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Parameter Estimation and Topology Identification of
Uncertain General Fractional-order Complex

Dynamical Networks with Time Delay
Xiaojuan Chen, Jun Zhang, and Tiedong Ma

Abstract—Complex networks have attracted much attention
from various fields of sciences and engineering in recent years.
However, many complex networks have various uncertain infor-
mation, such as unknown or uncertain system parameters and
topological structure, which greatly affects the system dynamics.
Thus, the parameter estimation and structure identification
problem has theoretical and practical importance for uncertain
complex dynamical networks. This paper investigates identifi-
cation of unknown system parameters and network topologies
in uncertain fractional-order complex network with time delays
(including coupling delay and node delay). Based on the stability
theorem of fractional-order differential system and the adaptive
control technique, a novel and general method is proposed to
address this challenge. Finally two representative examples are
given to verify the effectiveness of the proposed approach.

Index Terms—Complex networks, fractional-order, parameter
estimation, structure identification, time delay.

I. INTRODUCTION

COMPLEX networks widely exist in the world, from
Internet to World Wide Web, from communication net-

works to social network, etc.. All the above networks can be
represented in terms of nodes and edges, where edges indicate
connections between nodes. Due to the tremendous potentials
in real applications, the research of complex networks has
become a hot topic in modern scientific research[1−4]. In
recent years, synchronization in complex network, as col-
lective behavior, has received increasing attention and been
extensively investigated due to its potential applications in
many fields, including secure communization, image process-
ing, neural networks, information science, etc.[5−9]. However,
there exists much uncertain information in real-world complex
networks[10−11], such as the unknown or uncertain topological
structure and node dynamics, as it is often difficult to exactly
know all system parameters beforehand in many practical
applications. Moreover, the uncertainty would greatly affect
the modeling, understanding and controlling of the complex
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networks. Therefore, the issue of network structure and pa-
rameter identification is of theoretical and practical importance
for uncertain complex dynamical networks. However, due to
the nonlinear, complex, and high dimensional nature of the
practical complex networks, it is very difficult to exactly
identify its topological structure and system parameters by
using the traditional approaches. Recently, some researchers
have made great effort to address this problem and some
valuable results have been obtained[12−14]. Wu[12] proposed
an adaptive feedback control method to identify the exact
topology of weighted general complex dynamical networks
with time delay. Zhou et al.[13] investigated the topology
identification of weighted complex dynamical networks. Liu
et al.[14] proposed a novel adaptive feedback control approach
to simultaneously identify the unknown or uncertain network
topological structure and system parameters of uncertain de-
layed general complex dynamical networks. It is noted that the
mentioned references [12−14] mainly contribute to the con-
trol or identification of networks with nodes of conventional
integer-order dynamics.

On the other hand, the study of complex network with
fractional-order dynamic nodes also begins to attract increas-
ing interest among the researchers. It is well known that the
fractional calculus is a classical mathematical notion, and is
a generalization of ordinary differentiation and integration
to arbitrary order[15]. However, the fractional calculus did
not attract much attention for a long time due to lack of
application background. Nowadays, many known systems can
be described by fractional-order systems, such as viscoelastic
system, dielectric polarization, electromagnetic waves[16−18].
Compared with the classical integer-order models, fractional-
order derivatives provide an excellent instrument for the
description of memory and hereditary properties of various
materials and processes. Therefore, it may be more accu-
rate to model by fractional-order derivatives than integer-
order ones. It is demonstrated that many fractional-order
differential systems behave chaotically or hyperchaotically,
such as the fractional-order Chua circuit[19], the fractional-
order Lorenz system[20], the fractional-order chaotic and hy-
perchaotic Rössler system[21], etc.. Following these findings,
synchronization of chaotic fractional-order differential systems
becomes a challenging and interesting problem due to the
potential applications in secure communication and control
processing.

Not surprisingly, a complex network with nodes modeled
by fractional-order differential systems has currently been one
of the most promising research topics. However, due to the
limited theories for the coupled fractional-order dynamical
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systems, the synchronization between fractional-order com-
plex networks is still a challenging research topic. Com-
pared with integer-order complex networks, the fractional-
order complex networks related studies are still few[22−29].
For example, Chai et al.[22] investigated synchronization of
general fractional-order complex dynamical networks by adap-
tive pinning method. In [23−25], the authors discussed the
cluster synchronization in fractional-order complex networks.
Wu and Lu[26] investigated outer synchronization between
two different fractional-order general complex networks. The
above mentioned literatures concentrated on the research of
fractional-order network with known system parameters and
network structures. So far, there are very few studies on the
parameter estimation and topology identification of uncertain
fractional-order complex networks.

