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Relationship Between Integer Order Systems and
Fractional Order Systems and Its Two Applications

Xuefeng Zhang

Abstract—Existence of periodic solutions and stability of frac-
tional order dynamic systems are two important and difficult
issues in fractional order systems (FOS) field. In this paper, the
relationship between integer order systems (IOS) and fractional
order systems is discussed. A new proof method based on the
above involved relationship for the non existence of periodic
solutions of rational fractional order linear time invariant sys-
tems is derived. Rational fractional order linear time invariant
autonomous system is proved to be equivalent to an integer
order linear time invariant non-autonomous system. It is further
proved that stability of a fractional order linear time invariant
autonomous system is equivalent to the stability of another
corresponding integer order linear time invariant autonomous
system. The examples and state figures are given to illustrate the
effects of conclusion derived.

Index Terms—Existence, equivalence, periodic solutions, ratio-
nal fractional order systems, stability.

I. INTRODUCTION

THE concept of fractional differentiation appeared first
in a famous correspondence between L’ Hopital and

Leibniz, in 1695. Fractional calculus has had a 300 years
old history, the development of fractional calculus theory is a
matter of almost exclusive interest for few mathematicians and
theoretical physicists. In recent years, researchers have noticed
that the description of some phenomena is more accurate
when the fractional derivative is introduced. Many practical
control system models can be described by fractional differ-
ential equations. It is worth mentioning that many physical
phenomena having memory and genetic characteristics can
be described by modeling as fractional order systems. Frac-
tional order systems have attracted much attention. In what
concerns automatic control, T. T. Hartley and C. F. Lorenzo
[1] studied the fractional order algorithms for the control of
dynamic systems. Podlubny [2] proposed a generalization of
the PID controller, namely the PIλDµ controller, involving
an integrator of order λ and a differentiator of order µ. L.
Yan and Y. Q. Chen [3] propose the definition of Mittag-
Leffler stability and introduce the fractional Lyapunov direct
method. Fractional comparison principle is introduced and the
application of Riemann-Liouville fractional order systems is
extended by using Caputo fractional order systems. C.P Li
and F.R. Zhang [4] give a survey on the stability of fractional
differential equations based on analytical methods.
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Fractional-order differential operators present unique and
intriguing peculiarities, not supported by their integer-order
counterpart, which raise exciting challenges and opportunities
related to the development of control and estimation method-
ologies involving fractional order dynamics. In recent years,
most of papers are devoted to the solvability of the linear frac-
tional equation in terms of a special function and to problems
of analyticity in the complex domain. Fractional system and its
control has become one of the most popular topics in control
theory [5]−[8]. The number of applications where fractional
calculus has been used rapidly grows. These mathematical
phenomena allow to describe a real object more accurately
than the classical integer-order methods [9]−[12]. Paper [10]
gives the non existence of periodic solutions in fractional order
systems with Mellin transform. But for singular fractional
order systems, the Mellin transform method is invalid because
of singularity of systems.

In this paper, we will show that rational fractional order
linear time invariant autonomous system is equivalent to an
integer order linear time invariant non-autonomous system but
cannot be equivalent to any integer order linear time invariant
autonomous system with any system parameters. The nonexis-
tence of periodic solutions of fractional order dynamic systems
are proved by means of contradiction method. Stability of a
fractional order linear time invariant autonomous system is
equivalent to the stability of another corresponding integer
order linear time invariant autonomous system. The examples
and state figures are given to illustrate the effects of the
conclusions derived. The conclusions provided in the paper
can be easily extended to singular fractional order linear time
invariant systems.

II. PRELIMINARIES

Let us denote by Z+ the set of positive integer numbers, C
the set of complex numbers, Rn×n the set of n×n dimension
real numbers. We denote the real part of complex number α
by Re(α).

Caputo derivative has been often used in fractional order
systems since it has the practical initial states like that of
integer order systems.

