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Dynamics of the Fractional-order Lorenz System
Based on Adomian Decomposition Method and Its

DSP Implementation
Shaobo He, Kehui Sun, and Huihai Wang

Abstract—Dynamics and digital circuit implementation of
the fractional-order Lorenz system are investigated by em-
ploying Adomian decomposition method (ADM). Dynamics of
the fractional-order Lorenz system with derivative order and
parameter varying is analyzed by means of Lyapunov exponents
(LEs), bifurcation diagram, chaos diagram and phase diagram.
Results show that the fractional-order Lorenz system has rich
dynamical behavior and it is a potential model for application.
It is also found that the minimum order is affected by numerical
algorithm and time step size. Finally, the fractional-order system
is implemented on DSP digital circuit. Phase diagrams generated
by the DSP are consistent with that generated by simulation.

Index Terms—fractional calculus, Lorenz system, Adomian
decomposition method, dynamics, DSP implementation.

I. INTRODUCTION

IN recent years, the application of fractional calculus to
chaotic system has become a hot topic [1], and re-

searchers begin to investigate dynamics and applications of
the fractional-order chaotic systems [2,3].

The fractional-order Lorenz system with a new set of
parameters is firstly analyzed by Grigorenko I et.al [4], and
they reported that the system can generate chaos when the total
order is 2.91 by a numerical method they derived. Unfortu-
nately, an error was found in the derived numerical method,
thus the result in this paper was not reliable [5]. More recently,
Jia H Y et al. [6] analyzed dynamics of this system with order
q=0.7, 0.8 and 0.9 and implemented it in analog circuit by
employing frequency domain method (FDM) [7]. However,
whether this method accurately reflects chaotic characteristics
in fractional-order chaotic system was questioned in [8-10].
Another method for solving fractional-order chaotic systems
is the Adams-Bashforth-Moulton algorithm (ABM) [11]. It can
be used to analyze dynamics with continuous derivative order
[12], and some researches of the fractional-order chaos are
based on this algorithm [13, 14]. But the calculation speed
of this algorithm is very slow, and it consumes too many
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computer resources [15]. Meanwhile, Adomian decomposition
method (ADM)[16] is employed to obtain numerical solution
of the fractional-order chaotic system for its high precision and
fast speed of convergence [17-19]. For instance, the fractional-
order Chen system is investigated by Cafagna D et.al [19] by
applying ADM, and the results show that it is a good method
for solving the fractional-order chaotic systems. In addition,
based on ADM, Lyapunov exponents (LEs) of the fractional-
order system are calculated [20]. Furthermore, circuit design
is essential for application of fractional-order chaotic systems.
Although analog circuit implementation is widely reported by
researchers [6], digital circuit realization of the fractional-order
chaotic system has better flexibility and repeatability [21]. So,
we focus on dynamics of the fractional-order Lorenz system
and its DSP implementation by employing ADM in this paper.

The structure of the paper is as follows. In Sec.II, char-
acteristics of the ADM are presented and the numerical
solution of fractional-order Lorenz system is obtained. In
Sec.III, dynamics of the fractional-order Lorenz system is
investigated. In Sec.IV, the fractional-order Lorenz system is
realized by employing DSP technology. Finally, we summarize
the conclusions.

II. NUMERICAL SOLUTION FOR THE FRACTIONAL-ORDER
LORENZ SYSTEM

A. Advantages of Adomian decomposition method
We choose ADM to solve the fractional-order chaotic sys-

tem since it has some advantages over the following aspects
comparing with other standard numerical methods.

i) ADM can get more exact solution of the fractional-
order system as it preserves the system nonlinearities. The
precision of FDM is within 2dB or 3dB, and a satisfying
approximation of the actual system can be obtained within
the desired frequency band. But a large error is illustrated at
the high and low frequency band [10, 23]. The truncation error
of ABM is O(hp), p=min(2,1+q). It is acceptable, but it is not
as effective as ADM [15].

ii) ADM obtains chaos with much lower order. Taking
fractional-order Chen system as an example, the minimum
order by ADM is 0.24 [19], and this value represents the
lowest order reported in literatures. However, the minimum
order of this system by ABM is 2.64 [8], and it is difficult
for FDM to obtain the minimum order of a fractional-order
chaotic system.

iii) ADM provides a potential iterative approach for digital
circuit implementation of the fractional-order chaotic system.
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ABM is not suitable for practical application of fractional-
order chaotic system since it needs more and more time and
memory space for computation as time goes on [15]. FDM is
the theoretical basis for the fractional-order chaotic systems
implemented in analog circuit.