Time delay is ubiquitous in many physical systems due
to the finite switching speed of amplifiers, the finite signal
propagation time in biological networks, traffic congestions
and so forth. Time delay in the interaction may influence the
dynamical behavior of the system. Si et al.[27] has investigated
the identification of fractional-order complex network with
unknown system parameters and network topologies. Yang
and Jiang[28] has discussed the drive-response fractional-order
complex dynamical network with uncertainty. Unfortunately,
time delay is ignored. Although Ma et al.[29] discussed param-
eter identification and synchronization problem of fractional-
order neural networks with time delays, but only the case of
state variables x ∈ R is discussed, and the case for state vector
x ∈ Rn has not been investigated.

Motivated by the above discussion, in this paper, we will
study the identification of unknown system parameters and
network topologies in uncertain fractional-order complex net-
work with coupling delay and node delay. The paper is
organized as follows. In Section II, some fractional-order
definitions and lemmas are given. Sections III and VI study
the parameter estimation and topology identification method
for delayed fractional-order complex networks with different
nodes. In Section V, two representative examples are given to
demonstrate the effectiveness of the proposed method. Finally,
some concluding remarks are given in Section VI.

Throughout this paper, the following notations are used. ‖·‖
is the Euclidean norm of a vector. AT means the transpose of
the matrix A. In denotes the identity matrix with dimension
n. ⊗ represents the Kronecker product of two matrices.

II. PRELIMINARIES AND NOTATIONS

A. The Definition of Fractional Calculus

The fractional-order integer-differential operator is the gen-
eralized concept of an integer-order integer-differential opera-
tor, which is denoted by a fundamental operator as follows:

aDq
t =





dq

dtq
, R (q) > 0,

1, R (q) = 0,
∫ t

a
(dτ)−q

, R (q) < 0,

(1)

where q is the fractional-order calculus operator which can be
a complex number, a and t are the limits of the operation.
The commonly used definitions are Grunwald-Letnikov (GL),

Riemann-Liouville (RL), and Caputo (C) definitions. In the

rest of this paper, the notation
dq

dtq
is chosen as the Caputo

fractional derivation operator.
Definition 1. The Caputo fractional derivative is defined as

follows

Dqx(t) .= c
aDq

t x(t) =





1
Γ(n−q)

∫ t

a
(t− τ)n−q−1x(n)(τ)dτ,

n− 1 < q < n,

dn

dtn
x(t), q = n,

(2)

where Γ (·) is the Gamma function which is defined by Γ(z)
=

∫∞
0

e−ztz−1dt.
It should be noted that the advantage of the Caputo approach

is that the initial conditions for fractional differential equations
with Caputo derivatives take on the same form as those
for integer-order ones, which have well understood physical

meaning. Therefore, in the rest of this paper, the notation
dq

dtq
is chosen as the Caputo fractional derivation operator.

B. Mathematical Preliminaries
Consider uncertain dynamical systems

Dqxi(t) = f̄i(t, xi(t), αi), (3)

or rewrite systems (3) in the following form:

Dqxi(t) = fi(t, xi(t)) + Fi(t, xi(t))αi, (4)

where xi(t) ∈ Rn are state vectors, αi ∈ Rmi are unknown
system parameter vectors for i = 1, 2, . . . , N , in which mi

are positive integers. fi (t, xi (t)) ∈ Rn is a continuous vector
function and Fi (t, xi (t)) ∈ Rn×mi is a continuous matrix
function.

Assumption 1 (A1). Suppose that there exist positive
constants Li such that

∥∥f̄i(t, x(t), αi)− f̄i(t, y(t), αi)
∥∥ ≤ Li ‖x(t)− y(t)‖ , (5)

where x (t) , y (t) ∈ Rn are time-varying vectors, and αi is
the parameter vector of function f̄i (·).

