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Containment Control of Fractional Order
Multi-Agent Systems with Time Delays

Hongyong Yang, Fuyong Wang and Fujun Han

Abstract—In complex environments, many distributed multi-
agent systems are described with the fractional-order dynamics.
In this paper, containment control of fractional-order multi-
agent systems with multiple leader agents are studied. Firstly,
the collaborative control of fractional-order multi-agent systems
(FOMAS) with multiple leaders is analyzed in a directed network
without delays. Then, by using Laplace transform and frequency
domain theorem, containment consensus of networked FOMAS
with time delays is investigated in an undirected network, and
a critical value of delays is obtained to ensure the containment
consensus of FOMAS. Finally, numerical simulations are shown
to verify the results.

Index Terms—containment control, multi-agent systems,
fractional-order, time delays.

I. INTRODUCTION

RESENTLY, with the rapid development of network and
communication technology, the distributed coordination

for networked systems has been studied deeply ([1−5]). Coop-
erative control of multi-agent systems has become a hot topic
in the fields of automation, mathematics, computer science,
etc ([6−10]). It has been applied in both military and civilian
sectors, such as the formation control of mobile robots, the
cooperative control of unmanned spacecraft, the attitude ad-
justment and position of satellite, and the scheduling of smart
power grid systems, etc. As a kind of distributed cooperative
control problems of multi-agent systems with multiple leaders,
containment control regulates followers eventually converge to
a target area (convex hull formed by the leaders) by designing
a control protocol, which has been paid much more attention
in recent years ([11−13]).

In the complex practical environments, many distributed
systems cannot be illustrated with the integer-order dynamics
and can only be characterized with the fractional-order dy-
namics ([14−16]). For example, flocking movement and food
searching by means of the individual secretions, exploring of
submarines and underwater robots in the seabed with a massive
number of microorganisms and viscous substances, working
of unmanned aerial vehicles in the complex space environ-
ment ([17−18]). Cao and Ren have studied the coordination
of multi-agent systems with fractional order ([19−20]), and
obtained the relationship between the number of individuals
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and the order in the stable fractional system. Yang et.al.
have studied the distributed coordination of fractional order
multi-agent systems with communication delays ([21−22]).
Motivated by the broad application of coordination algorithms
in FOMAS, the containment control of distributed fractional-
order systems will be studied in this paper.

For containment control problems, the current re-
search works are mainly focused on integer-order systems
([11−13,23−26]). In [11], containment control problem for
first-order multi-agent systems with the undirected connected
topology is investigated, and the effectiveness of control strat-
egy is proven by using partial differential equation method.
In [12], second-order multi-agent systems with multiple lead-
ers are investigated, the containment control of multi-agent
systems with multiple stationary leaders can be achieved in
arbitrary dimensions. In [13], two asymptotic containment
controls of continuous-time systems and discrete-time sys-
tems are proposed for the multi-agent systems with dynamic
leaders, and the constraint condition for control gain and
sampling period are given. Considering factors such as external
disturbance and parameter uncertainty in [23], the attitude
containment control problem of nonlinear systems are studied
in a directed network. The impulsive containment control
for second-order multi-agent systems with multiple leaders is
studied in [25−26], where all followers are regulated to access
the dynamic convex hull formed by the dynamic leaders.

When agents transfer information by means of sensors or
other communication devices in coordinated network, com-
munication delays have a great impact on the behaviors of the
agents. Now, the influences of communication delays on multi-
agent systems have also been paid more attentions ([2,7−10])
where these research activities on the coordination problem
are mainly concentrated on integer-order multi-agent systems.
In [24], containment control problem of multi-agent systems
with time delays is studied in fixed topology, and two cases
of multiple dynamic leaders and multiple stationary leaders
are discussed, respectively. As far as we know, few researches
have been done on the containment consensus of fractional
order multi-agent systems with time delays.

