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Stability analysis of a class of nonlinear fractional
differential systems with Riemann-Liouville

derivative
Ruoxun Zhang, Shiping Yang, Shiwen Feng

Abstract—This paper investigates the stability of n-dimensional
nonlinear fractional differential systems with Riemann-Liouville
derivative. By using the Mittag-Leffler function, Laplace trans-
form and the Gronwall-Bellman lemma, one sufficient condition
is attained for the asymptotical stability of a class of nonlinear
fractional differential systems whose order lies in (0, 2). Accord-
ing to this theory, if the nonlinear term satisfies some conditions,
then the stability condition for nonlinear fractional differential
systems is the same as the ones for corresponding linear systems.
Several examples are provided to illustrate the applications of our
result.

Index Terms—Stability, Nonlinear fractional differential sys-
tem, Riemann-Liouville derivative

I. INTRODUCTION

IN this paper, we consider the stability of n-dimensional
nonlinear fractional differential systems with Riemann-

Liouville derivative:
RL
0 Dα

t x(t) = Ax(t) + f(x(t)) (1)

where 0 < α < 2, x(t) ∈ Rn×1is the state vector,
RL
0 Dα

t x(t)denotes Riemann-Liouville’s fractional derivative
with the lower limit 0 for the function x(t), A ∈ Rn×nis the
constant parameter matrix andf(x(t)) ∈ Rn×1is a nonlinear
function vector.

In the last 30 years, fractional calculus has attracted at-
tention of many mathematicians, physicists and engineers.
Significant contributions have been made to both the theory
and applications of fractional differential equations (see [1]
and references there in). Also, fractional differential equations
have recently been proved to be valuable tools in modeling
of many physical phenomena in various ?elds of science and
engineering.

Recently, the stability of fractional differential systems has
attracted increasing interest due to its importance in control
theory. In 1996, Matignon [2] firstly studied the stability
of linear fractional differential systems. Since then, many
researchers have studied further on the stability of linear
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fractional differential systems [3− 5]. The stability analysis of
nonlinear fractional differential systems is much more difficult
and only a few available. For example, Li et al. investigated the
Mittag-Leffler stability of fractional order nonlinear dynamic
systems [6] and proposed Lyapunov direct method to check
stability of fractional order nonlinear dynamic systems [7].
Wen et al. [8] and Zhou et al [9] considered the stability
of nonlinear fractional differential systems. In [10], Zhang
et al proposed a single state adaptive-feedback controller for
stabilization of three-dimensional fractional-order chaotic sys-
tems. Based on the theory of Linear Matrix Inequality (LMI),
Faieghi et al [11] proposed a simple controller for stabilization
of a class of fractional-order chaotic systems. Wang et al.
present the Ulam -Hyers stability for fractional Langevin
equations [12], and Ulam- Hyers-Mittag-Lef?er stability for
fractional delay differential equations [13]. The methods which
they proposed for stability of a class of fractional differential
equations provide us with a very useful method for studying
Hyers–Ulam stable system. That is, one does not have to reach
the exact solution. What is required is to get a function which
satis?es a suitable approximation inequality.

Note that these papers on the stability of the frac-
tional differential systems mainly concentrated on fractional
orderαlying in (0, 1). Recently, in Ref [14], Zhang et al
considered the stability of nonlinear fractional differential
systems with Caputo derivative whose order lies in (0, 2).
In this paper, we study the stability of the nonlinear fractional
differential systems with Riemann-Liouville derivative whose
order lies in (0, 2). By using the Mittag-Leffler function,
Laplace transform and the Gronwall-Bellman lemma, a sta-
bility theorem is proven theoretically. The stability conditions
have no restriction on the norm of the linear parameter matrix
A. The paper is outlined as follows. In section II, some
definitions and lemmas are introduced. In section III, the
stability of a class of nonlinear fractional differential systems
with commensurate order 0 < α < 2 is investigated. The
simulation and conclusions are included in section IV and V,
respectively.

II. PRELIMINARIES

Definition 2.1 [15]. The Riemann-Liouville derivative with
αof function x(t) is defined as follows

RL
t0 Dα

t x(t) = 1
Γ(n−α)

dn

dtn

∫ t

t0

x(τ)
(t−τ)α−n+1 dτ,

(n− 1 ≤ α < n)
(2)
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The Laplace transform of the Riemann-Liouville fractional
derivative RL

t0 Dα
t x(t) is

∫ ∞

0

e−stRL
t0 Dα

t x(t)dt =

sαX(t)−
n−1∑

k=0

sk[Dα−k−1x(t)]t=t0 (3)

