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Abstract—Implementing closed-loop control requires ensuring
a robust system response against undesired disturbances and
random fault events. To overcome these challenges, the con-
trollers must be able to detect and adapt the process behavior
against undesired events by adjusting its parameters accordingly.
Developers have utilized the concept of a digital twin—a real-time
representation of the physical process—to design and update the
physical controller effectively. However, traditional digital twin
implementations often involve significant data exchange between
the digital system and the real asset through cloud platforms,
leading to data latency and privacy issues. To mitigate these
concerns, we propose an FPGA-based digital twin implemen-
tation where the information is directly sourced into the Digital
Twin from the physical asset, which runs in parallel with the real
system. This setup eliminates the need for big data transfers and
cloud uploads, ensuring enhanced data privacy and facilitating a
faster and more efficient digital twin implementation and update
process. To demonstrate the capabilities of embedded Digital
Twin, we present a case study involving monitoring a power
converter system during a sensor fault scenario.

Index Terms—Digital Twin, Flyback Converter, Smart Control
Engineering, FPGA, Embedded Digital Twin, Industry 4.0.

I. INTRODUCTION

The concept of real-time controller improvement has gained
significant importance in achieving effective process in the
loop control despite unpredictable disturbances. Until recently,
classical control methods relied on approaches like model
predictive control (MPC) [1], adaptive control methods [2],
and offline optimization methods [3]. However, these methods
were often either too mathematically complex or impractical
for implementation on microcontrollers.

To address this challenge, developers devised a solution:
creating a replica of the real system that operates in parallel
with it, using the replica’s performance to update the controller
of the actual system. This idea, known as Digital Twin (DT),
has been explored and implemented for various systems [4],
[5]. While the digital twin concept has proven effective, it
requires the exchange of large datasets between the replica
and the physical assets, often requiring cloud storage and
transmission, known as cloud-based implementation. Numer-
ous cloud-based DT applications have been explored across
industries, including industrial robots [6]–[8], mobile robots
[9], line-following robots [10], machine integration for smart

manufacturing [11], smart factory [12], and smart farming
[13].

However, cloud-based implementations present challenges
such as transmission protocol delays from the server, privacy
issues, and potential data loss during transmission. To mitigate
these issues, edge computing-based or cloud-edge-based DT
implementations [14]–[16] have been explored. In standalone
edge implementations, the digital twin directly receives data
from physical assets for real-time updates, bypassing the
intermediate cloud interface. This approach improves real-
time digital twin operations and ensures data privacy, which
is especially crucial in highly competitive industry sectors.
Cloud-edge implementation combines the benefits of both
edge and cloud implementations, including increased data
storage memory. Moreover, direct implementations, like stan-
dalone edge implementation on devices such as Arduino,
have been extended to include lower-level hardware imple-
mentation, such as Field Programmable Gate Array (FPGA)
embedded implementation [17], [18]. The embedded-based
implementation offers the advantage of high-speed execution
as embedded systems like FPGA boards support concurrent
execution of algorithms, unlike edge devices.

Therefore, this paper proposes an embedded digital twin
implementation on an FPGA for monitoring a Power Con-
verter system. The Digital Twin of the physical system is
built using MATLAB/Simulink following the development
framework [19]. The resulting DT model is translated into
HDL code using the Matlab HDL coder toolbox for efficient
voltage regulation of a Flyback Converter system. This digital
twin implementation acts as a reference for the performance
assessment of the physical asset, enabling event awareness
capabilities. The main contribution of this paper lies in the
hardware-level implementation of the digital twin to monitor
the status of a Flyback Converter using an FPGA, with real-
time data exchanged directly from physical assets, eliminating
the need for an intermediary cloud exchange that introduces
latency and data privacy issues. This work advances the
framework of smart control engineering, equipping controllers
with information for smarter decision-making. The paper is
organized as follows: Section II introduces the digital twin



Figure 1. Digital Twin Five-step development framework [19]

framework. Section III presents the case study. Section IV
describes the DT implementation and its integration into the
FPGA. Section V presents the DT results and discussion.
Finally, the conclusion and future works are provided in
Section VI.

II. DIGITAL TWIN FRAMEWORK

This paper utilizes the development framework proposed
by [19] to construct the Digital Twin (DT) case study. This
framework comprises five distinct steps: target system defini-
tion, system documentation, multidomain simulation, assem-
bly and behavioral matching, and validation and deployment,
as depicted in Fig. 1. In the initial step, the current status of
the physical system to be replicated via the Digital Twin is
determined, with two possible scenarios. The first scenario,
known as Conceptual design, involves employing the DT for
the initial designing task when a physical prototype is not
available. The second scenario involves an operating physical
system, where the DT serves as a supporting tool to enhance
system operation.