Assumption 2 (A2). Denote Fi(t, xi(t)) = (F (1)
i (t, xi(t)),

F
(2)
i (t, xi(t)), . . . , F

(mi)
i (t, xi(t))). Suppose that F

(j)
i (t,

xi(t)) ∈ Rn for j = 1, 2, . . . , mi, and {{F (j)
i (t, xi(t))}mi

j=1,
{Axj(t−τ)}N

j=1} are linearly independent on the orbit {xi(t),
xi(t− τ)}N

i=1 of synchronization manifold.
If time delay τ is considered, similar to (3) and (4), we can

get the following delayed uncertain dynamical systems:

Dqxi(t) = ḡi(t, xi(t), xi (t− τ) , βi), i = 1, 2, . . . ., N, (6)

or

Dqxi(t) = ḡi (t, xi(t), xi (t− τ) , βi)

= gi (t, xi (t) , xi (t− τ))

+ Gi (t, xi (t) , xi (t− τ))βi, (7)

where xi(t), xi(t− τ) ∈ Rn are the state vectors, βi ∈ Rqi

are the unknown parameter vector. gi(t, xi(t), xi(t − τ)) ∈
Rn is a continuous vector function and Gi(t, xi(t), xi(t −
τ)) ∈ Rn×qi is a continuous matrix function.
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Assumption 3 (A3). Assume that there exists a nonnegative
constant M satisfying

‖ḡi (t, x (t) , x (t− τ) , βi)− ḡi (t, y (t) , y (t− τ) , βi)‖

≤
√

M
(
‖x (t)− y (t)‖2 + ‖x (t− τ)− y (t− τ)‖2

) 1
2

.

(8)

Assumption 4 (A4). Denote Gi(t, xi(t), xi(t − τ)) =
(G(1)

i (t, xi(t), xi(t−τ)), G(2)
i (t, xi(t), xi(t−τ)), · · · , G

(qi)
i (t,

xi(t), xi(t−τ))). Assume that G
(j)
i (t, xi(t), xi(t− τ)) ∈ Rn

for j = 1, 2, · · · , qi, and {{G(j)
i (t, xi(t), xi(t− τ))}qi

j=1,
{Axj(t)}N

j=1} are linearly independent on the orbit {xi(t),
xi(t− τ)}N

j=1 of synchronization manifold.
Lemma 1[30]. Consider a delayed fractional order system:

Dqx(t) = f (x (t) , x (t− τ)) , (9)

where fractional order 0 < q ≤ 1, x(t) = (x1, x2, . . . , xn)T ∈
Rn is the state vector. f(x(t), x(t − τ)) = (f1(x(t), x(t −
τ1)), f2(x(t), x(t−τ2)), . . . , fn(x(t), x(t−τn)))T is nonlinear
vector function satisfying Lipschitz condition and the delay
time τ = (τ1, τ2, . . . , τn)T ∈ Rn. If there exist a positive
definite matrix P and a semi positive definite matrix Q such
that

xT(t)PDqx(t) + xT (t)Qx (t)− xT (t− τ) Qx (t− τ) ≤ 0,
(10)

then the delayed fractional system (9) is Lyapunov stable.
Lemma 2[26]. For any vector x, y ∈ Rn, the inequality

2xTy ≤ xTx + yTy holds.

III. STRUCTURE IDENTIFICATION OF UNCERTAIN GENERAL
FRACTIONAL-ORDER COMPLEX DYNAMICAL NETWORKS

WITH COUPLING DELAY

Consider a complex dynamical network with time-varying
coupling delay and N different nodes, which is described by

Dqxi (t) = f̄i(t, xi(t), αi) +
N∑

j=1

cijAxj (t− τ), (11)

or it can be rewritten in the following form:

Dqxi (t) =

fi (t, xi (t)) + Fi (t, xi (t))αi +
N∑

j=1

cijAxj (t− τ),

(12)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state
vector of the ith node, i = 1, . . . , N , τ is the constant
time delay. C = (cij)N×N ∈ RN×N is an unknown or
uncertain coupling configuration matrix, and cij is the weight
or coupling strength. If there exists a link from nodes i to j (j
6= i), then cij 6= 0, otherwise, cij = 0. A ∈ Rn×n is an inner-
coupling matrix which determines the interaction variables.

Hereafter, the coupling configuration matrix C need not be
symmetric, irreducible, or diffusive. Of course, it is necessary
to ensure the boundedness of complex dynamical networks
in this paper. The main goal is to identify these unknown or
uncertain coupling strengths, namely the network topological

structure, and all unknown system parameter vectors αi of the
complex dynamical networks.

