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Abstract—Smart autonomous systems are expected to be
cognisant, taskable, adaptive and ethical. Digital twin (DT)
and parallel intelligence (PI) techniques are ideal candidates
to further advance the smart autonomous systems to the next
level. The DTPI techniques are under fast deployments in both
the energy and transportation sectors due to the inevitable
transition from fossil fuel vehicles to electric vehicles (EVs).
The dramatic increase in EV charging demand yields a huge
power supply gap. Currently, the low coverage and outdated
management system of charging infrastructure have led to poor
user experience and increased user range anxiety. To this end,
we propose a cognitive charging station architecture for future
charging infrastructure, which consists of power generation
network, energy storage network, and charging network. DTPI
techniques enable the cognitive charging stations to provide smart
functions such as energy management, energy storage system
health management, load management, intelligent maintenance,
and smart user services.

Index Terms—Cognitive charging station, digital twin, parallel
system.

I. INTRODUCTION

Digital twin (DT) is a computer based twin model in a

virtual space that mirrors the static characteristics and op-

erational dynamics of a physical entity, which truly reflects

the dynamic evolution process of physical entities throughout

the life cycle with the support of the Internet of Things

(IoT). A methodological framework for developing DT is

available in [1] and an information theory based criterion to

determine the optimal DT model is given in [2]. DT has

a stricter correspondence between virtual and real systems,

which requires a clear understanding on the system structure.

Due to the practical challenges to create high fidelity DT,

the concept of parallel intelligence (PI) is derived based on

artificial intelligence, computational experiments, and parallel

execution (widely regarded as the ACP method), which is

also used to model complex systems. Practically, the PI not

only simulates the known components of complex systems, but

also exhibits the function of modeling and explaining unclear

mechanisms [3], [4]. According to this argument, the DT can
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be regarded as a special case of the PI, which both provide

real-time monitoring and control services for specific complex

systems.

The DT can dynamically reflect the state changes of phys-

ical entities and reduce the information asymmetry, which

enables an new management idea in the context of IoT to

improve the status quo of various types of equipment, complex

operating conditions, and poor human-computer interaction.

The global electric charging stations has exceeded 1 million

in May 2020 [5]. However, due to the geographical dispersion

of charging infrastructure and outdated management system,

they have exhibited severe defects such as low utilization

rate, poor identifiability, high maintenance fees, and poor user

experience. These problems have been plagued the charging

market. In this study, we propose a DTPI based cognitive

charge stations architecture for the future charging infras-

tructure, which is powered by a renewable power generation

network and a energy storage network. With the help of

DT, high-precision reconstruction of the charging infrastruc-

ture including power generation units, energy storage system,

mobile charging units, and fixed charging poles is built in

the virtual space. The cognitive charge station monitors and

adjusts its own operating status. When a charge request comes,

the cognitive charge station generates and simulates the energy

management process in the virtual space, which guide the

charging station to apply the best operational strategy for smart

user services.

II. CHARACTERISTICS OF THE COGNITIVE EV CHARGE

STATIONS

The EV charging station is expected to be cognisant, task-

able, adaptive and ethical. Each charging station can only

be cognizant when demonstrating high-level awareness of

their own capabilities and limitations, anticipating potential

failures, and re-planning its operational actions for energy,

power, energy storage, and load managements accordingly.

This expectation is achievable by the technical support of

DTPI to create a DT of the charging station. The DT charg-

ing station must be a dynamic adaptive system, which will

constantly learn from physical charging station operation data

and their own experiences to improve the operational strategy.
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In addition, it can also detect abnormal behaviors in charging

stations such as power generation unit failure, energy storage

system aging and node power quality degradation on different

time scales and perform predictive maintenance. According to

the forecast of charging demand and the charging market infor-

mation, the cognitive charging station will automatically adjust

operation strategies to ensure the realization of investment

goals and provide strategic planning suggestions for operators.

From the user side, the cognitive charging station creates a

user-friendly paradigm. It can receive and interpret advanced

voice and linguistic instructions, including operator’s control

instructions and EV drivers’ charging requests, and formulate

and execute combination strategies with good interpretability

and transparency to manage the energy flow of the charging

station.

III. DTPI APPLICATIONS IN THE EV CHARGING

INFRASTRUCTURE

Our proposed charging station serves a new node in the

power generation and delivery supply chain. The charging

station and its associated charging poles and mobile charg-

ing units (MCUs) forms the charging station network. This

network will demonstrate massive communication interactions

for the exchange of energy, information, and transactions with

the power generation and delivery network, energy storage

network, and the EV network. A brief concept of these

interactive networks is shown in Fig. 1. The charging station

network can only be deemed as smart when they are cognitive,

taskable, adaptive, and ethical. This target is achievable with

proper applications of DTPI in renewable power generation

network, energy storage system network, and the charging sta-

tion network. In the following, we share our vision of potential

DTPI applications in these areas based on the summary of state

of the art research development in the DTPI applications.