In the second step, all available information about the
system is collected to create the most accurate representation,
including details about the control algorithms employed, data
sheets of sensors and actuators, troubleshooting and problem
records, cumulative experience of system engineers and oper-
ators, and the system’s data streams. The third step involves
employing a set of simulation models to represent the behavior
of the real system. The simulation domains are defined based
on the system’s physical and constitutive laws, and appropriate
computational tools are selected for multiphysics simulation.

Once the simulation models are completed, the fourth
step, known as behavioral matching, is performed. This step
involves determining the unknown parameters of the system
using real data collected from the system at different operating
points. Optimization fitting techniques, such as nonlinear least
squares, are used to make the Digital Twin’s simulation behav-
ior as close as possible to that of the real asset.Finally, after
performing the behavioral matching, the Digital Twin is ready
for the last step of real-life validation and deployment. It is
deployed as either a software service or hardware description
language module that runs in parallel with the real system and
receives live data streams to perform further analysis, such as
prognosis or fault detection.

Table I
FLYBACK CONVERTER DOCUMENTATION

Component Features

High Speed Optocouplers (H11N1)
High Data Rate, 5 MHz

Operating Voltage: 4 ÷ 15V
Rise Time: 7.5ns

Optocoupler Pull up Resistance
Base Resistor

Collector Resistor

R1 = 390Ω
R2 = 10 kΩ
R3 = 10 kΩ

NPN 2N3904 BJT Transistor (Q1) Switch. Freq.: > 250MHz

Input Snurber Filter
D1 = 1N4148 Diode

R4 = 6.8 kΩ
C1 = 100 pF

IRFZ44 Mosfet Transistor
Max. Drain-

Source Volt.: 55V
Maximum Drain Current: 49A

750315038 DC/DC Transformer (T1)
Operating Frequency:

250÷ 600 kHz
Inductance: 36.5µH

Output Snurber Filter
D2 = 1N4148 Diode

R5 = 22Ω
C2 = 1nF

Resistive Load RL = 120kΩ

Q1
Q2 Q3

Q4

Figure 2. Flyback Converter System Based on FPGA

III. CASE STUDY: FLYBACK CONVERTER

In this paper, the voltage regulation control system shown in
Fig. 2 based on a Flyback converter is used as case study for
Digital Twin assembly and deployment using the development
framework described in Section II.

A. DT Target System Definition and Documentation

The application is composed of a Flyback converter PCB
board (Q3) and a power supply (Q4). The voltage regulation
of (Q3) is controlled using a proportional-integral (PI) con-
troller implemented in Verilog employing a Xilinx Arty S7-
50 FPGA (Q2) [20]. The voltage value, control action, and
error data from the physical asset are logged via serial port
communication, using a USB-UART Converter (Q1). In the
second step, for a detailed information on each component,
please check [20].

B. Multidomain Simulation

In the third step, multidomain simulation, the system can
be represented using two simulation domains: Electrical and
Digital. The first domain is composed of the power supply
and the flyback converter board while the second one, which
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Figure 3. Assembled DT multidomain simulation

Figure 4. Behavioral matching using SLDO optimization

corresponds to the digital domain, is composed of the PID
control algorithm and the analogue-to-digital interfaces to
communicate the control side with the flyback Converter.
Figure 3 shows the multidomain simulation of the system
using Matlab/Simulink/Simscape.

C. Behavioral Matching

In the fourth step, behavioral matching, the multidomain
simulation response is adjusted to replicate the system re-
sponse using input/output data from the physical asset by opti-
mizing the model’s electrical domain parameters to determine
the asset’s current values. The flyback converter datasheet
defines these parameters’ initial values, shown in Table II.
The Simulink Design Optimization (SLDO) Toolbox is used
to determine the real parameters of the multiphysics model.

Figure 4 shows the behavioral matching results from the
velocity open-loop experiment performed to update the multi-
physic model with a new set of parameters shown in the last
column of Table II.

