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MOABS/DT: Methane Odor Abatement Simulator with Digital Twins

Derek Hollenbeck1,∗ Demitrius Zulevic1,2,‡ and YangQuan Chen1

Abstract— Digital twins (DT) are quickly being realized in
many different applications for improving performance and
adding intelligence. Depending on the application, the specific
details of the DT may vary. For DT’s of fluid systems, such as
with fugitive methane emissions (containing millions of degrees
of freedom), different numerical and reduced order model-
ing approaches are required for implementation. In practice,
weather conditions and repeatability become an issue when
evaluating detection and quantification strategies. This paper
outlines a virtual evaluation center DT based on the Methane
Emission Technology Evaluation Center (METEC) that aims to
test quantification strategies under controlled virtual conditions,
namely, the methane odor abatement simulator (MOABS/DT).

Index Terms— digital twins, methane emission, methane
abatement, mobile sensing, simulator.

I. INTRODUCTION

Methane emissions are important to care about for several

reasons, namely, it is a powerful greenhouse gas (GHG) as

compared to carbon dioxide, and the atmospheric lifespan

of methane is much shorter than that of carbon dioxide.

Therefore, reducing methane can yield significant short term

benefits. The first step in the mitigation process, is making

emissions measurements. There are, broadly speaking, two

approaches: top-down (inventory based) or bottom up (site

level). It has been shown that underestimation from top-

down approaches vs bottom up [1], [2] can happen. There

has also been global effort to reduce methane emissions by

the Global Methane Initiative called the Global Methane

Challenge. Other methane mitigation techniques have been

explored through simulation, which rely on early detection

and repair of larger leaks to achieve maximum reduction [3].

Traditional methods of methane detection in oil and gas

are done on foot, such as with a flame ionization detector

(FID), remote methane leak detector (RMLD) or optical

gas imaging (OGI). Quantification of individual gas leaks

typically can be done by bagging the leaking equipment

and measuring the volume obtained in a specified time.

This requires a full or partial shutdown of plant/equipment.

Non-invasive approaches, static or using mobile vehicles,

have shown great promise in detecting and grading leaks.

For example, quantification of entire sites can be calculated

using the tracer correlation method (TCM) or mobile TCM

taken from measurements downwind of the source [4]–[6].
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Drones have also been used to quantify emissions using mass

balance based approaches from oil and gas sites [7]–[9],

natural ecosystem emissions [10], [11], and from landfills

[12]. Other drone-based quantification approaches, such as

the near-field Gaussian plume inversion (NGI) [13] have

shown promise. In a study at a landfill site, surface emis-

sions monitoring (SEM), drone emission monitoring (DEM),

and downwind plume emission monitoring (DWPEM) were

compared to a GA-based estimation approach by [14]. A

controlled release test site has been developed, as a part of

ARPA-E funded effort, to evaluate new methane emission

technologies, called methane emission technology evaluation

center (METEC). In a recent single-blind study, drone-based

technology performed quite well, with a detection limit of 1

SCFH [15].
Digital twins (DT) could be used to further improve

some of these methodologies by providing smart insight and

analytics [16]. This work introduces a conceptual framework

for applying detection and quantification of fugitive gas emis-

sions with digital twins. The paper is organized as follows:

section II discusses the general details and implementation

of the framework; section III gives a case study example

of the digital twin for methane detection and quantification

strategies; and section IV gives concluding remarks and

future work.

II. THE DIGITAL TWIN FRAMEWORK

Fig. 1: The DT framework for environmental sensing [?].

What is a DT? In 2003 it showed up in a product lifecycle

management course at the University of Michigan, taught

by Michael Grieves [17]. His definition at the time was,

“A digital twin is a virtual, digital equivalent to a physical

product.” The idea of having twins can be seen as far back

as the NASA Apollo missions and their hardware twin of

the rover. Alternatively, sometimes their can be a mixture of

hardware and software, such as the ‘Iron Bird’ (e.g. flight

simulator). The DT used here could be more general and we

therefore use the definition from [18]: “A Digital Twin is the
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combination of multiple, individual, and detailed simulation

models (continuous, discrete, hybrid), where its interconnec-

tion represents the dynamics of a complex system, which

is updated periodically (windowed or real time ) with the

system information in order to reflect the system current

status as well as predict its future behavior and possible

faults.”

