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ABSTRACT

Over the past decade, the rapid rise of Unmanned Aircraft Systems (UASs)
has blossomed into a new component of the aviation industry. Though regulations
within the United States lagged, the promise of the ability of Small Unmanned
Aircraft System (SUAS), or those UAS that weigh less than 55 lbs, has driven
significant advances in small scale aviation technology. The dream of a small, low-
cost aerial platform that can fly anywhere and keep humans safely away from the
‘dull, dangerous and dirty’ jobs, has encouraged many to examine the possibilities of
utilizing SUAS in new and transformative ways, especially as a new tool in remote
sensing. However, as with any new tool, there remains significant challenges in
realizing the full potential of SUAS-based remote sensing. Within this dissertation,
two specific challenges are addressed: validating the use of SUAS as a remote sensing
platform and improving the safety and management of SUAS.

The use of SUAS in remote sensing is a relatively new challenge and while it
has many similarities to other remote sensing platforms, the dynamic nature of its
operation makes it unique. In this dissertation, a closer look at the methodology
of using SUAS reveals that while many view SUAS as an alternative to satellite
imagery, this is an incomplete view and that the current common implementation
introduces a new source of error that has significant implications on the reliability
of the data collected. It can also be seen that a new approach to remote sensing
with an SUAS can be developed by addressing the spatial, spectral and temporal
factors that can now be more finely adjusted with the use of SUAS.

However, to take the full advantage of the potential of SUASs, they must
uphold the promise of improved safety. This is not a trivial challenge, especially
for the integration into the National Airspace System (NAS) and for the safety
management and oversight of diverse UAS operations. In this dissertation, the
challenge of integrating SUAS in the NAS is addressed by presenting an analysis of
enabling flight operations at night, developing a swarm safety management system
for improving SUAS robustness, investigating the use of new technology on SUAS to
improve air safety, and developing a novel framework to better understand human-
SUAS interaction. Addressing the other side of safety, this dissertation discuses the
struggle of large diverse organizations to balance acceptance, safety and oversight
for UAS operations and the development of a novel implementation of a UAS Safety
Management System.
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Chapter 1

INTRODUCTION

1.1 Dissertation Roadmap

The development of Unmanned Aircraft System (UAS) has grown dramati-
cally over the past several years, with significant advances in technology and regu-
lations. However, there still remains significant challenges to overcome before the
full potential of UASs are realized. Of the many challenges, two in particular are of
significant interest within this dissertation: validating the use of Small Unmanned
Aircraft System (SUAS) for remote sensing applications and improving safety and
management of UAS operations. Deploying an SUAS for a remote sensing appli-
cation is a relatively new challenge and while it has similarities with other remote
sensing platforms, the dynamic nature of an SUAS introduces new advantages and
challenges, but their effectiveness still requires validation. Moving to take advantage
of some of the new advantages of SUAS such as operations at night or multi-vehicle
operations, however introduces new challenges on safety and management that must
be addressed before new regulations can be implemented. This dissertation presents
a collection of advances to solve the challenge of optimal remote sensing with SUASs
and risk management.

1.1.1 Unmanned Aircraft Systems

The integration of UAS into the National Airspace System (NAS) is slowly,
but surely progressing with the enactment of regulations to enable small UAS, de-
fined as weighing less than 55 lbs. This first step has been a highly anticipated
advancement within the UAS industry. For many research applications, both UASs
and SUASs have been proposed and encouraged, but the challenges associated with
their use and regulations has slowed their adoption. Though UASs in general were
declared as the next big thing in 2012, many of the proposed ‘big’ successes, such
as delivery services have failed to materialize before the regulations were enacted in
2016. Though SUAS are only a subset of the UAS industry, it is seen as the most
immediate need and potentially largest component.

In 2013, the Association of Unmanned Vehicle Systems International (AU-
VSI), estimated that up to 80% of UASs operating in the US will be purchased
for agricultural applications [11]. Many of these applications were obvious: crop
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dusting and land surveillance were two of the most commonly cited examples. The
technology for these two applications had already been well developed and their
adoption was suspected to be eminent. However, the more advantageous agricultu-
ral applications, while they had been demonstrated, were considered to be several
years away from deployment.