D. DT Model Reduction for Hardware Implementation

Once the behavioural matching is completed, the DT for the
power converter system is consistent and could be considered
for deployment. However, it is crucial to notice that the current
multidomain simulation model on Fig. 3 is computationally
expensive for real-time execution on the FPGA due to its
multiphysics nature. Therefore, a data-driven representation of

Table II
FLYBACK CONVERTER PARAMETERS BEFORE/AFTER BEHAVIORAL

MATCHING

Parameter Manufacturer
values

Value after
SLDO

Mutual inductance M [H] 2.3673e-05 1.5735e-5
Coupling coefficient k 0.99 0.6580

Capacitor C[F] 1e-4 1.1943e-4

the DT is required, which can be synthesized into Hardware
Description Language (HDL) to ensure its real-time execu-
tion on the FPGA hardware level. Thus, a discrete transfer
function of the flyback converter system is identified based
on the Digital Twin response given by (1) with sampling time
ts = 1e − 5 s, where y(z) is the voltage value, and u(z) the
flyback converter duty cycle.

P (z) =
y(z)

u(z)
=

0.2781z2 + 0.5561z + 0.2781

z2 + 0.6723z + 0.9396
(1)

The equation in (1) is derived from the modelling of a
flyback converter using the state space averaging technique
described in Raj et al. [21]. The parameters Rsw = 0.01,
n = 1/2.33, Rc = 0, R = 120e3, Vg = 5, and Vd = 0.7
are used in this derivation. The small signal model solution,
with X = [0, 0] as the initial condition, is obtained for the
converter operating around a duty cycle of 30%. The Tustin
discretization method is applied with a sampling time of
ts = 1e− 5s resulting as (1).

Likewise, the PI controller used for voltage regulation is
represented by (2) where kp is the proportional gain, ti is the
integral time, and e(z) is the system error.

PI(z) =
u(z)

e(z)
= kp + ki

(
ts

z − 1

)
(2)

The data-driven model in Simulink representing the Digital
Twin of the power converter is shown in Fig. 6. The DT model
is optimized to operate with fixed point arithmetic and incor-
porates the complete closed-loop architecture of the power
converter system. The inputs are the current system setpoint
and the proportional and integral gains for the PI controller.
The model outputs include the DT error, proportional and
integral actions, the manipulated variable (MV) corresponding
to the MOSFET pulse width, and the process variable (PV),
the voltage.

IV. DIGITAL TWIN HDL GENERATION AND INTEGRATION

The workflow that represents the whole synthesis process
from the HDL Code generation to the DT implementation on
the FPGA board is illustrated in Figure 5. It can be divided
into four sequential steps: Matlab Test sequences, Test Bench,
Synthesis and Implementation.
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Figure 5. HDL workflow scheme for Digital Twin Implementation. Adapted
from [22].

A. Matlab Test Sequences

Before implementing the module, a set of tests is conducted
to ensure the model’s consistency. The first test involves using
the Model Checker, which verifies the model’s configuration
settings, ports and subsystem settings, block settings, sup-
port for native floating point, and compliance with industry-
standard rules. Afterwards, HDL/Verilog code is generated
along with a bit-true and cycle-accurate model to the generated
HDL code. This model demonstrates the impact of block
implementations, as well as speed and area optimizations that
were specified. Lastly, the HDL coder creates a validation
model that compares the original model to the generated model
because the generated model is often substantially different
from the original model. The validation model inserts delays
at the outputs of the original model to compensate for latency
differences and compares the outputs of the two models. Once
it has been confirmed that there are no errors in the outputs, a
testbench can be generated to evaluate the module’s response
before it is instantiated in the top module. This step ensures the
design works as intended before FPGA programming occurs.

B. Test Bench

The Test Bench is a Xilinx Vivado project produced by
Simulink to verify the Design Under Test (DUT). HDL Verifier
automates this co-simulation process by creating expected
outputs and comparing them within the testbench code. A
message is generated indicating whether the test passed or
failed and any potential identified mismatching. Furthermore,
the results of the Simulink DT model can be compared with
the behavioural simulation within the Vivado Test Bench sim-
ulation, indicating a correct execution of the system dynamics
on the Register Transfer Level (RTL) level of FPGA.

C. Synthesis

Now that the module has been confirmed to perform as
intended, it can be instantiated in the top module. The setpoint
and PI controller parameters must be provided to ensure that it
behaves like the control module. Since tasks can be performed
in parallel on FPGAs, both the control module and the Digital
Twin module can be run simultaneously. During synthesis,
digital logic gates are generated from the Register Transfer
Level (RTL) code while attempting to achieve the desired
register-to-register clock frequency goals and minimizing the
use of FPGA resources.

D. Implementation

This process involves determining the physical resources on
the FPGA with the corresponding logic and how to connect
(route) them. This process creates a bitstream to be loaded onto
the device for FPGA programming. Likewise, the monitoring
of the Digital Twin and the physical asset is performed using
the Labview-based interface shown in Fig. 8.