A. DTPI applications in renewable power generation network
and energy storage network

The fast growth of EV charging demand can easily pose

severe impacts on the existing power grid, such as increase

peak load, instability due to uncertain EV charging behaviours,

and tariff increase. Smart grid equipped with green power

generators and local energy storage systems can effectively

alleviate the grid power supply pressure, reduce electricity

cost of supply, enabling flexible electricity trading schemes,

enhance power supply reliability, and contribute to renewable

energy market penetration hence reducing carbon emissions.

In the existing studies, DTPI has been widely used to manage

power generation units such as photovoltaic panels and wind

turbines in the network, and perform maximum power point

tracking and fault detection to ensure that they provide energy

to the energy storage network and charging network smoothly

and efficiently. Ref. [6] and Ref. [7] developed DTs for photo-

voltaic cells and wind turbines respectively and applied them

to off-board diagnostics of the cells. So far, the first principle

energy modelling, data-driven energy modelling, and a hybrid

of the two energy modelling approaches are widely applied to

build DTs for lithium-ion batteries. The electrical and thermal

dynamics of the lithium-ion batteries are properly described

by partial differential equation models or equivalent circuit

models. Ref. [8] established a cloud battery DT management

system based on the extended Thevenin model. The data-

driven approach employs machine learning algorithms and

a large amount of experimental data to establish the input-

output models of batteries. Ref. [9] established a DT model

of the relationship between voltage and state of charge (SoC)

through the long short-term memory algorithm. The hybrid

approach establishes a paradigm that combines physical and

data models. The hybrid DT framework proposed in [10] has

better accuracy and is adaptive to the environment, it also

reduces the dependence on the amount of data. Based on the

existing applications to create DTs or parallels systems of the

renewable power generation and battery energy storage sys-

tems, we identify tremendous research potentials developing

the DTs for various renewable power generation units such

as the wind turbines, solar panels, biomass/bio gas genera-

tors, mini hydro power stations, etc., and the energy storage

systems, namely the air compressors, lithium-ion batteries,

supercapacitors, thermal energy storage units, pumped hydro

power, flywheel, redox flow batteries, hydrogen fuel cells, etc.

These DTs are high fidelity energy models that illustrates

the physical characteristics and operational dynamics of the

renewable power generation and energy storage units. The DTs

are further supported by real-time communication technologies

such as IoT and edge computing.

B. DTPI applications in EV charging network

The charging network consists of charging stations, inde-

pendent charging poles, mobile charging units and EVs in the

network. They are connected via the energy internet, which

enables flexible electricity trading opportunities. Independent

charging poles refer to distributed charging poles deployed

in public parking lots or private areas. The geographically

dispersed independent charging poles increase the difficulty

of management. To reverse these negative factors, we take the

charging stations, charging poles and MCUs as one system for

energy management purpose. Specifically, we will develop a

DTPI system for the charging station network in the virtual

space. So far, there is no solid research work done to create

DTs or parallel systems for the charging stations, charging

poles, and the MCUs. To fill this research gap, we believe

technical challenges to setup the DTPI system for the charging

station network shall be low. In the next subsection, we share

our vision on the DTPI enabled smart management of the

charging stations.

IV. DTPI ENABLED SMART MANAGEMENT OF THE

CHARGING STATIONS

In Fig. 1, the DT is capable of reconstructing the oper-

ating dynamics of the charging station in the virtual world

using real-time data and intelligent analytics supported with

visualization software and respond optimally to environmental

changes to improve charging station efficiency. The DTPI
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Fig. 1. The cognitive charging station enabled by DTPI.

enables five basic functions of the cognitive charging station,

namely energy management, energy storage system health

management, load management, intelligent maintenance, and

smart user services.

A. Energy management

The power flow management and power quality man-

agement are the core functions of charging station energy

management. With proper energy management strategies, the

charging station can maximize its profit with optimal charging

scheduling strategies while satisfies the charging requests of

EV users. At the same time, the energy storage system can

optimise charging and discharging behaviours based on real-

time electricity prices to minimize electricity bills. The power

flow management also supports multiple forms of energy

trading between charging stations and EVs to enable the

vehicle to everything (V2X) trading functions to the charging

station network.

Power quality problems such as voltage deviation, frequency

deviation, and harmonics will cause damage to the charging

station equipment and charging EVs. The power quality con-

trol device with high-power power electronic devices as the

core unit can be used to effectively guarantee the transient

and steady-state performance of the charging station. By

collecting the current, voltage and other parameters of each

node in the charging station circuit, DT can visualize the

power quality status model of the line in the virtual space,

and generate control signals to control the power quality

control device to achieve the ideal compensation effect. In

addition, DT technique can evaluate the effectiveness of new

power electronic equipment and monitor its real-time status.