In the following years, these applications became the subject of many rese-
arch projects. The more rigorous scientific applications of crop yield estimations,
soil moisture monitoring, pest management, or soil salinity control require a level
of robustness, reliability, and precision that many platforms are unable to satisfy.
Current platforms for researching these aspects have typically been developed spe-
cifically for these purposes; however, this is not a sustainable effort. If wide-spread
adoption is to be achieved, researchers must be able to focus on the research pro-
ject at hand, and not on the development of the platform. While much research
can be accomplished with the large, full-scale sized UASs, the greatest avenue to
applications remains in the use of the SUASs as these platforms are currently the
most accessible to researchers and for agricultural applications and have the highest
variation in quality.

1.1.2 SUAS-Based Remote Sensing Applications

Led by the development of small, high resolution cameras as well as suitable
multispectral cameras, SUASs have demonstrated a significant level of capabilities
for both agricultural and environmental applications [12]. There are large varieties of
applications being investigated that are enabled by the high-resolution imagery pro-
vided by SUASs including irrigation timing control [13], canopy coverage and yield
estimation [14], and disease and pest management [15]. Highly desirable metrics
such as crop water stress estimation have also been investigated using SUASs [16].
Utilizing established remote sensing indices such as Normalized Difference Vegeta-
tion Index (NDVI) has also enabled a variety of applications valuable for agricultural
such as yield estimation [17], and crop harvest yield attributes [18]. Multispectral
indices such as Photochemical Reflectance Index (PRI) [19] as well as more com-
plex analysis utilizing hyperspectral imagery [20] have also been demonstrated to
be effective estimators for metrics such as water stress.

Environmental applications, including conservation efforts, are also a prime
example of the value of SUASs. They have been utilized frequently for a variety of
applications, including wetland mapping [21] and rangeland management. The land
classified as rangelands comprises of over half of the usable land in the world and
has significant agricultural and economic value. Conservation and management of
these lands can be a challenging task due to the wide variety of activity and large
areas [22]. Satellite imagery can be used for decision support, but the resolution
of the imagery is typically insufficient. Finer details such as individual vegetation
and small water features are impossible to see and become difficult for management.
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Accurate assessment of small features, such as dead matter or litter have been iden-
tified as one of the most important indicators for assessing long-term sustainability
of the land [23]. Current methods, using satellites or field-crews, suffer from high
costs and limited actionable intelligence due to the sparse nature of the evaluations.
SUASs provide a new and cost efficient method for data collection for better range-
land management [23–25]. These autonomous systems have several advantages over
satellite imagery or manned aircraft. They can fly at very low altitudes, enabling
high resolution imagery, can accomplish a wide variety of mission, can have a higher
revisit frequency and can be much safer and cheaper to operate. As a result, remote
sensing applications for SUASs have seen significant growth as their utility gains
credibility.

In general, the use of SUAS technology for agriculture or environmental mo-
nitoring is an extension of existing methodology utilizing aerial or satellite imaging
for monitoring crops. Literature is well-established on the effectiveness for such ap-
plications as pest, weed or disease monitoring or damage assessment. The advent of
SUASs, paired with Global Positioning Systems (GPSs) and high resolution cameras
provides the ability to utilize imagery, such as that seen in Figure 1.1, to improve
that methodology and enable improved practices.

Figure 1.1: Aerial Imagery collected by SUAS over Merced Vernal Pool and Grass-
land Reserve, March 4th, 2015. (a) Color (b) False Color NIR Composite (c) Ele-
vation Map

While there has been a recent interest of the agricultural implications of high-
resolution or multispectral imagery, there remains a significant amount of work.
Many of the solutions found in literature utilize specialized equipment, controlled
environments, and rely on analysis expertise. These solutions are currently not
implementable at any level of commercial operation and further development is
necessary. The majority of existing methodology described in literature for SUASs
was developed for low resolution satellite imagery or through the use of handheld
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hyperspectral sensors with high spectral resolution, meaning that these are not
optimized for use by SUASs, which can provide high resolution imagery with limited
spectral resolution and potentially with a higher temporal resolution [26]. In some
cases, methods developed for satellite-based remote sensing were found inconclusive
for SUAS remote sensing [27]. Realizations such as these have led to more detailed
investigations into developing SUAS data test sites [28], and further analysis into
developing SUAS specific solutions [29].

