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ABSTRACT
Real time parameter estimation relies on a fast
running models of the system and robust opti-
mization schemes. The source term estimation
problem of a trace atmospheric gas in complex
terrains, requires many PDE forward solves –
rendering it very difficult to solve in a real-time.
Utilizing the empirical Gramian, a fast running
low fidelity surrogate model, and a high fidelity
digital twin of the emission source, the optimal
trajectory can be explored, in the observability
sense, to estimate the parameters of the system.

PROBLEM AND APPROACH
Source term estimation is the process of esti-
mating emission source rate, location, and other
dispersion parameters from a set of observa-
tions based on mobile trajectories. Digital twins
can be used to behavior match observation data
to provide a forecast dispersion patterns for op-
timal sensor placement [1]. Estimating parame-
ters from observation data is often ill-posed and
computationally expensive.

Figure 1: (Top) Diagram depicting the Digital Twin
life cycle. (Bottom) Diagram depicting the ill-
posedness of inverse problems.

HIGH AND LOW FIDELITY DIGITAL TWIN DISPERSION MODELS

To represent the dispersion of a trace atmo-
spheric gas, we utilize both a high and low fi-
delity model. The low fidelity model is repre-
sented by the Gaussian plume model (GPM),

yL(xm, t) = ML(xm, t, θL) =
Q

u
D2D3, (1)

where D2 and D3 are the lateral and vertical
dispersion functions with respect to the mean
wind direction, and θL = [Q,xs, τ ] included the
source rate, location, and scale factors.
The MOABS/DT platform [1] is computed by
implicitly solving the wind field u, and stochas-
tically solving the advection diffusion equation
for y,

∂tu = −u · ∇u+K · ∇2u, (2)

∂ty = −u · ∇y +∇ · (D∇y) +Qδ(x− xs), (3)

such that, the model can be expressed as,
yL(xm, t) = ML(xm, t, θH), where the param-
eters include the number of filament particles,
source rate, location, etc.

Figure 2: Diagram depicting the MOABS/DT model
and projection for EMGR-based sensor placement.

SOURCE TERM ESTIMATION AND EMPIRICAL GRAMIANS

Source term estimation – To estimate the pa-
rameters of the plume, the modified near-field
Gaussian plume inversion method (mod-NGI)
is applied [2]. This method uses the GPM
with a continuous centroidal Voronoi tessella-
tions (CVT) coverage control approach, to ex-
tract the source rate, location within the plane,
and the scale factors.

H(z, t) =
N∑
i=1

∫
Vi

M(q, t)|zi−q|2dq, for q ∈ Ωp,

(4)
where M(·) is a concentration map definded by
the mod-NGI algorithm in the plane, Ωp. The
partial derivative can be used with the mass, mi,
and center of mass, ci, to identify the critical
point, ∂H

∂zi
= 2mi(zi − cmi

)T , of which, ci = zi
for all i = 1, 2, ..N is a minimizer of the CVT
and thus Llyod’s algorithm can be used to up-
date their positions.
Empirical Observability Gramian – can be de-
fined as [3, 4],

ŴO =
1

|Sx|

|Sx|∑
l=1

1

d2l

∫ ∞

0

Ψl(t)dt, (5)

where Ψl = (yli(t) − ȳli)T (yli(t) − ȳli). The ini-
tial state configuration is given as, xli

0 = dlϵ
i+ x̄,

u(t) = ū, and ȳ = 1/T
∫ T

0
y(t)dt. The term

Sx = {dl ∈ R : l = 1...L, dl ̸= 0}.
The Gramian only requires the system’s simula-
tion ability for computation, without needing a
closed-form analytical model. Consequently, it
has become a significant tool for assessing the
observability of nonlinear systems, especially
in terms of acquiring quantitative metrics, ex-
ploring effective regions of observability [4], or
source seeking [5].

Figure 3: The MOABS/DT simulation is initialized
by letting the physical and DT plumes develop past
the measurement point, then initializes the continu-
ous CVT and commands the Ωp plane to cross the
plume. Once a detection is made the sensor place-
ment and steering is activated and begins using the
DT projection onto Ω for the empirical observability
Gramian computation.

SIMULATION RESULTS

Figure 4: (Top) The trajectories of the plane control
algorithm based on EMGR. (Bottom) The normalized
emission rate quantification based on EMGR observ-
ability metric.

ON-GOING DEVELOPMENTS
1) Investigate optimal downwind distance for
measurements.
2) Integrate method with sUAS hardware-in-
the-loop
3) Develop real-time sensor placement opti-
mization capabilities.
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