Consider another complex dynamical network which will
be referred to as the response network with coupling delay as
follows:

Dqx̂i (t) = fi (t, x̂i (t)) + Fi (t, x̂i (t)) α̂i

+
N∑

j=1

ĉijAx̂j (t− τ) + ui, (13)

where x̂i(t) = (x̂i1(t), x̂i2(t), . . . , x̂in(t))T ∈ Rn is the
response state vector of the i-th node, ui ∈ Rn is its controller,
ĉij is the estimated value of weight cij , and vector α̂i is the
estimated value of the unknown parameter vector αi.

Denote x̃i = x̂i − xi, c̃ij = ĉij − cij , α̃i = α̂i − αi. The
systems (12) and (13) achieve synchronization if x̃i → 0 as t
→ ∞. Then the error system is given by

x̃i(t) = fi(t, x̂i(t)) + Fi(t, x̂i(t))α̂i − fi(t, xi(t))

− Fi(t, xi(t))αi +
N∑

j=1

ĉijAx̂j(t− τ)

−
N∑

j=1

cijAxj(t− τ) + ui. (14)

That is,

Dqx̃i(t) = f̄i (t, x̂i (t) , αi)− f̄i (t, xi(t), αi)

+ Fi (t, x̂i(t)) α̃i +
N∑

j=1

c̃ijAx̂j (t− τ)

−
N∑

j=1

cijAx̃j (t− τ) + ui. (15)

Theorem 1. Suppose that Assumptions A1 and A2 hold.
Then the uncertain coupling configuration matrix C and
parameter vectors αi of uncertain general delayed complex
dynamical network (12) can be identified by the estimated
values Ĉ and α̂i via the response network





Dqx̂i = fi (t, x̂i(t)) + Fi (t, x̂i (t)) α̂i

+
N∑

j=1

ĉijAx̂j (t− τ) + ui,

ui = −kix̃i (t) ,

Dqki = di ‖x̃i‖2 ,

Dqα̂i = −FT
i (t, x̂i (t)) x̃i (t) ,

Dq ĉij = −δij x̃i (t)T Ax̂j (t− τ) ,

(16)

where i, j ∈ {1, 2, . . . , N} and di, δij are any positive
constants.

Proof. Denote k̃i = ki − k∗i , and k∗i is a positive constant.
Further denote X = (X̃T, α̃T, c̃T, k̃T)T, where



X̃ =
(
x̃T

1 , x̃T
2 , . . . , x̃T

N

)T
, x̃i = (x̃i1, x̃i2, . . . , x̃in)T ,

α̃ =
(
α̃T

1 , α̃T
2 , . . . , α̃T

N

)T
, α̃i = (α̃i1, α̃i2, . . . , α̃imi

)T ,

c̃ =
(
c̃T
1 , c̃T

2 , . . . , c̃T
N

)T
, c̃i = (c̃i1, c̃i2, . . . , c̃iN )T ,

k̃ =
(
k̃1, k̃2, . . . , k̃N

)T

.

(17)
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Choose the real symmetric positive definite matrix P as

P = diag





1, . . . , 1︸ ︷︷ ︸
nN+

N∑
i=1

mi

,
1

δ11
, . . . ,

1
δNN

,
1
d1

, . . . ,
1

dN





, (18)

Q = diag





1, . . . , 1︸ ︷︷ ︸
nN

, 0, . . . , 0︸ ︷︷ ︸
N∑

i=1
mi+N2+N





. (19)

Then we have

J = XT(t)PDqX(t) + XT (t) QX (t)

−XT (t− τ) QX (t− τ)

=
N∑

i=1

x̃T
i (t) Dqx̃i (t) +

N∑

i=1

α̃T
i Dqα̃i

+
N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij +

N∑

i=1

1
di

k̃iD
qk̃i

+
N∑

i=1

x̃T
i (t)x̃i (t)−

N∑

i=1

x̃T
i (t− τ)x̃i (t− τ)

=
N∑

i=1

x̃T
i (t)

{
f̄i (t, x̂i (t) , αi)− f̄i (t, xi(t), αi)

}

+
N∑

i=1

x̃T
i (t) Fi (t, x̂i (t)) α̃i

+
N∑

i=1

N∑

j=1

cij x̃
T
i (t) Ax̃j (t− τ)−

N∑

i=1

ki ‖x̃i (t)‖2

+
N∑

i=1

N∑

j=1

c̃ij x̃
T
i (t) Ax̂j (t− τ)