Definition 1: The Caputo fractional order derivative with
order α of function x(t) is defined as

C
0 Dα

t x(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1x(n)(τ)dτ

where n − 1 < α < n ∈ Z+,Γ is well-known Euler Gamma
function.
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Definition 2: The Riemann-Liouville derivative of fractional
order α of function x(t) is defined as

RL
0 Dα

t x(t) =
1

Γ(n− α)
(

d

dt
)n

∫ t

0

(t− τ)n−α−1x(τ)dτ

where n− 1 < α < n ∈ Z+.
Definition 3: The Grunwald-Letnikov derivative of frac-

tional order α of function x(t) is defined as

GL
0 Dα

t x(t) = lim
h→0

h−α

(t−α)/h∑
r=0

(−1)rCr
αx(t− rh)

where n− 1 < α < n ∈ Z+.
Definition 4: The Mittag-Leffler function is defined as

Eα(t) =
∞∑

k=0

tk

Γ(kα + 1)

where Re(α) > 0, t ∈ C. The two-parameter Mittag-Leffler
function is defined as

Eα,β(t) =
∞∑

k=0

tk

Γ(kα + β)

where Re(α) > 0, β, t ∈ C.
Property 1: The Laplace transform of Caputo derivative of

function x(t) is

L(C
0 Dα

t x(t)) = sαX(s)−
n−1∑

k=0

sα−k−1xk(0),

where X(s) = L[x](s), n− 1 < α < n ∈ Z+.
Property 2: If let α ∈ (0,∞) \ N. Then, we have

RL
0 Dα

t x(t) =GL
0 Dα

t x(t) =C
0 Dα

t x(t)+
n−1∑

i=0

x(i)(0)
Γ(i− α + 1)

ti−α

where n− 1 < α < n ∈ Z+.
Lemma 1: The Laplace transform of tα−1

+ /Γ(α) is:

L(
tα−1
+

Γ(α)
) = s−α

and
tα−1
+ =

{
tα−1, t > 0
0, t ≤ 0.

Lemma 2: The Laplace transform of e−at√
b−a

erf(
√

(b− a)t)
is:

L(
e−at

√
b− a

erf(
√

(b− a)t)) =
1√

s + b(s + a)

where erf(t) is the error function for each element of t,
erf(t) = 2√

π

∫ t

0
e−τ2

dτ.

Lemma 3: The Laplace transform of 1√
πt
− 2√

π
daw(

√
t) is:

L(
1√
πt
− 2√

π
daw(

√
t)) =

√
s

s + 1

where daw(t) is Dawson function for each element of t,
daw(t) = e−t2

∫ t

0
eτ2

dτ.

Lemma 4: The Laplace transform of A cos(ωt) is:

L(A cos(ωt)) =
As

s2 + ω2
.

Lemma 5: The Laplace transform of tβ−1Eα,β(−ωtα) is:

L(tβ−1Eα,β(−ωtα)) =
sα−β

sα + ω
.

Lemma 6: The Laplace transform of n order derivative
fn(t) is:

L(f (n)(t)) = snF (s)−
n−1∑

i=0

sn−1−if (i)(0).

III. MAIN RESULTS

A. Equivalence Between FOS and IOS

Integer order linear time invariant (LTI) systems have been
developed quite maturely. Fractional order LTI system is a
subsystem of dynamic control system and is less discussed due
to its difficulty. In order to obtain the better control cost index,
the control components and devices with fractional order prop-
erties are needed to be introduced. Algorithms in measurement
technology sometimes process the fractional order characteris-
tics. Some control plants are more difficult to be modeled than
integer order systems. By the above reason, fractional order
dynamic control systems are essential to be introduced. From
Fig. 1, we can see that state figures of ẋ(t) = tx(t), and those
of Dαx(t) = x(t), α = 0.2, 0.4, · · · , 1, are similar to each
other, but they are not identically coincided with each other.
An obvious question is whether there exists an integer order
LTI System (1) equivalent to a fractional order LTI System (2)
with any appropriate parameters or be equivalent to a fractional
order LTV System (3) with any appropriate parameters or not.
It is an important problem for the reason that if the answer is
’yes’ the fractional order systems can be regarded as a part of
integer order systems and if the answer is ’no’ the fractional
order systems cannot be ignored so that the research of FOS
is magnificently innovative. From the theorems in Section III,
it is found that the answer is negative. It can hold only if
the state is zero solution. Actually, System (1) is equivalent
to System (4) in some cases. In the following subsection, we
can have that if α = 1/2, System (4) reduces to System (5).

Dαx(t) = Ax(t) (1)

ẋ(t) = A1x(t) (2)

ẋ(t) = A2(t)x(t) (3)

ẋ(t) =
A

Γ(α)

∫ t

0

(t− τ)α−1x′(τ)dτ +
Ax(0)tα−1

+

Γ(α)
(4)

ẋ(t) = A2x(t) +
Ax(0)t−

1
2

+

Γ( 1
2 )

. (5)
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Fig. 1. Plot of states of ẋ(t) = tx(t) and Dαx(t) = x(t).

From the discussion on relationship between FOS and
IOS in the above subsection, it is easy to introduce its two
applications i.e., non existence of periodic solutions for FOS
and stability between FOS and IOS.