1.1.3 UAS Regulation History

However, in order to utilize UASs or SUAS for any purpose, there are regu-
latory and safety hurdles. In the U.S., the FAA is the official agency that governs
the use of the NAS. Utilizing federal regulations, standards and policies, the Federal
Aviation Administration (FAA) develops and enforces strategies and rules that pro-
motes air safety and an efficient use of the NAS. While UASs have been in existence
since the early 1930’s, regulations regarding their use have only existed since 2005.

In 2005, the FAA published AFS-400 UAS Policy 05-01. This provisional
report established the first official sanctions of UASs allowing UAS operators to
apply for a Certificate of Waiver or Authorization (COA) that permits the use of
a specific unmanned aircraft or a class of unmanned aircraft to specific operational
bounds. These COAs are only offered to military or public agencies and only for U.S.
government functions. This definition includes state agencies and research institutes
such as public universities. However, this policy excluded the option of sanctioned
civil or commercial use [30].

In 2008, the policy was updated with the Interim Operational Approval Gui-
dance 08-01 report. This document continued the offering of COAs to public agen-
cies, but also included a mechanism for civil operators to apply for a Special Ai-
rworthiness Certificate in the Experimental Category, subject to strict limitations
and to the applicable regulations of 14 Code of Federal Regulations (CFR) parts 61
and 91 [31].

An early attempt to develop regulations for civil use was published in 2009
to address the rules and operations for SUASs. The ‘Comprehensive Set of Re-
commendations for SUAS Regulatory Development,’ written by the SUAS aviation
rulemaking committee (ARC) proposed similar operations as its predecessors such as
IOAG 08-01, but stricter limitations and regulations on use. In this report, SUASs
are proposed to strict altitude and lateral distances of 400ft and 1200 ft respectively
while utilizing visual line of sight (VLOS) as the primary method of mitigation for
mid-air collisions [32]. Limitations on flight altitude and lateral distance, 400 ft and
1200 ft, were recommended due to the limited capability of visual observers for con-
flict detection and resolution services. The report does not consider Sense and Avoid
Systems (SAASs) such as real-time video links or real-time air traffic monitors to aid
in situational awareness to allow extended flights in terms of distance, altitude and
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duration. The recommendations by the SUAS ARC also includes a primary means
of collision avoidance by recommending that an SUAS dive to a lower altitude and
yield right-of-way, as a pilot would expect a similarly sized bird do as a manned
aircraft approaches [32]. Due to the visibility challenges of an SUAS, it was decided
that the a vertical evasive maneuver would prove to be the optimal maneuver to
avoid the collision volume.

In addition to the operational bounds, the recommendations posed by the
SUAS ARC include additional qualifications for operation in each available class of
airspace. SUAS operations typically occur in Class E or G airspace, where air traffic
is sparse and where visual flight rules (VFR) are allowed during visual meteorologi-
cal conditions (VMC), a common aviation term that quantifies the safe operational
weather and visibility. Other airspace classes may be used, but the altitude limita-
tions keep this usage to a minimum, applicable only when near the Class C and D
airspace extends to the surface around airports. Operation near these airports are
recommended to be prohibited unless special authorization is given from the local
Air Traffic Control (ATC) and ATC contact is maintained [32].

The FAA revisited the issue of UAS operations in a Concept of Operations
(CONOPS) for Unmanned Aircraft Systems report, first issued in 2011 and updated
in 2012, to address the necessary requirements that a UAS must meet to be worthy
of integration into the NAS [33]. In this report, the FAA shares their view of a
UAS operating safely and efficiently with other air traffic by utilizing a ‘file-and-fly’
approach; filing a flight plan similar to existing instrument flight rules (IFR) flight
plans before receiving flight authorization, without the need for creating a segregated
airspace specifically for UASs [33]. However, as with many of the other mentioned
reports, the FAA CONOPS for UASs specifically excludes describing operations for
SUASs as not fitting within their concept narrative.

