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Fractional Modeling and SOC Estimation of

Lithium-ion Battery
Yan Ma, Xiuwen Zhou, Bingsi Li, and Hong Chen, Senior Member, IEEE

Abstract—This paper proposes a state of charge (SOC) estima-
tor of Lithium-ion battery based on a fractional order impedance
spectra model. Firstly, a battery fractional order impedance
model is derived on the grounds of the characteristics of Warburg
element and constant phase element (CPE) over a wide range
of frequency domain. Secondly, a frequency fitting method and
parameter identification algorithm based on output error are
presented to identify parameters of the fractional order model
of Lithium-ion battery. Finally, the fractional order Kalman filter
approach is introduced to estimate the SOC of the lithium-ion
battery based on the fractional order model. The simulation
results show that the fractional-order model can ensure an
acceptable accuracy of the SOC estimation, and the error of
estimation reaches maximally up to 0.5 % SOC.

Index Terms—Lithium-ion battery, fractional order model,
electrochemical impedance spectra, fractional Kalman filter.

I. INTRODUCTION

GENERALLY, the electrochemical reactions inside
lithium-ion battery are complicated in the running elec-

tric vehicle (EV), which is a highly nonlinear dynamic system.
State of charge (SOC)[1] is defined as the percentage of the
amount of left energy to the rated capacity of a battery, which
cannot be measured directly, it only can be estimated by
measured variables such as current and terminal voltage. The
accurate estimation of SOC is the key problem in the field of
power battery.

The methods of SOC estimation are categorized into direct
experiment measurement methods and estimation methods
based on battery models. Coulomb counting method and cur-
rent integration method are the most popular experiment mea-
surement methods, which are simple to obtain SOC. However,
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these methods result in high errors caused by the accumulation
of errors in numerical integration in current measurement.
State observer[2−3], Kalman filter (KF)[4−5] and particle filter
(PF)[6−7] are used to estimate SOC based on the model of
Lithium-ion battery. The SOC estimation error of each method
is summarized in [8], which shows that the existing integer
order battery SOC estimation methods mainly have estimation
error larger than 1 %, which may be because the models which
are obtained through the external characteristics of the power
battery cannot show the precise internal characteristics. The
dynamics of the battery is described by a set of integer order
calculus equations. But complex electrochemical reactions are
described by the fractional order function.

The fractional order calculus (FOC) is a natural extension
of the classical integral order calculus. References [9−11]
have shown that most phenomena, such as damping, friction,
mechanical vibration, dynamic backlash, sound diffusion, etc.,
have fractional order properties. Thus, FOC is widely used in
modeling, kinetics estimation, etc. FOC is also used to develop
the electrochemical models of the super capacitors and so on.

When it comes to FOC battery modeling and SOC estima-
tion, [12] uses FOC model obtained by system identification
to estimate crankability of battery, [13] proposes lead acid
battery state of charge estimation with FOC, and [14] deals
with a fractional order state space model for the lithium-ion
battery and its time domain system identification method. The
existing FOC modeling for battery meets the same problem,
the estimation accuracy in not high enough for battery man-
agement system.

The electrochemical impedance spectroscopy (EIS) method
is one of the most accurate methods to model the electrochem-
ical Li-ion batteries. There are many studies which have tried
to utilize the impedance spectra directly to estimate SOC, but
EIS method is too complicated to be used directly. EIS method
is mainly used with equivalent circuit model at present[15−16].

The remainder of the paper is organized as follows. Section
II discusses the battery fractional-order modeling based on
impedance spectra; Section III discusses how to obtain char-
acteristic curve between open circuit voltage (OCV) and SOC,
states order identification with frequency method and param-
eters identification according to the output error identification
algorithm; Section IV presents fractional order Kalman filter
for SOC estimation; Section V draws conclusions from the
preceding work and offers suggestion for further study.

II. FRACTIONAL MODELLING OF BATTERY

The impedance spectra curve of the Lithium-ion battery can
be got through Electrochemical workstation and is shown in
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Fig. 1. As shown in the figure, the impedance spectra can be
divided into three sections: the high frequency section, the mid
frequency section and the low frequency section.

Fig. 1. Impedance spectra of a Li-ion battery.

In the high frequency section, the impedance spectra curve
intersects with the real axis and the intersection point could
be represented by an Ohmic resistance.

In the low frequency section, the impedance spectra curve
is a straight line with a constant slope, and has the same
impedance spectroscopy characteristic with constant phase
element (CPE) which is usually referred to as a Warburg
element.