+
N∑

i=1

α̃T
i Dqα̃i +

N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij

+
N∑

i=1

(ki − k∗) ‖x̃i (t)‖2

+
N∑

i=1

x̃T
i (t)x̃i (t)−

N∑

i=1

x̃T
i (t− τ)x̃i (t− τ)

≤
N∑

i=1

Lix̃
T
i (t) x̃i(t)

+
N∑

i=1

x̃i (t)Fi (t, x̂i (t)) α̃i +
N∑

i=1

α̃T
i Dqα̃i

+
N∑

i=1

N∑

j=1

c̃ij x̃
T
i (t) Ax̂j (t− τ)

+
N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij

+
N∑

i=1

N∑

j=1

cij x̃
T
i (t) Ax̃j(t− τ)−

N∑

i=1

k∗ ‖x̃i(t)‖2

+
N∑

i=1

x̃T
i (t)x̃i (t)−

N∑

i=1

x̃T
i (t− τ)x̃i (t− τ)

≤
N∑

i=1

x̃T
i (t)x̃i(t) +

N∑

i=1

N∑

j=1

cij x̃i(t)Ax̃j(t− τ)

−
N∑

i=1

k∗ ‖x̃i (t)‖2 +
N∑

i=1

x̃T
i (t)x̃i (t)

−
N∑

i=1

x̃T
i (t− τ)x̃i (t− τ) ,

≤ LX̃T(t)X̃(t) + X̃T(t)(C ⊗A)X̃(t− τ)

− k∗X̃T(t)X̃(t) + X̃T(t)X̃(t)

− X̃T(t− τ)X̃(t− τ)

≤ LX̃T(t)X̃(t) +
1
2
X̃T(t)(CCT ⊗AAT)X̃(t)

+
1
2
X̃T(t− τ)X̃(t− τ)− k∗X̃T(t)X̃(t)

+ X̃T(t)X̃(t)− X̃T(t− τ)X̃(t− τ)

=
(

L− k∗ + 1 +
1
2
λmax(CCT ⊗AAT)

)
X̃T(t)X̃(t)

− 1
2
X̃T (t− τ) X̃ (t− τ) , (20)

where L = max{Li|1 ≤ i ≤ N.}. Lemma 2 is used in the last
inequality of (20). It is obvious that there exists sufficiently
large positive constant k∗ such that J is negative definite.
Namely, XT(t)PDqX(t)+XT(t)QX(t)−XT(t−τ)QX(t−
τ) ≤ 0 holds, which implies the Lyapunov stability of error
system (14) or (15) by Lemma 1. ¤

Remark 1. It should be especially pointed out that the
coupling configuration matrix C need not be symmetric,
irreducible, even diffusive.

Remark 2. The positive constants δij , di in the updating
laws Dqki and Dq ĉij can control the convergence speed of
the synchronization and identification.

Remark 3. Assumption A2 is a very essential condition
for guaranteeing the success of identification. Without this
condition, it may cause false identification result. Similarly,
Assumption A4 guarantees the identification of the next sec-
tion.

IV. STRUCTURE IDENTIFICATION OF AN UNCERTAIN
GENERAL COMPLEX DYNAMICAL NETWORK WITH NODE

DELAY

Consider an uncertain general complex dynamical network
consisting of N different nodes with time delay τ , called the
drive network, which is described by

Dqxi(t) = ḡi (t, xi(t), xi (t− τ) , βi) +
N∑

j=1

cijAxj(t), (21)
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where the node dynamics can be rewritten as follows

ḡi (t, xi(t), xi (t− τ) , βi)
= gi (t, xi (t) , xi (t− τ)) + Gi (t, xi (t) , xi (t− τ))βi,

(22)

and βi (i = 1, 2, . . . , N) are unknown or uncertain system
parameter vectors.

Construct another controlled general fractional-order com-
plex network, called response network, which is given by

Dqx̂i = ḡi

(
t, x̂i(t), x̂i (t− τ) , β̂i

)
+

N∑

j=1

ĉijAx̂j(t) + ui,

(23)

where x̂i(t) = (x̂i1(t), x̂i2(t), . . . , x̂in(t))T ∈ Rn is the
response state vector of the i-th node, ui ∈ Rn is its control
input, ĉij and β̂i are the estimated values of cij and βi,
respectively. Denote x̃i = x̂i−xi, c̃ij = ĉij−cij , β̃i = β̂i−βi.
Thus the error system is described by