One of the major steps towards UAS operations was the FAA Modernization
and Reform act of 2012 that introduced several legal definitions for UAS, SUAS,
pushed for the integration of civil UAS into the NAS and introduced two signifi-
cant regulations, commonly known as Section 333 and Section 336 [34]. These two
sections introduced a process for the FAA to allow civil UAS flight operations after
a safety review (Section 333) and established the regulations for recreational UAS
flying, which includes the definition of ‘model aircraft.’

It was not until 2015 that progress had been made on civil UAS operations.
In February, the FAA released a Notice of Proposed Rule Making (NPRM) for
SUAS operations. Building off some of the proposals from the 2009 recommendation
report, it promoted a safety-based approach rather than a technical standard based
approach. The regulations were finalized in August 2016 in Title 14 of the CFR,
Part 107 [35]. This set of regulations primarily enabled the use of SUAS within Class
G airspace while introducing a new remote pilot in command (RPIC) certificate and
introduced a SUAS rating. In contrast to a Public Agency COA or Section 333 COA,
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the new regulations did not require an aircraft airworthiness certificate or the use of
a Visual Observer (VO). However, the new regulations placed an increased emphasis
on risk and safety management, and placed the responsibility of maintaining safety
squarely on the RPIC.

Unlike previous proposals for SUAS operations, the FAA introduced an air-
space authorization process and a waiver process for flight operations beyond the
limitations within 14 CFR 107. The airspace authorization enables SUAS operators
to request airspace authorization in Class B, C, D and surface E airspace. The
waiver process enables SUAS operators to request waivers to specific regulations in
14 CFR 107, provided the applicant made a sufficient case to ensure an Alternate
Means of Compliance (AMOC).

1.1.4 UAS Safety and Management

Throughout the process of developing UAS regulations, the FAA began to
shift many safety responsibilities from the aircraft manufacturers and the FAA to the
UAS operators. This can be seen in the relaxation of aircraft certification standards
(a manufacturer required component in earlier COAs) to no longer being required
under 14 CFR 107, though specifically for SUAS. However, this places additional
consideration to be thorough with safety on the part of the operator.

As a result, the role of UAS safety management has grown significantly as
more UAS enter the NAS. In the simple cases enabled under 14 CFR Part 107, such
as Class G airspace, integration into the NAS has been relatively straight forward.
However, as more operators propose flight operations under the 14 CFR 107 waiver
process, additional safety research is necessary. Areas such as determining safety
standards for non-standard flight operations [7], balancing multi-aircraft health and
safety [4], improving UAS traffic management [2] and exploring human factors [1]
are key components to improving UAS safety [36].

Beyond improving UAS safety as more aircraft enter the NAS, the reliance
on operator judgment has changed the way that UAS safety needs to be managed.
For large organizations, UAS operations may pose significant risks as a wide range
of users and aircraft may be deployed. While the FAA transfers risk to the UAS
operators, in practice, all of this risk is transferred to the organization as the ope-
rators are acting on behalf of the organization. As a result, UAS risk and safety
management are expected to play significant roles in the coming years.

1.2 Research Motivations and Approach

The UAS industry is rapidly growing, however, as presented previously, there
are significant gaps that remain to be addressed. In this section, these gaps are
identified and their approach to resolution is described.
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1.2.1 Lack of a General SUAS Remote Sensing Methodology

The use of SUASs in remote sensing applications is still in need of maturation.
As more and more applications are developed and documented, the need for a guide
for the development of an SUAS remote sensing methodology has become apparent.
A well-developed methodology is critical for project success as it defines with clarity,
the end goal, the implementation, the data collection strategy and provides metrics
for success and project completion. Failure to accurately develop a methodology can
lead to significant development delays, spiraling costs, or complete project failure [8].