For example, Ref. [11] proposed a real-time, probabilistic DT

to realize the online diagnostic analysis of power electronic

converters.

B. Energy storage system health management

The energy storage system health management includes the

functions of state of health (SoH) estimation, battery electrical

and thermal dynamics monitoring and control, cell balancing,

battery fault detection and tolerance, which guarantee the safe,

reliable, and efficient operation of the ESSs. The DT system

enables the collection of battery operation data such as voltage,

current, temperature, and pressure to establish a high-fidelity

model and realize state estimation, temperature management,

and balance control. Ref. [9] utilized a deep learning-based

DT to evaluate lithium-ion battery degradation. With the help

of DT technique, Ref. [8] achieved continuous and accurate

monitoring of SoC and SoH. The maximum temperature rise

and the maximum temperature difference of the battery pack

are two criteria to evaluate the performance of the temperature

control unit. When the system is overheated or under zero,

the cognitive charging station will take measures such as air

cooling and liquid cooling to handle the temperature. The

high-fidelity DT clearly reveals the inconsistency between

batteries, which allows us to formulate more precise control

strategies to achieve high-performance balance control. In

addition, DT with powerful computing ability can generate

a comprehensive and authoritative report on the status of the

EV batteries and calibrate the EV battery management system.

C. Load management

Load management enables EV charging load and charging

schedule to adjust the aggregate demand curve for peak

shaving and valley filling. In this way, charging sessions can

be distributed more evenly throughout the entire time period,

thereby reducing the construction and operation cost of the

cognitive charging station while still ensuring the same quality

of service [12]. When EVs park in charging station, the

cognitive charging station can adopt a variety of strategies

to manage the charging demand. Demand forecasting based
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on DTs can integrate historical charging load data analysis,

short-term/long-term energy forecasting, machine learning al-

gorithms, and visualization techniques to predict user charging

behavior, and adopt strategies to ensure smooth operation of

the charging station [13]. For a fixed charging station, the

prediction model includes the EV’s arrival rate in each time

period, the SoC value when the EV arrives at the charging

station and the target SoC, the maximum charging time and

the user’s charging mode preference. These indicators can be

modeled by statistical methods, such as utilizing the Poisson

process to describe the arrival rate of the EV, and utilizing

the normal distribution to estimate the SoC of EVs when they

arrive at the charging station. It can also be modeled by data-

driven models such as temporal graph convolutional networks

and long and short-term memory neural networks.

D. Intelligent maintenance

Preventive maintenance aims to minimize the production

life cycle cost by addressing machine failures before they

occur [14], [15]. With the help of DT, comprehensive analysis

methods based on high-fidelity models and comprehensive

data can be used to support fault diagnosis and prediction

of charging station facilities, which can improve the accuracy

and reliability of the results. DT techniques are capable of

revealing the internal interaction mechanism of the physical

entity’s fault evolution process, thereby associating the fault

status with specific components, rather than just providing a

vague fault status indicator. In addition, when some data types

have perception difficulty problems caused by the complex

environment and sensing technology limitations, data fusion

of virtual data and physical data can be utilized to ensure the

integrity of the data to be analyzed. Moreover, DT can also

reduce the frequency of maintenance and eliminate unneces-

sary maintenance activities while ensuring the safe operation

of charging stations [16].

E. Smart user services

A smart mobile APP based on the proposed DTPI tech-

niques will be developed to enable smart charging services,

which helps users find idle charging poles, formulate the op-

timal route, book charging services, and monitor the charging

status of EVs. Mobile charging services are also enabled

by the charging station to deliver the charging services to

users with emergency demand via a fleet of MCUs. The

mobile charging can significantly improve the coverage rate

of charging facilities, and reduce the user’s range anxiety.

In addition, the cognitive charging station can automatically

match standardized services according to the user’s semantic

information, and provide combine services according to some

complex requirements to satisfy the charging requests of EV

drivers.

V. CONCLUSIONS AND FUTURE WORK

This study shares our initial vision of developing a cog-

nitive charging station infrastructure that consists of power

generation network, energy storage network, and charging

network. The proposed smart and cognitive charging station

infrastructure is achievable with the enabling DTPI techniques.

Based on the DTPI techniques, the charging stations are able

to provide smart functions such as energy management, energy

storage system health management, load management, intel-

ligent maintenance, and smart user services. More technical

works on the DTPI of the renewable power generation units,

energy storage systems, and the charging station network are

expected to be constructed in the near future.
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