The middle frequency section forms a depressed semicircle,
which is a well-known phenomenon in electrochemistry. Such
a depressed semicircle could be modeled by paralleling a
Warburg element or CPE with a resistance, which is referred
to as a ZARC element (it yields an arc in the Z plane)[17].

From the analysis above, the equivalent circuit model can be
described as Fig. 2. Voc denotes open circuit voltage (OCV),
and Vo denotes battery terminal voltage which can be directly
measured; R1 ∈ R denotes the value of Ohmic resistance,
I denotes the current, and V1 denotes the voltage of R1; C2

∈ R is the coefficient of CPE in ZARC element, R2 ∈ R
denotes the value of Ohmic resistance in ZARC element, and
V2 denotes the terminal voltage of ZARC element; W ∈ R is
the coefficient of Warburg element, and V3 denotes the voltage
of Warburg element.

Fig. 2. Fractional equivalent circuit model.

From the above description, the battery can be described by
a fractional model. To simplify the FOC equation, we define
the denotation as follows:

∆r =





dr

dtr , r > 0,

1, r = 0,
∫

(dτ)r, r < 0.

The mathematical model in high frequency can be described
as (1).

V1 = R1I, (1)

where R1 ∈ R denotes the value of Ohmic resistance, I
denotes the current, and V1 denotes the voltage of R1.

The mathematical model in middle frequency can be de-
scribed as (2).

∆βV2 = − 1
R2C2

V2 − 1
C2

I, (2)

where C2 ∈ R is the coefficient of CPE, β ∈ R, −1 < β < 1
denotes the fractional order of CPE, R2 ∈ R denotes the value
of Ohmic resistance in ZARC element, I denotes the current
across the ZARC element, and V2 denotes the terminal voltage
of ZARC element.

The mathematical model of Warburg element in low fre-
quency can be described as (3).

∆αV3 = − 1
W

I, (3)

where W ∈ R is the coefficient, ∆α denotes α order of the
fractional element, α ∈ R, −1 < α < 1 is the fractional
order of Warburg element, V3 denotes the voltage of Warburg
element, and I denotes the current across the Warburg element.

For the determined relationship of OCV and SOC, SOC
can be regarded as a system state, which can be presented as
follows:

∆1Soc = − 1
Qn

I, (4)

where Qn denotes the nominal capacity (Ah) of battery.
The relationship between SOC and OCV is nonlinear and

it is not easy to draw a mathematical interpretation for it. It
is easy to find that when SOC is between 20 % and 80 % the
relationship is considered to be linear and can be written as
follows:

Voc = k · Soc + d, (5)

where k and d are the coefficients which can be calculated
from the curve fitting.

Set the system state vector as x =
[

V2 V3 Soc

]T
, the

system input as u = I , and the system output as y = Vo − d.
The continuous fractional state space function can be written
as (6).

{
∆Nx = Ax + Bu,

y = Cx + Du,
(6)

where A =



− 1

R2C2
0 0

0 0 0
0 0 0


, B =



− 1

C2

− 1
W

− 1
Qn


, C =

[
1 1 k

]
, D = −R1, N =




β
α
1


.
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According to the stochastic theory, the discrete state space
function is obtained as follows:

{
∆Nxk+1 = Axk + Buk,

yk = Cxk + Duk,
(7)

where xk ∈ R3 denotes the system state vector, yk ∈ R
denotes the system output, and uk ∈ R denotes the system
input, all at the time instant k.

The fractional order Grünwald-Letnikov definition is given
as

∆Nxk =
1

TN
s

k∑

j=0

(−1)j

(
N
j

)
xk−j , (8)

where Ts is the sample interval, and k is the number of
samples for which the derivative is calculated,

(
N
j

)
=

{
1, j = 0,
N(N−1)···(N−j+1)

j! , j > 0.

Equation (9) can be derived from (8).

xk+1 = TN
s ∆Nxk+1 −

(
N
1

)
xk

+
k+1∑

j=2

(−1)j

(
N
j

)
xk−j+1. (9)

The discrete state space function of the battery can be
written as (10).




xk+1 = TN
s (A + NE)xk + TN

s Buk −
k+1∑
j=2

γjxk−j+1,

yk = Cxk + Duk,

(10)

where γj = diag
{(

β
j

)(
α
j

)(
1
j

)}
.