Definition 2.2 [15]. The two-parameter Mittag- Leffler
function is defined as

Eα, β(z) =
∞∑

k=0

zk

Γ(αk + β)
, (Reα > 0, β ∈ C, z ∈ C). (4)

The Laplace transform of Mittag-Leffler function can be found
to be ∫ ∞

0

e−sttαk−β−1E
(k)
α,β(±atα)dt =

k!sα−β

(sα ∓ a)k+1
, (R(s) > |a| 1n ). (5)

Definition 2.3 [16]. By analogy with Definition 2.2, for
A ∈ Cn×n, a matrix Mittag-Leffler function is defined as:

Eα,β(A) =
∞∑

k=0

Ak

Γ(αk+β) , (β ∈ C, R(α) > 0)

Lemma 2.1 [8]. If A ∈ Cn×n, 0 < α < 2, β is an arbitrary
real number, µ is such that πα

2 < µ < min{π, πα} and C1is
a real constant, then

||Eα,β(A)|| ≤ C1

1 + ||A|| , (6)

where µ ≤ arg(λ(A)) ≤ π, λ(A) denotes the eigenvalues of
matrix A and || · ||denotes the l2-norm.

Lemma 2.2 [17]. (Gronwall-Bellman lemma) If

ϕ(t) ≤ h(t) +
∫ t

t0

g(τ)ϕ(τ)dτ, t0 ≤ t ≤ t1. (7)

where g(t), h(t) and ϕ(t) are continuous on [t0, t1], t1 →∞,
t0 ≤ t ≤ t1 and g(t) ≥ 0. Then ϕ(t) satisfies

φ(t) ≤ h(t) +
∫ t

t0

h(τ)g(τ) exp[
∫ t

τ

g(s)ds]dτ. (8)

In addition, if h(t) is nondecreasing, then

φ(t) ≤ h(t) exp[
∫ t

t0

g(s)ds]dτ. (9)

III. STABILITY THEORY OF N-DIMENSIONAL NONLINEAR
FRACTIONAL DIFFERENTIAL SYSTEMS

In this section, based on the definition and lemma in section
2, we present the stability theorem for a class of nonlinear
fractional differential systems such as system (1).

Theorem 1. Consider the system (1). Let λi(A) (i =
1, 2, · · · , n)be the eigenvalues of matrix A. If

1) | arg(λi(A))| > απ/2;
2) The nonlinear function f(x(t))satisfies

lim
||x(t)||→0

||f(x(t))||
||x(t)|| = 0. (10)

Then the zero solution of (1) is locally asymptotically stable.
Proof. a) The case 0 < α < 1
In this case, the initial condition is

RL
0 Dα−1

t x(t)|t=0 = x0 (11)

Taking Laplace transform of (1), we have

X(s) = (Isα −A)−1(x0 + L[f(x(t))]) (12)

where I is an n× n identity matrix.
Then taking inverse Laplace transform for (12), it yields

x(t) = x0t
α−1Eα,α(Atα)+∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(x(τ))dτ (13)

By the condition (10), there exist C0 > 0 and δ > 0, such
that

||f(x(t))|| < α||A||
2C0

||x(t)||as||x(t)|| < δ (14)

From (14) and Lemma 2.1 , (13) gives

||x(t)|| ≤ C0||x0||tα−1

1 + ||Atα|| +
∫ t

0

||(t− τ)α−1||C0

1 + ||A(t− τ)α||
α||A||
2C0

||x(τ)||dτ =

C0||x0||tα−1

1 + ||A||tα +
∫ t

0

α||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)
||x(τ)||dτ

According to Lemma 2.2, we obtain

||x(t)|| ≤ C0||x0||tα−1

1 + ||A||tα +
∫ t

0

C0||x0||τα−1

1 + ||A||τα

× α||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)

exp
( ∫ t

τ

α||A||(t− s)α−1

2(1 + ||A||(t− s)α)
ds

)
dτ

=
C0||x0||

t1−α + ||A||t
+

∫ t

0

αC0||x0||τα−1||A||(t− τ)α−1

2(1 + ||A||τα)(1 + ||A||(t− τ)α)0.5
dτ

≤ C0||x0||
t1−α + ||A||t

+
∫ t

0

αC0||x0||τα−1||A||(t− τ)α−1

2(1 + ||A||τα)0.5(1 + ||A||(t− τ)α)0.5
dτ

≤ C0||x0||
t1−α + ||A||t

+ 0.5αC0||x0||
∫ t

0

τ0.5α−1(t− τ)0.5α−1dτ

≤ C1||x0||
t1−α + ||A||t

+ 0.5αC0||x0||Γ(0.5α)Γ(0.5α)
Γ(α)

tα−1 → 0

as t →∞.