Dqx̃i (t) = ḡi (t, x̂i (t) , x̂i (t− τ) , βi)
− ḡi (t, xi (t) , xi (t− τ) , βi)

+ Gi (t, x̂i (t) , x̂i (t− τ)) β̃i

+
N∑

j=1

c̃ijAx̂j (t) +
N∑

j=1

cijAx̃j (t) + ui. (24)

Theorem 2. Suppose that Assumptions A3 and A4 hold.
Then uncertain coupling configuration matrix C and system
parameter vectors βi can be identified by using the estimated
values Ĉ and β̂i via the response network




Dqx̂i (t) = gi (t, x̂i (t) , x̂i (t− τ))

+ Gi (t, x̂i (t) , x̂i (t− τ)) β̂i +
N∑

j=1

ĉijAx̂j (t) + ui,

ui = −kix̃i (t) ,

Dqki = di ‖x̃i (t)‖2 ,

Dqβ̂i = −GT
i (t, x̂i (t) , x̂i (t− τ)) x̃i (t) ,

Dq ĉij = −δij x̃
T
i (t) Ax̂j (t) ,

(25)

where i, j ∈ {1, 2, . . . , N}, di, δij are any positive constants.
Proof. Denote k̃i = ki−k∗i , k∗i is a positive constant. Further

denote X = (X̃T, β̃T, c̃T, k̃T)T, where




X̃ =
(
x̃T

1 , x̃T
2 , . . . , x̃T

N

)T
, x̃i = (x̃i1, x̃i2, . . . , x̃in)T ,

β̃ =
(
β̃T

1 , β̃T
2 , . . . , β̃T

N

)T

, β̃i =
(
β̃i1, β̃i2, . . . , β̃imi

)T

,

c̃ =
(
c̃T
1 , c̃T

2 , . . . , c̃T
N

)T
, c̃i = (c̃i1, c̃i2, . . . , c̃iN )T ,

k̃ =
(
k̃1, k̃2, . . . , k̃N

)T

.

(26)

Choose the real symmetric positive definite matrix P as

P = diag




1, . . . , 1︸ ︷︷ ︸
nN+

N∑
i=1

mi

,
1

δ11
, . . . ,

1
δNN

,
1
d1

, . . . ,
1

dN




, (27)

Q = diag




M

2
, . . . ,

M

2︸ ︷︷ ︸
nN

, 0, . . . , 0︸ ︷︷ ︸
N∑

i=1
mi+N2+N




. (28)

Then, we have

J = XT(t)PDqX(t) + XT (t) QX (t)

−XT (t− τ) QX (t− τ)

=
N∑

i=1

x̃T
i (t) Dqx̃i (t) +

N∑

i=1

β̃T
i Dqβ̃i

+
N∑

i=1

N∑

j=1

1
δij

c̃ijD
q c̃ij +

N∑

i=1

1
di

k̃iD
qki

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

=
N∑

i=1

x̃T
i (t) (ḡi (t, x̂i (t) , x̂i (t− τ) , βi)

− ḡi (t, xi (t) , xi (t− τ) , βi)

+ Gi (t, x̂i (t) , x̂i (t− τ)) β̃i

+
N∑

j=1

c̃ijAx̂j (t) +
N∑

j=1

cijAx̃j (t)− kix̃i (t))

−
N∑

i=1

β̃T
i GT

i (t, x̂i (t) , x̂i (t− τ)) x̃i (t)

−
N∑

i=1

N∑

j=1

c̃ij x̃
T
i (t) Ax̂j (t) +

N∑

i=1

(ki − k∗)
∥∥x̃T

i (t)
∥∥2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

=
N∑

i=1

x̃T
i (t)(ḡi(t, x̂i(t), x̂i(t− τ), βi)

− ḡi(t, xi(t), xi(t− τ), βi))

+
N∑

i=1

N∑

j=1

x̃T
i (t) cijAx̃j (t)− k∗

N∑

j=1

‖x̃i (t)‖2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

≤ 1
2

N∑

i=1

x̃T
i (t)x̃i(t) +

1
2
‖ḡi(t, x̂i(t), x̂i(t− τ), βi)