Let Ad = TN
s (A + NE), Bd = TN

s B, Cd = C, Dd = D,
and E be unit matrix. Considering the process noise and output
noise, the discrete state space function of the system can be
written as




xk+1 = Adxk + Bduk + wk −
k+1∑
j=2

γjxk−j+1,

yk = Cdxk + Dduk + vk,

(11)

where wk ∈ R3 is process noise, representing the modeling
uncertainty and unknown input, vk ∈ R is output noise, on be-
half of the measurement disturbance, wk and vk are assumed to
be independent, zero mean Gaussian noise processes with the
covariance matrices E[wkwT

j ] = Qkδkj , E[vkvT
j ] = Rkδkj ,

and δkj is Kronecker function.

III. PARAMETER IDENTIFICATION

Parameter identification of battery model can be divided into
two sections, curve fitting of relationship between OCV and
SOC and parameter identification in battery model. We will
describe the two parts separately as following.

A. Curve Fitting Between OCV and SOC

OCV is obtained by fitting average value of charging and
discharging terminal voltages which are measured by applying
constant pulse current for each time 10 % SOC to battery in
both of charging and discharging modes.

Through the above test, the unknown parameters k and d
in (5) can be obtained by curve fitting.

The specific test procedure is as follows:
1) Discharge the battery till it reaches the minimum dis-

charging voltage (2 V in our case) at room temperature, and
keep it idle for 12 hours.

2) Charge the battery with a constant current of 0.2 C (0.5 A)
till terminal voltage reaches 3.7 V. During the procedure, idle
the battery for 2 minutes after each 10 % SOC charging.
Record every minimum voltage, as shown in Table I.

TABLE I
MINIMUM POINTS OF EVERY SOC WHILE CHARGING

SOC (%) Voltage (mV)

1 2664

11 3140

21 3233

31 3278

41 3304

51 3318

61 3322

71 3341

81 3382

91 3408

100 3702

3) Idle the battery for 12 hours.
4) Discharge the battery with a constant current of 0.2 C

(0.5 A) till terminal voltage reaches 2 V. During the procedure,
idle the battery for 2 minutes after each 10 % SOC discharging.
Record every maximum voltage, as shown in Table II.

TABLE II
MAXIMUM POINTS OF EVERY SOC WHILE

DISCHARGING

SOC (%) Voltage (mV)

99 3434

89 3284

79 3274

69 3266

59 3360

49 3240

39 3222

29 3192

19 3147

9 2812

0 2431

5) Fit minimum points and maximum points that we col-
lected in prior experiments respectively and average the two
curves, which are shown in Fig. 3.
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Fig. 3. OCV measurement during charging and discharging.

Fitting the OCV-SOC relationship from 20 % SOC to 80 %
SOC as shown in Fig. 4, we can get the values k = 0.002086
and d = 3.166.

Fig. 4. OCV-SOC curves between 20 % and 80 % SOC.

B. Parameter Identification of Model

Identify unknown parameters in (6) with time domain and
frequency domain method separately.

1) Identify the order of states using frequency fitting method
in frequency domain: This impedance spectra curve of the
Warburg element has the slope of απ/2. The slope of the
low-frequency part of the impedance spectra is nearly π/4, so
parameter α is equal to 0.5.

The impedance spectra curve of the loop consisting of
a CPE and a resistance is shaped like a semicircle. The
regression rate of the semicircle will be changed with β. The
bigger β is, the bigger the curve radian is. When β = 0.65,
the measured impedance spectra will be matched well, shown
in Fig. 5.

Fig. 5. System state order fitting curve.

Fig. 5 shows that the impedance spectra curve obtained
by the order of state identification can match the measured

impedance spectra well, which means that the fractional-order
model can express the characteristic of Lithium-ion battery
well.

2) Unknown parameter identification: Unknown parame-
ters are identified via output error identification algorithm in
time domain[18−19]. The output error approach is diagrammed
in Fig. 6.

Fig. 6. Parameter identification of battery by output error approach.

The transfer function of fractional order equivalent circuit
model shown in Fig. 1 can be written as

H(s) =
V (s)
I(s)

=
1

Wsα
·R1 ·

R2( 1
C2sβ )

R2 + ( 1
C2sβ )

=
R1R2

Wsα(1 + C2R2sβ)
, (12)

where V = Vo − Voc.
Equation (12) can be written as (13).