So, the zero solution of (1) is locally asymptotically stable.
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2) The case 1 < α < 2
In this case, the initial condition is

RL
0 Dα−k

t x(t)|t=0 = xk−1, (k = 1, 2) (15)

We can get the solution of (1) with the initial condition (15)
by using the Laplace transform and Laplace inverse transform:

x(t) = x0t
α−1Eα ,α(Atα) + tα−2 x1Eα,α−1(Atα)

+
∫ t

0

(t− τ)α−1Eα,α(A(t− τ)α)f(x(τ))dτ (16)

By the condition (10), there exist C0 > 0 and δ > 0, such
that

||f(x(t))|| < (α− 1)||A||
2C0

||x(t)||as||x(t)|| < δ. (17)

From (17) and Lemma 2.1 , (16) gives

||x(t)|| ≤ C0||x0||tα−1

1 + ||Atα|| +
C1||x1||tα−2

1 + ||Atα||
+

∫ t

0

||(t− τ)α−1||C0

1 + ||A(t− τ)α||
(α− 1)||A||

2C0
||x(τ)||dτ

=
C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
∫ t

0

||(t− τ)α−1||
1 + ||A||(t− τ)α

(α− 1)||A||
2

||x(τ)||dτ (18)

where C1 > 0. According to Lemma 2.2, we obtain

||x(t)| ≤ C0||x0||τα−1

1 + ||A||τα
+

C1||x1||τα−2

1 + ||A||τα
+

∫ t

0

(C0||x0||τα−1

1 + ||A||τα

+
C1||x1||τα−2

1 + ||A||τα

) (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)

× exp
( ∫ t

τ

(α− 1)||A||(t− s)α−1

2(1 + ||A||(t− s)α)
ds

)
dτ

=
C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
∫ t

0

(C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα
)

× (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)1−
α−1
2α

dτ

≤ C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
∫ t

0

C0||x0||τα−1

(1 + ||A||τα)0.75

× (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)1−
α−1
2α

dτ

+
∫ t

0

C1||x1||τα−2

(1 + ||A||τα)
α−1
2α

× (α− 1)||A||(t− τ)α−1

2(1 + ||A||(t− τ)α)1−
α−1
2α

dτ

≤ C0||x0||tα−1

1 + ||A||tα +
C1||x1||tα−2

1 + ||A||tα

+
(α− 1)C0||x0||
2||A||0.25+1/(2α)

∫ t

0

τ0.25α−1(t− τ)0.5α−1.5dτ

+
(α− 1)C1||x1||

2

∫ t

0

τ0.5α−1.5(t− τ)0.5α−1.5dτ

≤ C0||x0||
||A||t +

C1||x1||
||A||t2

+
(α− 1)C0||x0||
2||A||0.25+1/(2α)

Γ(0.25α)Γ(0.5α− 0.5)
Γ(0.75α− 0.5)t0.75(2−α)

+
(α− 1)C1||x1||

2
Γ(0.5α)Γ(0.5α− 0.5)

Γ(α− 0.5)t2−α

→ 0 as t →∞. (19)

So, the zero solution of (1) is locally asymptotically stable.
Remark 1. The nonlinear term of many fractional or-

der chaotic systems satisfy (12). For example, fractional-
order Lorenz system [17], fractional-order Chen system [18],
fractional-order Lü system [19], fractional-order Liu system
[20], fractional-order Arneodo system [21], fractional-order
Chua system [22] and fractional-order hyperchaotic Chen
system [23] etc. So, Theorem 1 can be applicable to control
chaos in a large class of generalized fractional-order chaotic
or hyperchaotic systems via a linear feedback controller. See
Example 3 in Section 4.

Remark 2. Theorem 1 provides us with a simple procedure
for determining the stability of the fractional order nonlinear
systems with Caputo derivative with order 0 < α < 2. If the
nonlinear term f(x(t))satisfies Eq.(10), then one does not have
to reach the exact solution. What is required is to calculate
the eigenvalues of the matrix A, and test their arguments. If
| arg(λi(A))| > απ/2for all i, we conclude that the origin is
asymptotically stable.

IV. THREE ILLUSTRATIVE EXAMPLES

The following illustrative examples are provided to show
the effectiveness of the stability theorem. When numerically
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solving fractional differential equations, we adopt the method
introduced in [24].