B. Non Existence of Periodic Solutions for FOS

Theorem 1: While α = 1/2, System (1) is equivalent to (5).
Proof : Using Laplace transform for System (1), taking

into account the Caputos definition for the fractional-order
derivatives in (2), and applying Property 1 in the case that
0 < α < 1, it yields that

sαX(s)− sα−1x(0) = AX(s).

Pre- and post-multiplying above equation by s1−α, it fol-
lows that

sX(s)− x(0) =As1−αX(s)

=A(s1−αX(s)− s−αx(0)) + As−αx(0).

By Lemma 1 and taking inverse Laplace transform in above
equation, we have (4).

When α = 1/2, we have System (5). If we denote B =
Ax(0), u(t) = t

− 1
2

+ /Γ( 1
2 ), then (5) changes as (6)

ẋ(t) = A2x(t) + Bu(t). (6)

When α = p/q, p, q ∈ Z+, System (1) can be proved to be
equivalent to (7).

x(p)(t) =Aqx(t) +
q−1∑

i=1

Aq−i t
− ip

q

+

Γ(1− ip
q )

x(0)

+
p−1∑

i=1

δ(p−1−i)(t)x(i)(0) (7)

where δ is the unit pulse function.
Theorem 2: While α = p/q, System (1) is equivalent to (7).
Proof : Using Laplace transform in (1), taking into account

the Caputos definition for the fractional-order derivatives in
(2), and applying Property 1 in the case that 0 < α < 1, we
have that

sαX(s)− sα−1x(0) = AX(s)

i.e.,
s

p
q X(s)− sp/q−1x(0) = AX(s).

Pre- and post-multiplying above equation by sp/q, it follows
that

s
2p
q X(s)− s

2p
q −1x(0)

= As
p
q X(s) = A(s

p
q X(s)− s

p
q−1x(0)) + As

p
q−1x(0)

= A2X(s) + As
p
q−1x(0).

Keeping on pre- and post-multiplying above equation by s
p
q

till q times, it follows that

spX(s)− sp−1x(0) = AqX(s) +
q−1∑

i=1

Aq−is
ip
q −1x(0)

i.e.,

spX(s)−∑p−1
i=0 sp−1−ix(i)(0)

= AqX(s) +
∑q−1

i=1 Aq−is
ip
q −1x(0)−∑p−1

i=1 sp−1−ix(i)(0).

By Lemma 1 and Property 1 and taking inverse Laplace
transform in above equation, we have (7).

Theorem 3: Linear time invariant fractional system (1) with
order 0 < α < 1, α = p/q, p, q ∈ Z+ has no periodic solution.

Proof : By contradiction, suppose linear time invariant frac-
tional system (1) has a periodic solution x(t). For T−periodic
function x(t + T ) = x(t), from

d

dt
x(t + T ) =

d

d(t + T )
x(t + T )

d

dt
(t + T ) = x′(t + T )

it is easy to see that x(k)(t + T ) = x(k)(t). From Theorem 2,
we know that (1) is equivalent to (7). If we denote

f(t) = x(p)(t)−Aqx(t)

g(t) =
∑q−1

i=1 Aq−i t
− i

q
+

Γ(1− i
q )

x(0) +
∑p−1

i=1 δ(p−1−i)x(i)(0)

then f(t) = g(t). However, f(t) is periodic function but g(t)
is a non-periodic function. So, there does not exist any periodic
solution for System (1). ¥

Remark 1: From Theorem 2, we know that there does
not exist any integer order LTI System (2) be equivalent
to a fractional order LTI System (7) with any appropriate
parameters. It means the properties of fractional order LTI
systems may be different from those of integer order LTI
systems. It can attract researchers to explore the distinct
properties of fractional order LTI systems.

Remark 2: Theorem 3 gives a concise and effective proof
that there does not exist periodic solutions for fractional order
LTI System (7).

Remark 3: With the equivalence between the integer order
LTI System (7) and the fractional order LTI System (1), we
succeed in finding a new research approach of discussing the
difficult fractional order LTI System (1). However, relative to
System (1), it is easy and there exists extensive results to
discuss the integer order LTI System (7). For example, we can
further discuss the stability and robust stability of fractional
order LTI System (1) in the future.