− ḡi(t, xi(t), xi(t− τ), βi)‖2

+
N∑

i=1

N∑

j=1

x̃T
i (t) cijAx̃j (t)− k∗

N∑

j=1

‖x̃i (t)‖2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

≤ 1
2

N∑

i=1

x̃T
i (t) x̃i (t) +

M

2

(
‖x̃i (t)‖2 + ‖x̃i (t− τ)‖2

)
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+
N∑

i=1

N∑

j=1

x̃T
i (t) cijAx̃j (t)− k∗

N∑

j=1

‖x̃i (t)‖2

+
N∑

i=1

M

2
x̃T

i (t) x̃i (t)−
N∑

i=1

M

2
x̃T

i (t− τ) x̃i (t− τ)

=
(

1
2

+ M − k∗
)

X̃T (t) X̃ (t) + X̃T (t) (C ⊗A) X̃ (t)

≤
(

1
2

+ M − k∗ + λmax(C ⊗A)
)

X̃T(t)X̃(t). (29)

It is obvious that there exists sufficiently large positive
constant k∗ such that J is negative definite. Namely, XT(t)P
× DqX(t)+XT(t)QX(t)−XT(t−τ)QX(t−τ) ≤ 0 holds,
which implies the Lyapunov stability of error system (24) by
Lemma 1. ¤

V. NUMERICAL SIMULATIONS

In this section, two representative examples are given to
verify the effectiveness of the proposed parameters estimation
and structure identification approaches.

A. Identification with Coupling Time Delay

The well-known Lü system with fractional order derivative
is used as the node dynamics in the uncertain network, which
is described as

Dqxi(t) = fi (t, xi (t)) + Fi (t, xi(t))αi, (30)

where q = 0.9, xi(t) = (xi1(t), xi2(t), xi3(t))T is state vector,
fi(t, xi(t)) = (0,−xi1(t)xi3(t), xi1(t)xi2(t))T, Fi(t, xi(t))
= diag{xi2(t)− xi1(t), xi2(t),−xi3(t)}, and αi = (αi1, αi2,
αi3)T, i = 1, . . . , 4. Fig. 1 shows the chaotic attractor of
fractional-order Lü system.

Fig. 1. Chaotic attractor of fractional-order Lü system.

The weight configuration matrix is set as

C =




−5 1 4 0
3 −4 1 0
0 1 −3 2
1 3 0 −4


 . (31)

Let αi = (αi1, αi2, αi3)T = (36, 20 + i, 3)T for i = 1,
. . . , 4. τ = 0.2, and networks inner-coupling matrix A =
diag{1, 1, 1}.

According to Theorem 1, the coupling configuration matrix
C and system parameter vectors αi of complex networks (12)
can be identified by using adaptive control laws (16). Fig. 2
shows the identification of the uncertain system parameters,
while Fig. 3 illustrates the identification of the unknown net-
work topology.

Fig. 2. Identification of uncertain parameters.

B. Identification with Node Time Delay

In this subsection, we consider the uncertain network (21)
with four nonidentical delayed Lü systems, and the single
delayed Lü system is described as
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Fig. 3. Identification of network structure.





Dqxi1 (t) = βi1 (xi2 (t− τ)− xi1 (t− τ)) ,

Dqxi2 (t) = −xi1 (t− τ) xi3 (t− τ) + βi2xi2 (t− τ) ,

Dqxi3 (t) = xi1 (t− τ) xi2 (t− τ)− βi3xi3 (t− τ) ,
(32)

where q = 0.9, βi = (βi1, βi2, βi3)
T = (36, 20 + i, 3)T

for i = 1, . . . , 4. Let A = diag{1, 1, 1} and τ = 0.002.
Here, the coupling configuration matrix C is also defined
as (31). The chaotic attractor of delayed fractional-order Lü
system (32) is shown in Fig. 4. According to Theorem 2, the
unknown or uncertain coupling configuration matrix C and
system parameter vector βi can be estimated by using Ĉ and
β̂i, respectively. Fig. 5 shows the identification of the uncertain

Fig. 4. Chaotic attractor of delayed fractional-order Lü system.



302 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 3, NO. 3, JULY 2016

Fig. 5. Identification of uncertain parameters.
Fig. 6 Identification of network structure.

system parameters, and Fig. 6 illustrates the identification of
the unknown network topology.

VI. CONCLUSION

In this paper, a novel and feasible approach to identify the
parameters and network topology of fractional-order complex
network with time delay is proposed. Based on the stabil-
ity theorem of fractional-order differential system and the
adaptive control technique, two useful identification criteria
are derived. Illustrative simulations are provided to verify the
correctness and effectiveness of the proposed methods.
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