Examples of DT used can be seen in industrial au-

tomation and process control engineering [19], [20], smart

cities [21], discrete dynamics systems [22], and more. There

are four basic levels of DT development. Level 1 (L1):
DT environment with no physical system. The systems do

not interact and smart capabilities do not apply. Provides

a preliminary design. Level 2 (L2): DT environment is

built based on physical system, with the physical system

operating standalone. Systems interact in non-real time for

data acquisition and do not have smart capabilities. Provides

performance analysis and system status. Level 3 (L3): DT

environment with a monitoring interface and physical system

operating in standalone with supervisory systems. Systems

can interact with real time data acquisition and have limited

smart capabilities. Provides data analytics, fault detection and

prognosis. Level 4 (L4): DT environment with a monitor-

ing interface and physical system operating in closed loop

with the DT virtual environment. Systems interact with real

time data acquisition and have smart control. Provides data

analytics, fault detection and prognosis as well as automated

recommendations and actions for the physical system.

Generally, there are three main challenges with implement-

ing a DT. The first, is subsystem modeling, which, includes:

model fidelity (level of detail), numerical schemes (e.g. finite

elements), multi-physics systems, multi-component systems

and degradation of system components. The second, is

sensor integration and data fusion. Challenges include: real

time data acquisition for multi-physics and component level

modeling, high computational cost, and varying communica-

tion protocols. Lastly, is behavioral matching, which makes

the DT update parameters based on the physical system’s

behavior or feedback. This can be quite difficult if there is

lack of system knowledge (e.g. mathematical realizations)

and or problems are ill-posed.

There are five steps to constructing the DT. (1) Target

system definition, which defines: simulation requirements,

desired DT Level, controller requirements, system purpose

and desired outcomes. (2) System documentation, which

includes: control algorithms, sensor/actuator specifications,

common problems/troubleshooting, data streams, types of

signal processing and analysis. (3) Multi-domain simulation

of: data-driven models, stochastic and probabilistic models,

deterministic physics models, or some combination thereof

(e.g. hybrid modeling). (4) DT assembly and behavior

matching (choosing parameters for each DT subsystem in

order to match its complete system dynamics and behavior

with the real state of the physical system) (see Fig. 1),

including: input and output communication between the

DT and physical system; behavior matching in open or

closed loop configuration; and choose suitable optimization

strategies, constraints and cost functions. (5) DT validation

and deployment by: validating behavior of digital twin in

offline setting with multiple data sets; developing supervisory

system for real time data management and visualization; real

time parallel operation of DT and physical system in online

setting; and online behavior matching deployment for smart

DT capabilities (e.g. fault diagnosis and prognosis).

III. MOABS/DT CASE STUDY

Fig. 2: A satellite image of the Colorado State University

methane emission technology evaluation center (METEC),

sub-divided into sites and equipment pads are numbered for

simplicity in topology modeling.

In this section we outline a Digital Twin for use in

reducing fugitive gas emissions by early detection and

quantification, namely, methane odor abatement simulator

(MOABS/DT). The real world site we choose to focus on

is METEC (see Fig. 2), as it was designed for testing and

evaluating new technologies as well as provides a benchmark

for future research efforts.

The first step is the target system definition. We want the

simulation requirements to be: create a digital representation

of METEC that can simulate short time-scale behavior of

emission dynamics and provide real-time or near real-time

operation; create a L2 DT for analyzing performance of

detection and quantification strategies; and conduct offline

control of DT for studying how environmental variables

impact behavior of the DT (such as source location, atmo-

spheric stability, and surface topology). The overall purpose

of the system is to connect a DT representation of a physical

asset (i.e. METEC) for running virtual controlled release

experiments.

The second step is to gather all the system documentation

and known problems. Since direct feedback from the L2 DT

is not applicable in this case study, control algorithms seek

to perform analysis, in an offline sense. For example, the

source location using measured data from sparse sensors

throughout the field [23] and perform behavior matching

using synthetic and real timeseries data [24]. The sensor

used in this application is a tunable diode laser absorption

spectrometer (TDLAS). This sensor makes point based mea-

surements at 5Hz with sensitivities in the 10 ppb s−1 [25].