Remark 4: From Theorem 3, we can see that only if α is an
integer, it follows g(t) = 0. This means only if α is an integer,
it is possible for System (1) to satisfy periodic solutions.
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C. Stabilities Between FOS and IOS

Lemma 7: [12] System (1) is asymptotically stable if and
only if there exist two matrices X, Y ∈ Rn×n, such that

[
X Y
−Y X

]
> 0

aAX + bAY + aXAT − bY AT < 0

where a = sin(απ/2), b = cos(απ/2).
Lemma 8: [12] System (1) is asymptotically stable if and

only if there exist two matrices X, Y ∈ Rn×n, such that
[

X Y
−Y X

]
> 0,

[
Π1 Π2

−Π2 Π1

]
< 0

where
Π1 = aAX + bAY + aXAT − bY AT

Π2 = aAY − bAX + bXAT + aY AT

and a, b are the same as those in Lemma 7.
Lemma 9 : [12] A complex matrix X ∈ Cn×n satisfies X <

0 if and only if
[

Re(X) Im(Y )
−Im(Y ) Re(X)

]
< 0. (8)

Consider the following specific complex integer order linear
time invariant system

ẋ(t) = (a + jb)AT x(t) (9)

where system matrix A ∈ Rn×n,j is the imaginary unit.
Using Lyapunov theory of integer order systems and Lem-

mas 7 and 8, it is easy to obtain the following equivalence
stability criterion.

Theorem 4: Fractional order system (1) is asymptotically
stable if and only if integer order system (9) is asymptotically
stable.

Proof For the specific complex integer order LTI system (9),
we choose the quadratic Lyapunov candidate function as

V (x(t)) = xT (t)(X + jY )x(t)

where X+jY > 0. Then, differentiating V (x(t)) with respect
to time t along to the solution of (9), we obtain

V̇ = xT (t)[(a− jb)A(X + jY ) + (X + jY )(a + jb)AT ]x(t)

= xT (t)(Π1 + jΠ2)x(t) < 0.

Using Lyapunov theory of complex integer order systems
and considering (8) in Lemma 9, this completes the proof.

IV. NUMERICAL EXAMPLES

Example 1: Consider integer order System (2) with param-
eters as follows:

A1 =
[

0 1
−1 0

]
, x(0) =

[
1
1

]

from Fig. 2, we can see that the solutions are periodic. But if
we consider System (1) with the same above parameters and
α = 1/2, then by Laplace transform for System (1) we have

s
1
2 X1(s)−X2(s) = s−

1
2

s
1
2 X2(s) + X1(s) = s−

1
2 .

Fig. 2. State curves of IOS in Example 1.

It is easy to obtain the solutions of the above equations as
follows:

X1(s) =
s−

1
2+1

s + 1
, X2(s) =

s
1
2 + 1
s + 1

− s
1
2 .

Consider Lemma 1 and 3, and take the inverse Laplace
transform for X1(s) and X2(s), it follows that:

x1(t) = e−t + 2√
π

daw(
√

t)

x2(t) = e−t + 1√
πt
− 2√

π
daw(

√
t)− t−

1
2

Γ( 1
2 )

.

With Lemma 5, it also follows that:

x1(t) = e−t + t
1
2 E1, 3

2
(−t)

x2(t) = e−t − t
1
2 E1, 1

2
(−t)− t−

1
2

Γ( 1
2 )

.

It is easy to see from Fig. 3 that the state curves of fractional
order System (1) with parameter α = 1/2 do not possess
periodic dynamic orbits.

Fig. 3. State curves of FOS in Example 1.

Example 2: By Theorem 2, for α = 1/3, we have that
System (1) is equivalent to

ẋ(t) = x(t) +
t
− 1

3
+

Γ(1− 1
3 )

x(0) +
t
− 2

3
+

Γ(1− 2
3 )

x(0).
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From Fig. 4, we can see the state curves of fractional order
System (1) with parameter α = 1/3 are completely identical
to the corresponding state curves of integer order System (7).

Fig. 4. State curves of FOS in Example 2.

V. CONCLUSIONS

Many systems exhibit the fractional phenomena, such as
motions in complex media or environments, random walk of
bacteria in fractal substance, etc. These models can be obtained
by solving modified fractional order systems. In this paper,
we discuss the relationship between rational fractional order
systems and integer order systems and conclude that the two
kind of systems cannot be substituted for each other. The
criteria of nonexistence of periodic solution of fractional order
systems are addressed. The proof approach is based on the
properties of Laplace transform of fractional order systems.
Stability of a fractional order linear time invariant autonomous
system is equivalent to the stability of another corresponding
integer order linear time invariant autonomous system. Some
numerical examples are given to verify the feasibility of results
presented. The methods provided in the paper can be extended
to singular fractional order linear time invariant systems in the
future.
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