B. Description of Adomian decomposition method

For a given fractional-order chaotic system with form of
Dq

t0x(t)=f(x(t))+g(t), where x(t)=[x1(t), x2(t), ..., xn(t)] is
the state variable, g(t) = [g1(t), g2(t), ..., gn(t)] is the constant
in the system, and Dq

t0 is the Caputo fractional derivative
operator [17]. So it can be divided into three parts as the form

Dq
t0x(t) = Lx(t) + Nx(t) + g(t), (1)

where m ∈ N , m − 1 < q ≤ m. Lx(t) and Nx(t) are
the linear and nonlinear terms of the fractional differential
equations respectively. Here, let Jq

t0 is the inverse operator of
Dq

t0 , thus we have [17].

x = Jq
t0Lx + Jq

t0Nx + Jq
t0g + Φ, (2)

where Φ =
∑m−1

k=0 bk(t− t0)
k
/k!, x(k)(t+0 ) = bk, k =

0, · · · ,m−1, and it involves the initial condition. By applying
the recursive relation [17]





x0 = Jq
t0g + Φ

x1 = Jq
t0Lx0 + Jq

t0A
0(x0)

x2 = Jq
t0Lx1 + Jq

t0A
1(x0,x1)

· · ·
xi = Jq

t0Lxi−1 + Jq
t0A

i−1(x0,x1, · · · ,xi−1)
· · ·

, (3)

the analytical solution of the fractional-order system is pre-
sented as

x(t) =
∑∞

i=0
xi, (4)

where i = 1, 2, ...,∞, and the nonlinear terms of the fractional
differential equations Nx(t) are evaluated by [22]

Nx =
∞∑

i=0

Ai(x0,x1, · · · ,xi), (5)





Ai
j = 1

i! [
di

dλi N(vi
j(λ))]λ=0

vi
j(λ) =

i∑
k=0

(λ)k
xk

j

. (6)

Because ADM converges very fast [17-19], we choose i = 6
for the approximate solution in this paper. To discretize Eq.(4),
a time interval [t0, t] is divided into subintervals [tn, tn+1],
where h = tn+1 − tn. So, the solution of the fractional-order
Lorenz system is expressed as

x(tn) =
∑6

i=0
xi(tn−1) = F (x(tn−1)). (7)

Then we can obtain the discrete iterative form x(tn+1) =
F (x(tn)), which is denoted as x(n+1) = F (x(n)) for general
cases.

C. Solution of the fractional-order Lorenz system

The fractional-order chaotic Lorenz system is presented by
[4, 6] as 




Dq
t0x1 = a(x2 − x1)

Dq
t0x2 = cx1 − x1x3 + dx2

Dq
t0x3 = x1x2 − bx3

, (8)

where a, b, c, and d are system parameters, and q is the
derivative order. As the same with [4] and [6], we investigate
dynamics and digital circuit realization of this system by fixing
a = 40, b = 3, c = 10, and varying d and q. By applying
ADM, the numerical solution of the fractional-order Lorenz
system is denoted by





x1(n + 1) =
∑6

j=0 κj
1h

jq
/
Γ(jq + 1)

x2(n + 1) =
∑6

j=0 κj
2h

jq
/
Γ(jq + 1)

x3(n + 1) =
∑6

j=0 κj
3h

jq
/
Γ(jq + 1)

. (9)

where h is the integration step-size, Γ(·) is the Gamma
function, and κj

i (·) are defined as

κ0
1 = x1(n), κ0

2 = x2(n), κ0
3 = x3(n), (10)





κ1
1 = a(κ0

2 − κ0
1)

κ1
2 = cκ0

1 + dκ0
2 − κ0

1κ
0
3

κ1
3 = −bκ0

3 + κ0
1κ

0
2

, (11)





κ2
1 = a(κ1

2 − κ1
1)

κ2
2 = cκ1

1 + dκ1
2 − κ0

1κ
1
3 − κ1

1κ
0
3

κ2
3 = κ1

1κ
0
2 + κ0

1κ
1
2 − bκ1

3

, (12)