In this paper, the containment control algorithms for multi-
agent systems with fractional dynamics are presented, and the
containment consensus of distributed FOMAS with communi-
cation delays is studied under directed connected topologies.
The main innovation of this paper is that the distributed
containment control of fractional order multi-agent systems
with multiple leaders and communication delays is studied for
the first time. The research presented in this paper is different
from Reference[21], where consensus of FOMAS without lea-
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der[21] is much easier than containment control of FOMAS
with multiple leaders in this paper. The rest of the paper
is organized as follows. In Section 2, we recall some ba-
sic definitions about fractional calculus. In Section 3, some
preliminaries about graph theory are shown, and fractional
order coordination model of multi-agent systems is presented.
Containment control of fractional coordination algorithm for
multi-agent systems with communication delay is studied in
Section 4. In Section 5, numerical simulations are used to
verify the theoretical analysis. Conclusions are finally drawn
in Section 6.

II. FRACTIONAL CALCULUS

Fractional calculus has played an important role in mod-
ern science. There are two fractional operators used widely:
Caputo and Riemann-Liouville (R-L) fractional operators. In
physical systems, Caputo fractional order operator is more
practical than R-L fractional order operator because R-L
operator has initial value problems. Therefore, in this paper
we will apply Caputo fractional order operator to describe the
system dynamics and analyze the stability of proposed FO-
MAS algorithms. Generally, Caputo operator includes Caputo
fractional integral and Caputo fractional derivative. Caputo
fractional integral is defined as

C
t0D

−p
t f(t) =

1
Γ(p)

∫ t

t0

f(θ)
(t− θ)1−p

dθ,

where the integral order p ∈ (0, 1], Γ(.) is the Gamma
function, and t0 is a real number. Based on the Caputo
fractional integral, for a nonnegative real number α, Caputo
fractional derivative is defined as

C
t0D

α
t f(t) =C

t0 D−p
t

[
d[α]+1

dt[α]+1
f(t)

]
, (1)

where p = [α] + 1 − α ∈ (0, 1] and [α] is the integral part
of α. If α is an integer, then p = 1 and the Caputo fractional
derivative is equivalent to the integer-order derivative. In this
paper, we will use a simple notation f (α) to replace C

t0D
α
t f(t).

Let L() denote the Laplace transform of a function, the
Laplace transform of Caputo derivative is shown as

L(f (α)) = sαF (s)−
[α]+1∑

k=1

sα−1f (k−1)(0), (2)

where F (s) = L(f (α)) =
∫∞
0− e−stf(t)dt is the Laplace

transform of function f(t), f (k)(0) = limξ→0− f (k)(ξ) and
f (0) = f(0) = limξ→0− f(ξ).

III. PROBLEM STATEMENT

Assume that n autonomous agents constitute a network
topology graph G = {V, E, A}, in which V = {v1, v2, ..., vn}
represents a set of n nodes, and its edges set is E ⊆ V × V .
I = {1, 2, ..., n} is the node indexes set, A = [aij ] ∈ Rn×n

is an adjacency matrix with elements aij ≥ 0. An edge of the
diagraph G is denoted by eij = (vi, vj) ∈ E. Let the adjacency
element aij > 0 when eij ∈ E, otherwise, aij = 0. The
neighbors’ set of node i is denoted by Ni = {j ∈ I : aij > 0}.

Let G be a weighted graph without self-loops, i.e., aii = 0,
and matrix D = diag{d1, d2, ..., dn} be the diagonal matrix
with the diagonal elements di =

∑n
j=1 aij representing the

out-degree of the i-th agent. L = D − A is the Laplacian
matrix of the weighted digraph G. For two nodes i and k,
there is index set {k1, k2, ...kl} satisfying aik1 > 0, ak1k2 > 0,
..., aklk > 0, then there is an information transmission linked
path between node i and k, also we say node i can transfer
the information to node k. If node i can find a path to reach
any node of the graph, then node i is globally reachable from
every other node in the digraph.

Lemma 1[3]. 0 is a simple eigenvalue of Laplacian matrix
L, and X0 = C[1, 1, ..., 1]T is corresponding right eigenvector,
i.e., LX0 = 0, if and only if the digraph G = (V, E, A) has a
globally reachable node.

Lemma 2[9]. Matrix L + B is a positive definite matrix,
where L is a Laplacian matrix of the digraph G = (V, E, A)
with a globally reachable node, and B = diag{b1, ..., bn} with
bi ≥ 0 and at least there is one element bi > 0.