V (s)Wsα(1 + C2R2s
β) = I(s)R1R2. (13)

Applying of inverse Laplace transform algorithm, we have

W
dα

dt
V (t) + C2R2W

dα+β

dt
V (t) = R1R2I(t). (14)

Let a = R1R2, b = W , c = C2R2W , θ =




a
b
c


, p =

d
dt

.

Equation (14) is written as

G(p) =
V (t)
I(t)

=
a

bpα + cpα+β
=

B(θ)
A(p, θ)

. (15)

The noise-free output y(tk) is supposed to be corrupted by
an additive white measurement noise v(tk) which is normally
distributed with a zero mean and R variance, considered at
discrete instants. The complete equation can be written in the
form {

y(tk) = G(p) · u(tk),
y∗(tk) = y(tk) + v(tk),

(16)

where y∗(tk) is the measured output of the system.
Assume that an error function ε(t) is given by the output

error, i.e.,

ε(t) = y∗(tk, θ)− B(θ)
A(p, θ)

u(t)

= A(p, θ)
(

y∗(tk, θ)
A(p, θ)

)
−B(θ)

(
u(t)

A(p, θ)

)

= A(p, θ)y∗f (t)−B(θ)uf (t), (17)

where y∗f (t) = y∗(t, θ)/A(p, θ) and uf (t) = u(t)/A(p, θ).
Hence, a linear low-pass filter is applied to the measured
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input part and output part separately instead of a direct
differentiation of the input variable and output variable. As
shown in (17), the filter converts the output error into an
equation error[20].

Let Fn(p) = 1/A(p, θn), n = 1, 2, . . . stands for the
iteration number. In practical cases, A(p, θ) being unknown,
an estimation Fn(p) = 1/Â(p, θ̂n) is computed iteratively.

The noise-free output variable is obtained through an aux-
iliary model, i.e.,

yn(t) =
B̂(θ̂n)

Â(p, θ̂n)
u(t). (18)

The filtered input, output, and measured output are com-
puted respectively with

uf (t) = Fn(p)u(t),
pαyf (t) = pαFn(p)y(t),
pαy∗f (t) = pαFn(p)y∗(t).

And they are gathered in the regression vectors as

ϕf (k) =
[

uf (k) −pαy∗f (k) −pα+βy∗f (k)
]T

,

ϕn
f (k) =

[
uf (k) −pαyf (k) −pα+βyf (k)

]T
.

Thus, we have

Φn
f =

[
ϕn

f (0) ... ϕn
f (Tfinal)

]
,

Φf =
[

ϕf (0) ... ϕf (Tfinal)
]
,

Y ∗
f =

[
y∗f (0) ... y∗f (Tfinal)

]
. (19)

The optimization problem of the parameter identification
can be stated as

θ̂k = arg min
θ

∥∥[Φn
f ΦT

f ]θ − [Φn
f Y ∗

f ]
∥∥2

. (20)

The solution is given by

θ̂k = (Φn
f ΦT

f )−1Φn
f Y ∗

f , (21)

and the algorithm is iterated until convergence, when
max | θ̂k−θ̂k−1

θ̂k
| < ε , where ε is chosen by the accuracy of

modeling.
Specific identification process can be described as:
1) k = 0, initialize the parameters with θ0 =

[
0 0 0

]T
.

2) k = 1, 2, 3, . . ., calculate noise-free output y(k) accord-
ing to θk−1 and (16).

3) Filter the current, the terminal voltage, and the noise-free
terminal voltage based on (18).

4) Determine variables based on (19).
5) Update the identified parameters θ̂k by (21).
6) Calculate the relative error of | θ̂k−θ̂k−1

θ̂k
| from 2) to 5)

until the error is less than 0.05.
After the identification process, the value of every element

can be gotten as R2 = a
R1

, W = b, C2 = c
R2W in (6), Qn

= Cn × 3600 where Cn is the nominal capacity, i.e., R2 =
2.1mΩ, W = 26.5, C2 = 11 mF.

The intersection of impedance spectra with real axis in high
frequency shows the value of resistance. From the impedance
spectra curve we can get R1 = 24.3mΩ.

Bring the above parameters into (6), the discrete fractional
model can be written as




xk+1 = Adxk + Bduk + wk −
k+1∑
j=2

γjxk−j+1,

yk = Cdxk + Dduk + vk,

(22)

where

Ad =




β − 1
R2C2

0 0
0 α 0
0 0 1


 =



−43289.39 0 0

0 0.5 0
0 0 1


 ,

Bd =




−1
C2

−1
W

−1
Qn


 =




−90.9
−0.038
−0.00011


 , N =




0.65
0.5
1


 ,

Cd =
[
1 1 k

]
=

[
1 1 0.21

]
, Dd = −R1 = −0.0243.