E. Digital Twin Integration

Using the proposed framework, the flyback converter Digital
Twin (DT) shown in Fig. 6 is synthesized using the Matlab
HDL Code Generation toolbox, which enables HDL code
generation in Verilog and VHDL from MATLAB and Simulink
models. In this paper, the DT model is synthesized in Verilog
for execution in a Xilinx FPGA, where it runs the closed-
loop control of the system. The output of the MATLAB HDL
synthesis is a module that can be integrated into the top module
of the FPGA hardware design.

Figure 7a illustrates the schematic of the embedded DT
architecture. In the virtual domain, the DT functions as one
submodule of the HDL code, receiving the current process
setpoint to perform voltage regulation. Simultaneously, in the
physical domain, the case study hardware connects to the
FPGA, containing the PI controller responsible for voltage
regulation, which can interact with the DT in real time.

Similarly, Fig. 7b displays the block diagram of the HDL
code running within the FPGA, encompassing voltage regula-
tion, digital twin, and various required hardware components
for closed-loop control, such as setpoint selection, ADC read-
ing, PI control, PWM generation, and serial communication.
The power converter system’s digital twin executes in parallel
to the voltage regulation closed-loop control. Additionally, a
DT-Asset error module calculates the real-time error between
the asset and the digital twin, serving as an awareness signal
for event detection over the physical system. The HDL code
containing the DT and the closed-loop control can be down-
loaded from [23], and the final result video can be found from
[24].

V. RESULTS AND DISCUSSION

After implementing the Digital Twin of the Flyback Con-
verter on the FPGA, its response is compared against the
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output of the physical asset, as depicted in Fig 9. The response
of the digital twin closely follows the physical asset output
with minimal deviation. In Fig 9, the bottom plot illustrates
the minimum error between the digital twin and the physical
asset. Although the error should ideally be zero, some regions
with minor spikes are observed. These spikes are a result of
random noise affecting the ADC signal of the physical system.

However, during steady-state execution for multiple set-
points, both the DT and the physical asset exhibit consistent
behavior, as demonstrated by the results. Furthermore, the
behavioral matching process effectively minimized the error
between the physical asset and the digital twin. To achieve
even better accuracy, we introduce more complexity into
the digital twin model, such as accounting for noisy sensor

Sensor Interruption

Figure 9. Comparison between the output voltage of the Digital Twin and
Physical Asset and 15 Samples Moving Average Error (DT minus Asset) for
ADC communication interruption detection (purple line).

behavior or nonlinear effects on the Flyback converter.

A. DT enabling capability: Events detection

The Digital Twin response provides valuable error signals
that enable event detection over the physical asset. Using
a moving average of the error signal, we can monitor an
undesirable effect—the loss of connection of the ADC—while
the closed-loop control is active. Figure 9 illustrates this with
an example of the error signal’s moving average for detecting
ADC communication interruptions during the asset’s steady-
state operation. As observed, the undesired event is induced
by physically disconnecting the ADC signal from the FPGA.



By implementing a statistical warning policy based on the
moving average standard deviation, following industrial stan-
dards like six-sigma [25], we can detect and anticipate such
events. This integration of capabilities into local supervisory
algorithms makes the control systems smarter by continuously
monitoring the current health status of the system. Addition-
ally, enabling the Digital Twin’s parallel execution directly on
the embedded system unlocks novel capabilities, providing an
additional information source for local supervisory algorithms,
and enhancing the control system’s intelligence in monitoring
and maintaining the system’s health.

VI. CONCLUSIONS AND FUTURE WORKS

An FPGA-based digital twin implementation is employed
to optimize a power converter system controller in real-
time, showcasing the benefits of a digital framework that
circumvents the cloud-data exchange intermediary protocol.
This approach offers edge digital twin operation ensuring data
privacy, which is crucial for safe process operation.

The case study focused on voltage regulation for a Fly-
back Converter, where the Digital Twin of the system was
synthesized using the HDL coder of the Flyback Converter
to execute it on an FPGA board, enabling monitoring of
the physical asset’s desired operating condition. The obtained
results demonstrate precise output with reduced error be-
tween the physical and digital assets. Moreover, real-time
error computation between the Digital Twin and physical
asset enables novel analytics for event detection within the
system, such as detecting feedback sensor communication
interruptions through moving averages error. Consequently,
this work effectively showcases the implementation of digital
twin technology on a low-level hardware-embedded controller,
introducing intelligent capabilities to the embedded domain.

Future endeavors will involve utilizing the insights gained
from observations for predictive maintenance, fault diagnos-
tics, and smart control engineering applications.
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