Definition 1. The convex hull of a finite set of points
x1, ..., xm denoted by Co{x1, ..., xm}, is the minimal convex
set containing all points xi, i = 1, ..., m. More specifically,
Co{x1, ..., xm} = {∑m

i=1 νixi|νi > 0,
∑m

i=1 νi = 1}.
Recently, Fractional order systems have been widely applied

in various science fields, such as physics, hydrodynamics, bio-
physics, aerodynamics, signal processing and modern control.
The theories of fractional order equations are studied deeply,
and the relationship between the fractional order and the
number of agents to ensure coordination has been presented
in [19]. Assume that Caputo fractional derivative is used to
indicate the dynamics of multi-agent systems in the complex
environments, the fractional order dynamical equations are
defined as:

x
(α)
i (t) = ui(t), i = 1, ..., n, (3)

where xi(t) ∈ R and ui(t) ∈ R represent the i-th agent’s
state and control input respectively, x

(α)
i represents the α(α ∈

(0, 1]) order Caputo derivative. Assume the following control
protocols are used in FOMAS:

ui(t) = −γ
∑

k∈Ni

aik[xi(t)− xk(t)], i ∈ I. (4)

where aik represents the (i, k) elements of adjacency matrix A,
γ > 0 is control gain, Ni represents the neighbors collection
of the i-th agent.

Suppose the multi-agent systems consisting of n1 following
agents and n2 leader agents in this paper, where n1 +n2 = n.
Then, the control protocols of the multi-agent systems can be
rewritten as

ui(t) =
{ −γ

∑
k∈Ni

aik[xi(t)− xk(t)], i = 1, 2, ..., n1;
0, i = n1 + 1, ..., n.

(5)

The systems(3-5) can be rewritten as

X(α)(t) = −γ

(
L1 L2

0 0

)
X(t), (6)
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where X(t) = [X1(t), X2(t)]T, X1(t) = [x1(t), x2(t), ...,
xn1(t)]

T, X2(t) = [xn1+1(t), ..., xn(t)]T, L1 ∈ Rn1×n1 ,
L2 ∈ Rn1×n2 . X1(t) is the set of the followers, and X2(t) is
the set of the leaders.

Remark 1. Matrix L1 = (lik) ∈ Rn1×n1 satisfying

lik =
{

di − aii, i = k,
−aik, i 6= k.

Matrix L2 = (lik) ∈ Rn1×n2 satisfying

lik = −aik, i = 1, 2, ..., n1; k = n1 + 1, ..., n.

Assume the collection formed by leaders is regarded as a
virtual node, if one follower agent can connect to some leader,
then the follower is connected to the virtual node.

Definition 2. The containment control is realized for the
system (3) under certain control input (5), if the position states
of the followers are asymptotically converged to the convex
hull formed by the leaders.

Assumption 1. For any one follower, there is a directed
connected path to the virtual node formed by leaders.

Lemma 3. With Assumption 1, matrix L1 is positive
definite, and −L−1

1 L2 is a non-negative matrix whose entries
sum in every row equals to 1.

Proof. From Lemma 2, matrix L1 is positive definite matrix.
Let L1 = dIn1 − Q where d is a positive number which is
large enough and matrix Q is a non-negative matrix. it has

L−1
1 = (dIn1 −Q)−1

= d−1(In1 + d−1Q + (d−1Q)2 + ...).

Then, we obtain −L−1
1 L2 is a non-negative matrix.

From Lemma 1, Laplacian matrix L will be satisfied with
LX0 = 0, where X0 = [1, 1, ..., 1]T ∈ Rn×1. Then we have

L1X01 + L2X02 = 0,

where X01 = [1, 1, ..., 1]T ∈ Rn1×1 and X02 = [1,
1, ..., 1]T ∈ Rn2×1. Since L1 is a positive definite matrix from
Assumption 1 and Lemma 2, it has

X01 = −L−1
1 L2X02.