It is mounted out front of a multi-rotor aircraft (or drone)
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that actuates the location in space and time. The full state

of the drone can be realized using the vehicle dynamics and

motor inputs or treated as a subsystem in guided control

mode with single or double integrator dynamics. One of

the common problems with methane emissions is detection

itself. Having good measurements of the local wind field

is not generally possible, so in situ wind or static wind

measurements are used to inform the operator of where

to search (e.g. downwind and around equipment). Flying

upwind and downwind of the source can be used to isolate

leaking equipment or sections of a site. Multiple point source

emissions are often difficult to distinguish using point based

measurements, which include sources from adjacent sites that

may drift into the measurement region through variable wind

conditions. Utilizing on-board computers and WiFi based

communication systems, data can be streamed to a local

computer for feedback of the real system. Upon completion

of physical data gathering process, the DT can be used

to behavior match the system and exploit new methods of

detection and quantification performance.

The third step in the construction is the multi-domain

simulation. For this case study, there is a need to model

diffusion and transport of the methane gas, as well as the

model the dynamics of the wind field. Since these domains

are governed by partial differential equations, namely, the

advection diffusion equation and viscous Burger’s equation,

the computational cost can be quite high depending on

numerical strategy. For these reasons, we adopted the 2D

small time-scale filament model by [26], which stochastically

treats the chemical transport at different length scales. The

wind field is solved using an implicit finite differences

approach [27]. The dynamics of the chemical sensor can

be modeled with an effective sensor area and a low pass

filter. The dynamics of the actuator (e.g. multi-rotor drone)

can be modeled using single or double integrator dynamics

as well. To extend the model to 3D power law scaling of

the wind is applied [28]. The site topology can be modeled

using simple geometric shapes defined at locations specified

by the equipment pads (see Fig. 2). The interaction between

topology and gas filaments can be implemented with a

filament collision model.

The fourth step is the DT assembly and behavior matching.

The DT is assembled by first connecting wind field model

with the chemical filament dynamics and the collision model

defined by the topology. Next, the interaction with the sensor

and actuator models for measuring observations in space and

time. Once the DT is assembled, the behavior matching to

the physical system of interest can be done by calibrating

simulation leak rates with observed timeseries concentration

signals [24] (see Fig. 1). This is done with a training data set

(a subset of the overall data gathered) that captures rich mea-

surement data and knowledge of meteorological conditions

(e.g. atmospheric stability [29]). These data sets have been

gathered, in this example, through a series of survey flights

that include: initial perimeter sweeps for detection of leaks,

and mass balance flights for quantification of emissions (see

Fig. 3).

The fifth and last step in the construction process, is

the DT validation and deployment. The validation can be

done by comparing the quantification results (previously

unseen data) to the behavior matched DT (from step 4) in

an offline setting. A well defined/trained DT will produce

results suitable for prediction defined within the purpose of

the DT. The DT can then be deployed to run in parallel with

the physical system (see Fig. 4) gathering system wide data

in the process (from static sensors or other mobile systems

deployed). This opens up the possibility to perform online

behavior matching of parameters, ultimately, providing esti-

mates to key parameters (such as source location [23]) for

smarter path planning as well as improving quantification

efforts [30].

IV. CONCLUSIONS

As we continue to use energy sources such as natural gas

in our homes and methane emission reduction continues to

be an focus in society, there will always be a need to detect

and quantify emissions for repair and validation. This work

proposes the use of DT’s for improving and testing the limita-

tions of advance leak detection and quantification techniques.

Improving accuracy and frequency of surveys that can lead

to reductions in overall emissions. The DT provides a way

to cost effectively test techniques and optimize approaches.

The DT can also provide an added layer of intelligence for

site performance and smarter path planning. Additionally,

if component level DT’s are incorporated within the site

equipment (valves, tanks, etc.), prognosis features such as

remaining useful life (RUL) can be applied. Using analytics

such as RUL, the frequency of surveys can be prescriptively

increased for areas near the failure limit.
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