

of f(xk + ckΔk) and f(xk − ckΔk) are calculated. These

gradients are combined with the one obtained by the master

process to find the new direction of the gradient using (7),

where u(k − 1, i) is a subscript that means the i-th process

in the k− 1 iteration. Thus, the next system input parameters

xk+1 are calculated. Algorithm 1 summarize the process of

the parallel SPSA algorithm.

dk = ḡk +
ḡTk ḡu(k−1,i)

||ḡu(k−1,i)||2 ḡu(k−1,i)
(7)

xk+1 = xk − akdk. (8)

Algorithm 1 Parallel SPSA Algorithm [14]

Input: a, c, A, α, γ
Output: x

Initialization : Initialize the SOC parallel framework and

choose a, c, A, α, γ
1: Generate the Simultaneous perturbation vector Δk for

each process i.
2: Calculate the approximated gradient using (4) Δk for each

process i.
3: Choice of the combined gradient direction based on the

norm ||ḡk(k − 1, i)||2 using (7).

4: Update xk applying (8)

5: Repeat 1 to 5 during m iterations

6: return x

III. CASE STUDY: PARALLEL SELF OPTIMIZING CONTROL

FRAMEWORK FOR THERMAL SYSTEMS

The parallel SOC framework is tested for the control of a

thermal system. In this paper, the case study is the Digital Twin

of a Peltier thermoelectric system proposed by [15]. As shown

in Fig. 2, the system is composed of a Peltier heating cell (M1),

a thermal infrared camera (M2) as a temperature sensor for

uniformity temperature control, a LattePanda edge computer

(M3), a power driver controlled by an Arduino (M4), and a

battery (M5). In this case, the uniform temperature control

system is closed-loop stable, employing a PI controller (9)
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Figure 1: Parallel Self Optimizing Control Framework

Figure 2: DT case study: real-time vision feedback infrared

temperature uniformity control

with antiwindup, with the proportional and integral gains Kp

and Ki as tuning parameters for the controller.

c(s) = kp +
ki
s .

(9)

The Digital Twin of the thermal system is developed follow-

ing the five steps Digital Twin systematic framework shown

in Fig. 3. The DT uses Matlab/Simulink and Simscape to

replicate the physical laws of the system and controls. The

complete multiphysics simulation model is presented in Fig. 4.

A detailed explanation of the Digital Twin development can

be found in [15].

A. Parallel SOC framework evaluation

The parallel SOC framework is employed to optimize the

proportional and integral gains of the PI controller (9) based on

the cost function (1). For this purpose, two tests are proposed.

The first test uses only the parallel interaction between the

real system and the parallel Digital Twin 1 to optimize the

values of the closed-loop PI controller employed in the system.

Figure 3: Five steps Digital Twin development framework

Figure 4: Peltier thermal system Digital Twin

Besides, the second test uses a pool of five Digital Twins

of the system to accelerate the SPSA algorithm simultaneous

perturbation with an independent perturbation vector Δk for

each DT. Both tests are evaluated for a total of 200 iterations

with the parameters a = 60.17, α = 0.602, γ = 0.101,

c = 1.9, and W1 = 1, W2 = 0.1, W3 = 1e− 3 for the SOC

cost function (1) weights. Likewise, the initial conditions for

the SPSA algorithm are given as a set of Kp,Ki that make

the system stable obtained with the Ziegler-Nichols method

[16]. For this reason, a First Order Plus Dead Time model

of the system is identified using stepped inputs, which is

given by (10), resulting in the initial values for Kp and Ki of

Kp = 10.3,Ki = 3.32.

P (s) =
2.7

31.42s+ 1
e−1.004s

.
(10)

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on September 23,2021 at 05:56:29 UTC from IEEE Xplore.  Restrictions apply. 



361

0 20 40 60 80 100 120 140 160 180 200

Iterations

0

20

40

60

K
p, K

i

K
p
 SOC no pool

K
i
 SOC no pool

K
p
 SOC with pool

K
i
 SOC with pool

0 20 40 60 80 100 120 140 160 180 200

Iterations

2

4

6

8

10

12

C
os

t f
un

ct
io

n 
J

SOC without pool
SOC with Pool

Figure 5: Parallel SOC test with real system and one mirror
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Figure 6: Parallel SOC test with real system, mirror DT and

10 DT slaves on pool

The cost function evaluation, the controller parameters evo-

lution, and the time response of the optimized controllers

for tests 1 and 2 are shown in Fig. 5 and Fig. 6. As can

be observed, the parallel SOC with SPSA converges in both

scenarios, with a convergence time of 180 iterations in test

1 (no DT pool), and 60 iterations when the DT pool is used.

Likewise, the time response shows that the PI controller shows

an improved performance after the self-optimization compared

with the initial condition. Notice that the SOC control has been

performed using the repetitive square reference signal shown

in Fig. 6. Based on the obtained results, we can say that the

parallel SOC framework with a Digital Twin pool can improve

the closed-loop system response using an economical cost

function based on the real-time updated system performance

for each period.

IV. CONCLUSIONS AND FUTURE WORKS

This paper introduced a parallel SOC architecture supported

by Digital Twin and the parallel SPSA algorithm. The Digital

Twin of a thermoelectric system has been employed as a case

study for the framework. The obtained results show that the

parallel SOC control can significantly improve the system

closed-loop performance, reducing the convergence time using

parallel SPSA optimization supported by multiple instances

of Digital Twin. Thus, the parallel SOC framework can be

considered the initial step to introduce smartness into classic

process control towards the implementation of smart control

engineering. As future works, the convergence and stability

analysis of the framework, its practical implementation using

Hardware in the loop configuration, and its application for

control problems with tens or hundreds of control variables to

be tuned is proposed.
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