Therefore, −L−1
1 L2 is a stochastic matrix with entries sum in

every row equaling to 1.
Theorem 1. Consider a directed dynamic system of n1

followers and n2 leaders with dynamics (3), whose dynamic
topologies are satisfied with Assumption 1. Then the contain-
ment control is realized for the FOMAS under certain control
protocol (5).

Proof. Based on the system (6), we have

X
(α)
1 (t) = −γ(L1X1(t) + L2X2(t)),

X
(α)
2 (t) = 0.

(7)

Let X̄1(t) = X1(t) + L−1
1 L2X2(t), system (7) can be

rewritten as
X̄

(α)
1 (t) = −γL1X̄1(t),

X
(α)
2 (t) = 0.

(8)

It is known that the fractional differential system (8) is
asymptotically stable iff ‖arg(spec(L1))‖ > απ/2. Since

L1 is positive definite matrix, α ∈ (0, 1], we obtain
limt→∞ X̄1(t) = 0, i.e.

lim
t→∞

X1(t) = −L−1
1 L2X2(t).

Since matrix −L−1
1 L2 is stochastic matrix, the states of the

followers are asymptotically converged to the convex hull
formed by the leaders with Definition 1. Then, based on
Definition 2, the containment control is realized for the system
(3) with the control protocol (5).

Remark 2. If FOMAS of n agents and n2 = 1 leaders
with dynamics (3), the containment control result in Theorem
1 will become the consensus of multi-agent systems with one
leader.

Remark 3. If the fractional order α = 1 in FOMAS, the
containment control result in Theorem 1 will become that of
multi-agent systems with integer-order dynamics[1].

IV. CONTAINMENT CONTROL OF FOMAS WITH TIME
DELAYS

In this section, we assume that there are communication
delays in the dynamical systems, and containment control of
the fractional-order agent systems with communication delays
will be studied. Under the influence of communication delays,
we can get the following algorithm:

x
(α)
i (t) = ui(t− τ), i = 1, ..., n, (9)

where τ is the communication delay of agent i. Through a
simple change we can obtain

X
(α)
1 (t) = −γ(L1X1(t− τ) + L2X2(t− τ)),

X
(α)
2 (t) = 0.

(10)

Let X̄1(t) = X1(t) + L−1
1 L2X2(t), system (10) can be

rewritten as

X̄
(α)
1 (t) = −γL1X̄1(t− τ),

X
(α)
2 (t) = 0.

(11)

Theorem 2. Suppose that multi-agent systems are com-
posed of n independent agents with n1 followers and n2

leaders, whose connection network topology is undirected with
Assumption 1. Then fractional-order multi-agent system (10)
with time delays can asymptotically reach containment control,
if

τ <
(2− α)π
2(λ̄γ)1/α

, (12)

where λ̄ = max{λi, i ∈ I}, λi is the eigenvalues of matrix
L1.

Proof. By applying Laplace transformation to system(11),
we can obtain the characteristic equation of the system

det(sαIn + γe−τsL1) = 0.

Since the Laplacian matrix L1 is symmetrical positive definite,
there is an orthogonal matrix P satisfying L1 = PΛP−1,
where Λ = diag{λ1, ..., λn} with λi > 0. Therefore, the root
of the characteristic equation is satisfied with s 6= 0.

When s 6= 0, let F (s) = det(In + γs−αe−τsL1), we
will prove that all solutions of F (s) = 0 have negative real
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parts. Let G(s) = γs−αe−τsL1, according to the generalized
Nyquist criterion, if for s = jω, where j is complex number
unit, point −1 + j0 is not surrounded by the Nyquist curve
of G(jω)’s eigenvalues, then all zero points of F (s) have
negative real parts. Let s = jω, we can get

G(jω) = ω−αe−j(ωτ+απ/2)γL1, (13)

We have the eigenvalues of G(jω)

|λIn1 −G(jω)| = |λIn1 − (ω−αe−j(ωτ+απ/2)γL1)|
= Πn1

i=1(λ− γλiω
−αe−j(ωτ+απ/2)),

where λi is the eigenvalues of L1. When ω = (2− α)π/(2τ)
the Nyquist curve of G(jω)’s eigenvalues will cross the left
of the real axis. If

τ < min{ (2− α)π
2(λiγ)1/α

, i = 1, 2, ...n1},

the point −1 + j0 is not surrounded by the Nyquist curve
of G(jω)’s eigenvalues. Since fractional order α ∈ (0, 1], we
obtain

τ < (2− α)π/(2(λ̄γ)1/α),

where λ̄ = max{λi, i ∈ I}, the fractional-order multi-
agent system (11) with time delays can asymptotically reach
containment control.