κ3
1 = a(κ0

2 − κ0
1)

κ3
2 = cκ2

1 + dκ2
2 − κ0

1κ
2
3−

κ1
1κ

1
3

Γ(2q+1)
Γ2(q+1) − κ2

1κ
0
3

κ3
3 = κ0

1κ
2
2 + κ1

1κ
1
2

Γ(2q+1)
Γ2(q+1)+

κ2
1κ

0
2 − bκ2

3

, (13)





κ4
1 = a(κ3

2 − κ3
1)

κ4
2 = cκ3

1 + dκ3
2 − κ0

1κ
3
3 − κ3

1κ
0
3−

(κ2
1κ

1
3 + κ1

1κ
2
3)

Γ(3q+1)
Γ(q+1)Γ(2q+1)

κ4
3 = κ0

1κ
3
2 + κ3

1κ
0
2 + bκ3

3+
(κ2

1κ
1
2 + κ1

1κ
2
2)

Γ(3q+1)
Γ(q+1)Γ(2q+1)

, (14)





κ5
1 = a(κ4

2 − κ4
1)

κ5
2 = cκ4

1 + dκ4
2 − κ0

1κ
4
3−

(κ3
1κ

1
3 + κ1

1κ
3
3)

Γ(4q+1)
Γ(q+1)Γ(3q+1)−

κ2
1κ

2
3

Γ(4q+1)
Γ2(2q+1) − κ4

1κ
0
3

κ5
3 = κ0

1κ
4
2 + (κ3

1κ
1
2 + κ1

1κ
3
2)

Γ(4q+1)
Γ(q+1)Γ(3q+1)

+κ2
1κ

2
2

Γ(4q+1)
Γ2(2q+1) + κ4

1κ
0
2 − bκ4

3

, (15)





κ6
1 = a(κ5

2 − κ5
1)

κ6
2 = cκ5

1 + dκ5
2 − κ0

1κ
5
3−

(κ1
1κ

4
3 + κ4

1κ
1
3)

Γ(5q+1)
Γ(q+1)Γ(4q+1)−

(κ2
1κ

3
3 + κ3

1κ
2
3)

Γ(5q+1)
Γ(2q+1)Γ(3q+1) − κ5

1κ
0
3

κ6
3 = κ0

1κ
5
2 + κ5

1κ
0
2 − bκ5

3+
(κ1

1κ
4
2 + κ4

1κ
1
2)

Γ(5q+1)
Γ(q+1)Γ(4q+1)+

(κ2
1κ

3
2 + κ3

1κ
2
2)

Γ(5q+1)
Γ(2q+1)Γ(3q+1)

, (16)
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According to Eq.(9), the chaotic sequences of the fractional-
order Lorenz system are obtained with appropriate initial val-
ues. Meanwhile, Eq.(9) provides a necessary iterative approach
for DSP implementation of the fractional-order Lorenz system.

III. CHAOTIC DYNAMICS OF THE FRACTIONAL-ORDER
LORENZ SYSTEM

A. Design of Lyapunov exponents calculation algorithm

The Lyapunov exponents are calculated based on Jacobian
matrix obtained from Eqs. (9)-(16) and QR decomposition
method [20]. The QR decomposition method is shown as

qr(JNJN−1 · · ·J1) = qr (JNJN−1 · · ·J2(J1Q0))
= qr (JNJN−1 · · ·J3(J2Q1))R1

= QNRN · · ·R2R1

,

(17)
where qr(·) is the QR decomposition function, J is the Jaco-
bian matrix of Eq.(9). The Lyapunov exponents are obtained
as

λk =
1

Nh

N∑

i=1

ln |Ri(k, k)|, (18)

where k=1, 2, 3, and N is the iteration times. The flow chart
for LEs calculation is shown in Fig.1. Before calculating LEs,
parameters, time step size h and number of iterations N should
be confirmed. The Jacobian matrix is obtained according
to Eq.(9) by applying mathematical software Matlab. LEs
are calculated based on the QR decomposition method as
illustrated in Eqs. (17) and (18).

Fig. 1. Flow diagram for LEs calculation algorithm.