Addressing this general challenge requires an investigation of the advantages
and disadvantages of SUAS operations and their remote sensing equipment to better
inform the reader. While many view SUAS operations as an alternative to satellite
based imagery, this is an incomplete view. This is especially true in the use of
other remote sensing equipment such as Thermal Infrared (TIR) [5] and Short Wave
Infrared (SWIR) imagers [6].

1.2.2 Sources of Error

The data processing workflow for UAS-based Remote Sensing is currently a
multi-staged process of data collection and several layers of calibration and correcti-
ons. Sensor corrections such as noise cancellation, radiometric calibration and lens
corrections as described in [37] have commonly been employed to generate ‘accurate’
data. Alternatively, in situ calibration techniques have been employed [38].

However, this workflow is subject to the introduction of errors at every stage
of processing that may inadvertently result in poor quality results. The question is
posed, is it even possible to collect perfect results? What are the limiting factors
that influence data accuracy and what can be done to mitigate their influence? One
such source of error is found in the wide field of view (FOV) cameras commonly
deployed on SUAS and is shown to have profound impacts on data accuracy [10].

1.2.3 Lack of Optimized Data Collection

In addition to requiring several layers of corrections to extract calibrated data,
the current processes for data collection are still significantly inefficient or possibly
insufficient. Even in the best cases, despite all the processing, significant amounts
of the collected data may go unused in the final analysis stages or are of minimal
value. An example flight output such as in Figure 1.1 is generated from upwards
of 30 GB of image data for less than 300 acres of coverage at 8 cm resolution. If
the desired data was to determine the spatial pattern of large features, the research
question posed is could less data be collected and still provide meaningful results?
However, in order to address optimized data collection, defining ‘meaningful data’
is necessary and is the subject of the next challenge, optimizing the data analysis
processes. This can be expanded into a more general question of optimality. How
is an optimal SUAS flight defined with regards to data collection? What are the
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factors that influence data collection from an SUAS and how can it be adjusted? It
can be shown that an optimality framework can be developed from spatial, spectral
and temporal factors [9].

1.2.4 Changes in UAS Safety and Risk Management

As described previously, the rapid growth of the UAS industry and the chan-
ges in the U.S. regulatory environment has shifted SUAS safety responsibilities from
the FAA to the SUAS operator. This transfer of responsibility has profound impacts
on future expansions of UAS and SUAS operations and on the oversight responsibi-
lity for large organizations in particular. In order to realize the full potential of all
UAS operations in the NAS further analysis of some of the barriers to more com-
plex cases is required. For the large organizations, a whole new structure of safety
management is necessary.

1.3 Dissertation Contributions

The major contributions of this dissertation include, but are not limited to
the following:

1. Described and enumerated the unique challenges and requirements in develo-
ping a specific SUAS methodologies for multispectral remote sensing applica-
tions.

2. Introduced the use of SWIR for SUAS-based remote sensing applications.
3. Analyzed the introduction of error in SUAS based remote sensing platforms

from the bidirectional reflectance distribution function (BRDF).
4. Established a framework for optimizing remote sensing data collection with

regards to spatial, spectral and temporal factors.
5. Developed the first SUAS safety case for flight operations at night.
6. Investigated the use of Automatic Dependent Surveillance-Broadcast (ADS-B)

as a SAAS.
7. Developed and implemented the first UAS Safety Management System (SMS).

1.4 Dissertation Organization

The dissertation is organized as follows. The research motivations and con-
tributions are introduced in Chapter 1. Chapter 2 addresses the challenges of SUAS
remote sensing methodology and the use of TIR and SWIR imagers. The effect of
the BRDF on the accuracy of data collected by SUAS is analyzed in Chapter 3.
The optimality of multispectral remote sensing is investigated in Chapter 4 with
the development of a generalized framework with regards to spatial, spectral and
temporal factors. Chapter 5 changes direction and discusses the safety challenges of

8



the integration of UAS into the NAS. The development and implementation of a no-
vel SMS specific for UAS operation management is discussed in Chapter 6. Finally,
Chapter 7 concludes the dissertation with discussions of future research directions.
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