Corollary 1. Suppose multi-agent systems are composed of
n independent agents with n2 = 1 leader, whose connection
network topology is directed and symmetrical with Assump-
tion 1. Then FOMAS (10) with time delays can asymptotically
follow the tracks of the leader, if

τ <
(2− α)π

2(λmaxγ)1/α
, (14)

where λmax is the max eigenvalue of matrix L1.
Corollary 2. Suppose multi-agent systems are composed of

n independent agents with n1 followers and n2 leaders, whose
connection network topology is directed and symmetrical with
Assumption 1. Then fractional order multi-agent system (10)
with time delays can asymptotically reach consensus with
α = 1, if

2γτ < π/λmax, (15)

where λmax is the max eigenvalue of matrix L1.
Remark 4. If the fractional order α = 1 in FOMAS, the

containment control result in Theorem 2 will become that of
delayed multi-agent systems with integer-order dynamics.

Remark 5. The consensus result in Corollary 2 for γ = 1
is in accord with that of delayed multi-agent systems with
integer-order dynamics in [2].

V. SIMULATIONS

Consider the dynamic topology with 5 followers and 3
leaders (illustrated as A1, A2, A3) shown in Fig. 1, where the
connection weights of each edge is 1. Suppose the fractional
order of the multi-agent system α = 0.9.

From the communication topology of FOMAS, the system
matrix can be obtained,

L1 =




3 −1 0 0 −1
−1 2 0 0 0

0 0 2 −1 0
0 0 −1 3 −1

−1 0 0 −1 3




(16)

Fig. 1. Network topology of multi-agent systems.

Assume that the control parameter of system is taken
γ = 1.0. The initial positions of followers are taken as
x1(0) = (1, 1), x2(0) = (1, 2), x3(0) = (2, 1), x4(0) = (2, 3),
x5(0) = (3, 2), respectively. The initial positions of leaders
are taken as A1(0) = (4, 4), A2(0) = (4, 6), A3(0) = (6, 4).
Fig. 2 shows the state trajectories of FOMAS without time
delays, where the followers have converged into the convex
hull formed by the leaders.

Fig. 2. Moving track of FOMAS without communication delays.
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Next, we will verify the results of FOMAS with time delays.
The maximum eigenvalue of L1 is 4.618. According to the
constraints of Theorem 2 in this paper, the allowed upper
bound of the delays is 0.3157. Let τ(t) = 0.20 is the time
delay of multi-agent systems. The initial parameters in the
experiments are same as the simulation without time delays.
Fig. 3 shows the state trajectories of FOMAS with time delays,
where the followers have converged into the convex hull
formed by the leaders.

Fig. 3. Moving track of FOMAS with communication delay τ = 0.20.

Then, we will enlarge the time delays in FOMAS. Let
τ(t) = 0.30 is the time delay of multi-agent systems in the
experiments. Fig. 4 shows the running trajectories of FOMAS.
The followers can asymptotically converge to the dynamic
region formed by three leaders, i.e., the containment control
of fractional-order multi-agent systems with time delays can
be achieved.

Fig. 4. Moving track of FOMAS with communication delay τ = 0.30.

VI. CONCLUSION

This paper studies containment control of fractional multi-
agent systems with communication time delays. Containment
consensus of multi-agent systems with directed network topol-
ogy is studied. By applying the stability theory of frequency
domain, FOMAS with delay is analyzed, and the relationship

between the control gain of multi-agent systems and the
upper bound of time delays is derived. Suppose the orders
of the fractional dynamical systems are all 1, the extended
conclusion in this paper is the same with ordinary integer order
systems. The containment control of fractional order multi-
agent systems with dynamical topologies and linear time-
varying (LTV) systems will be investigated in the future works.
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