B. Dynamics with varying parameters

In this section, dynamics in the fractional-order Lorenz
system with varying system parameter d and derivative order
q are investigated. Parameter fixed dynamical analysis method
and chaos diagram are used. Here, we set N=20000 and
h=0.01. Three cases are investigated.

i) Fix d = 25, and vary derivative order q from 0.75
to 1 with step size of 0.0005. The bifurcation diagram and
LEs are shown in Fig.2. It shows that the system generates
chaos for 0.813 ≤ q < 1 except some periodic windows.
Thus the minimum total order for fractional-order Lorenz
system to generate chaos is 2.439 and the corresponding
phase diagram is shown in Fig.3. In addition, the maximum

Lyapunov exponent illustrates a decreasing trend as order q
increasing.

(a) LEs

(b) Bifurcation diagram

Fig. 2. Dynamics of the fractional-order Lorenz system with d = 25 and q
varying

Fig. 3. Phase diagram of the fractional-order Lorenz system with d = 25
and q = 0.813.

ii) Fix q = 0.96 and vary d from 0 to 38 with step
size of 0.1. When d decreases from 38, the system presents
periodical states until it enters into chaos at d = 32.1 by
the period-doubling bifurcation as shown in Fig. 4(a). Chaos
covers most of the range d ∈ [9.8, 32.1] with several small
periodic widows, such as d ∈ [14.5, 16.3] ∪ [21.1, 21.5].
Finally, the system becomes convergent at d = 9.8 by a tangent
bifurcation. To observe dynamics better, phase diagrams are
presented in Fig.5. When d=15, 21.5 and 37, the system is
periodic, and the system is chaotic when d = 20. It shows
that the system presents different states with different values
of parameter d.

iii) Vary q from 0.75 to 1 with step size of 0.0025 and
vary d from 0 to 38 with step size of 0.38 simultaneously.
The maximum Lyapunov exponent based chaos diagram in
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(a) LEs

(b) Bifurcation diagram

Fig. 4. Dynamics of the fractional-order Lorenz system with q = 0.96 and
d varying

(a) d=15 (b) d=20

(c) d=21.5 (d) d=37

Fig. 5. Phase diagrams of the fractional-order Lorenz system with q = 0.96
and d varying

this q−d parameter plane is illustrated in Fig.6. In this figure,
we only plot the case when the maximum Lyapunov exponent
is larger than zero. According to Fig.6, chaos exists in the
range of d ∈ [10, 32]. A high complexity region is observed
within d ∈ [25, 30] and q ∈ [0.8, 0.97], which is favorable for
practical application. So, the fractional-order Lorenz system
is a good model for real application. It shows that the chaos
diagram provides a parameter selection basis for fractional-
order chaotic Lorenz system in practical application.

Compared with bifurcation analysis results based on FDM

Fig. 6. Maximum Lyapunov exponent based chaos diagram.

as shown in [6], results based on ADM are more detailed and
accurate. It also shows that we can analyze dynamics of the
system with q varying continuously, but it is difficult for FDM
to do so.

C. Discussion about the minimum order

Obviously, the minimum order for chaos is different for
different system parameter. But it is also different when the
numerical solution algorithm or time step size h is different.
Thus these two aspects are discussed as follows.

i) Compared with other approaches, chaotic system has a
much lower order if it is solved by ADM algorithm. The
equilibrium point of this system is (0, 0, 0) and (±

√
b(c + d),

±
√

b(c + d), c + d). When d = 25, the eigenvalues at
(0, 0, 0) are λ1=-45.6608, λ2=30.6608, λ3=-3.0000, and
the eigenvalues at (±√105,±√105, 35) are λ1=-25.2415,
λ2=3.6207+17.8795i and λ3=3.6207-17.8795i. According to
the stability theory as proposed in Refs. [8] and [9], the
lowest order q to generate chaos is q = 0.8726. It is not
difficult to find out that ABM satisfies this result. However,
FDM and ADM do not. According to [6], when q = 0.7, the
system has rich dynamics and chaos still exists by applying
FDM. According to Fig.2, the minimum order of the system
is q = 0.813 by applying ADM. Actually, the stability
theory from [25] is proposed to analyze fractional-order linear
systems. For fractional-order nonlinear systems, Li L X et al.
[26] proved that the stability theory does not always work
when the specified matrix J(X) is time-varying. We believe
that it is more complex to analyze stability of fractional-order
nonlinear system. Besides, although FDM and ADM do not
satisfy the stability theory as presented in [8] and [9], they
are widely used and accepted by researchers [7, 15-21]. In
addition, it shows in [27] that different results of a fractional-
order system may be achieved when simulations are performed
based on different numerical methods. Since FDM and ADM
can obtain chaos at a much lower order, they extend the
parameter space of fractional-order chaotic systems.