Example 1. Consider the nonlinear fractional differential
systems

RL
0 Dα

t x1 = x1 + x2 + x3 + x2x3

RL
0 Dα

t x2 = −x1 + x2 − x3 + x2
2

RL
0 Dα

t x3 = x1x2 − x3

(20)

System (20) can be rewritten as (1), in which

A =




1 1 1
−1 1 −1
0 0 −1


 , f(x(t)) =




x2x3

x2
2

x1x2


 (21)

Obviously, it is easy to verify that

lim
||x(t)||→0

||f(x(t)||
||x(t)|| = lim

||x(t)||→0

√
(x2x3)2 + x4

2 + (x1x2)2√
x2

1 + x2
2 + x2

3

≤ lim
||x(t)||→0

√
(x2x3)2 + x4

2 + (x1x2)2√
x2

2

≤ lim
||x(t)||→0

√
x2

3 + x2
2 + x2

1 = 0,

which implies thatf(x(t) satisfies Condition (2) in Theorem
1. By using simple calculation, the eigenvalues

of A are λ 1,2 = 1±i and λ 3 = −1. According to Theorem
1, if α < 0.5, the zero solution of (20) is asymptotically stable.
Simulation results are displayed in Figs. 1–3. Fig. 1 and Fig. 2
show the zero solution of system (20) is asymptotically stable
with α = 0.4 and α = 0.49 , respectively. Fig. 3 shows the
zero solution of the system (20) is unstable with α = 0.5.

Fig. 1. System (20) is asymptotically stable with α = 0.4

Example 2. Consider the nonlinear fractional differential
systems

RL
0 Dα

t x1 = −x1 + x2x3

RL
0 Dα

t x2 = x3

RL
0 Dα

t x3 = x1 − x2 − x3 − x1x2

(22)

System (22) can be rewritten as (1), in which

A =



−1 0 0
0 0 1
1 −1 −1


 , f(x(t)) =




x2x3

0
−x1x2




(23)

Obviously, it is easy to verify that lim
||x(t)||→0

||f(x(t)||
||x(t)|| = 0,

which implies thatf(x(t) satisfies Condition (2) in Theorem 1.
By using simple calculation, the eigenvalues of A are λ 1,2 =
−1/2 ± √

3i/2 and λ 3 = −1. According to Theorem 1, if
α < 4/3, the zero solution of (22) is asymptotically stable.
Simulation results are displayed in Figs. 4–7. Figs.4–6 show
the zero solution of the system (22) is asymptotically stable
with α = 1.1α = 1.3 and α = 1.33 , respectively. Fig. 7
shows the zero solution of the system (22) is not stable with
α = 1.34.

Fig. 2. System (20) is asymptotically stable with α = 0.49

Fig. 3. System (20) is unstable with α = 0.50
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Fig. 4. System (22) is asymptotically stable with α = 1.1

Fig. 5. System (22) is asymptotically stable with α = 1.30

Example 3. The fractional-order hyperchaotic Chen system
can be written as

RL
0 Dα

t x1 = a(x2 − x1) + x4

RL
0 Dα

t x2 = dx1 + cx2 − x1x3

RL
0 Dα

t x3 = x1x2 − bx3

RL
0 Dα

t x4 = x2x3 + rx4

(24)

where a, b, c,d and r are five parameters. When a = 35, b =
3, c = 12, d = 7, r = 0.3 and α = 1.1 system (24) displays
a chaotic attractor, as shown in Fig. 8.

Fig. 6. System (22) is asymptotically stable with α = 1.33

Fig. 7. System (22) is not stable with α = 1.34

System (24) can be rewritten as a controlled system:

RL
0 Dα

t x1 = a(x2 − x1) + x4

RL
0 Dα

t x2 = dx1 + cx2 − x1x3 + u1

RL
0 Dα

t x3 = x1x2 − bx3

RL
0 Dα

t x4 = x2x3 + rx4 + u2

When α = 1.1, a = 35, b = 3, c = 12, d = 7, r = 0.3, we
select the linear state feedback controller u1 = −22x2, u2 =
−x4. Then, the two conditions of Theorem 1 are satisfied well.
It concludes that the zero solution of the controlled system is
asymptotically stable. The results of simulation are shown in
Fig. 9, while the feedback is activated at timet =10 s.
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Fig. 8. Attractor of fractional order hyperchaotic Chen system with
order α = 1.1 (a = 35, b = 3, c = 12, d = 7, r = 0.3)

Fig. 9. Asymptotical stabilization of fractional order hyperchaotic
Chen system with order α = 1.1

V. CONCLUSIONS

In this paper, we have studied the local asymptotic stability
of the zero solution of n-dimensional nonlinear fractional
differential systems with with Riemann-Liouville derivative.
The results are obtained in terms of the Mittag-Leffler func-
tion, Laplace transform and the Gronwall-Bellman lemma.
Compare of the current results with the results in Ref.[14]
shows that the stability condition of Riemann-Liouville frac-
tional differential system is same as that for Caputo fractional
differential systems. Three numerical examples are given to
demonstrate the effectiveness of the proposed approach.
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