C. Model Validation
The current profile consists of many charge/discharge

pulses, at different current levels. Economic Commission for
Europe (ECE) 15 urban driving cycle which is used on electric
vehicles is selected to simulate a typical driving pattern. The
current profile shown in Fig. 7 repeats the ECE 15 urban
driving cycle 3 times, and each circle is running for 400 s.

The voltage curve, shown in Fig. 8, includes the two curves.
One is the output of the identified model and the other is the
measured voltage of the battery. And Fig. 9 shows the error of
the two voltage curves at different time. It is easy to find that
almost all the voltage errors are within 20 mV. When the input

Fig. 7. Current profile for model validation.

Fig. 8. Voltage profile for model validation.

Fig. 9. Voltage error for model validation.
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charging current or discharging current switches largely, the
error is reaches to 40 mV.

Thus the identified fractional order model is accurate.

IV. SOC ESTIMATION BASED ON FRACTIONAL ORDER
MODEL

The work described in this paper was undertaken using
26 650 Lithium-ion batteries manufactured by A123 (2.5 Ah,
3.3 V batteries) which are shown in Fig. 10, and the battery
test machine is shown in Fig. 11.

Fig. 10. A123 cell.

Fig. 11. Battery test equipment.

A fractional order estimator is designed to estimate SOC of
the battery.

For the common integer order system, Kalman filter ap-
proach is widely used to estimate the parameters of the system.

Hence, fractional order Kalman filter (FKF)[21] is selected
to estimate the SOC of the battery.

The process can be described as:
1) k = 0
The Kalman filter is initialized with the best available

information of state and error covariance. The initialized value
of state estimation and error covariance are expressed as:
the covariance matrices of process noise Q, the covariance
matrices of measurement noise R, the initialized system state
x̂0, and the covariance matrices of initialized system state P0

= E[(x̂0 − x0)(x̂0 − x0)T].
2) k = 1, 2, . . .
State estimation propagation

x̃k = Adxk−1 + BdIk −
k∑

j=1

γj

(
N
j

)
xk−j . (23)

Error covariance propagation

P̃k = (Ad + N1)Pk−1 + Qk−1 +
k∑

j=2

NjPk−jN
T
j . (24)

Kalman gain update

Kk = P̃kCT(CP̃kCT + Rk). (25)

State estimation update

x̂k = x̃k + Kk(yk − Cx̃k). (26)

Error covariance update

Pk = (1−KkC)P̃k. (27)

3) Save the estimated state and covariance for further
iteration.

4) Separate the system state, and we will get SOC timely.
The current profile shown in Fig. 12 is employed as vali-

dation scenario. Under this condition, fractional Kalman filter
and Kalman filter (KF) are used to estimate terminal voltage
and SOC of battery. Both the measured terminal voltage and
model terminal voltage are shown in Fig. 13. From Fig. 13, we
can see the battery is tested in full SOC range (i.e., terminal
voltage from 2.0 V to 3.6 V), and both the terminal voltage
estimated by FKF and KF can trace the measured terminal
voltage well, but the FKF results are more precise than the
KF ones.

Fig. 12. Current profile for SOC estimation.

Fig. 13. Terminal voltage profile for SOC estimation.

SOC estimation and SOC estimation error curves are shown
in Fig. 14 and Fig. 15, respectively. From Fig. 15 we will see,
at the beginning of battery charging, the FKF estimation error
is almost the same as KF estimation error. And with further
charging of battery, precision of FKF will rise gradually while
precision of KF gets worse. At the late charging period, both
the FKF and KF error are increasing, but the FKF estimation
error is always smaller than the KF one. In the whole test, the
error of FKF can be reduced up to max 0.5 % SOC, while the
error of KF reaches 3 %.

Fig. 14. SOC estimation.
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Fig. 15. SOC estimation error.

V. CONCLUSION

Based on the analysis of the impedance spectra, a simplified
battery fractional-order model is derived. A new identification
method is presented to identify the orders of the states and
parameters based on the fractional-order system. The fractional
Kalman filter is utilized to estimate the SOC of the lithium-ion
battery based on the fractional-order model. The simulation
results show the SOC estimation with fractional Kalman filter
is consistent with expectations. However just one battery is
tested in the paper, battery pack will be tested in further study.
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