ii) The effect of time step h should be further investigated.
As for ADM, when h=0.01, the lowest order to generate chaos
is q=0.813. We also find that the lowest order decreases with
the decrease of the time step size h. As shown in Fig.7, when
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(a) h=0.001

(b) h = 0.0001

Fig. 7. Bifurcation diagrams of the fractional-order Lorenz system under
different h

h=0.001, the lowest order is q=0.505, and the lowest order
is q=0.402 for h=0.0001. The system generates chaos with
lower order when time step h is smaller, but more memory
and computing resources are needed. It is not good for real
application of the system. We think h = 0.01 is a suitable
choice for general cases. However, the reason why the lowest
order decreases with the decrease of time h needs further
study.

According to the discussion above, when a minimum order
for chaos generation of a fractional-order chaotic system is
presented, the certain set of parameters, numerical algorithm
and time step size should also be specified.

IV. DIGITAL CIRCUIT IMPLEMENTATION

In this section, the digital circuit of the fractional-order
Lorenz system is designed, and the numerical solution applied
in DSP board is presented as Eqs.(9)-(16). Hardware block
diagram of the digital circuit is shown in Fig.8. The floating-
point DSP TMS320F28335 produced by TI is chosen. A 16-bit
dual-channel D/A converter DAC8552 is used to convert time
series generated by DSP. An oscilloscope is used to capture
figures randomly. The flow diagram is presented in Fig.9.
Firstly, the DSP is initialized, then the initial values, including
h, q, x0, parameters and iteration number are confirmed. In
this step, all Γ(·) and hnq are computed and saved before
iterative computation to improve the iteration speed. When the
data is popped out, the data should be processed before D/A
conversion. There are two steps in data processing. At first,
a big enough data is added to make sure the data is larger
than zero. Then, the data is rescaled and truncated to adapt
data width of the DAC8552. It should be pointed out that the
iterative computation is not affected by data processing with
pushing and popping operation. If the iteration is not finished,
the initial value should be replaced before the next iteration.

Fig. 8. Hardware block diagram of DSP implementation

Here, the initial value is x0 = [1, 2, 3]. Setting q = 0.8130,
d = 25, the phase diagram is shown in Fig. 10(a). The
corresponding Matlab simulation result is illustrated in Fig.3.
Setting q = 0.96, d = 15, the phase diagram is shown in
Fig. 10(b), and its corresponding Matlab simulation result is
presented in Fig.5(a). Setting q = 0.96 and varying d (d=20
and d=37), the phase diagrams are shown in Figs. 10(c) and
(d). It can be seen that they consist of phase diagrams as shown
in Fig.5(b) and Fig.5(d). It shows that the fractional-order
Lorenz system is implemented in the DSP successfully. It lays
a hardware foundation for the applications of the fractional-
order Lorenz chaotic system.

Fig. 9. Flow diagram for DSP implementation of the fractional-order Lorenz
system.

(a) q=0.8130 and d=25 (b) q=0.96 and d=15

(c) q=0.96 and d=20 (d) q=0.96 and d=37

Fig. 10. Phase diagrams of the fractional-order Lorenz system recorded by
the oscilloscope
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V. CONCLUSIONS

In this paper, based on ADM algorithm, we investigated the
dynamics of fractional-order Lorenz system again. It shows
that the fractional-order Lorenz system has rich dynamical
characteristics. The system is more complex for smaller deriva-
tive order q, and the maximum Lyapunov exponent decreases
with the increase of q. The lowest order for chaos generation
is different according to different numerical algorithms. The
fractional-order Lorenz system has a much lower order for
chaos if it is solved by ADM algorithm. Meanwhile, the lowest
order for chaos is smaller when the time step size h is smaller.
Finally, the system is implemented in the digital circuit by
employing DSP technology, and phase diagrams generated by
the DSP device are consistent with the simulation results. Our
further work will focus on real applications of the fractional-
order Lorenz system.
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