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DOA Estimation Based on Sparse Representation
of the Fractional Lower Order Statistics

in Impulsive Noise
Sen Li, Rongxi He, Member, IEEE, Bin Lin, Member, IEEE, Fei Sun

Abstract—This paper is mainly to deal with the problem of
direction of arrival (DOA) estimations of multiple narrow-band
sources impinging on a uniform linear array under impulsive
noise environments. By modeling the impulsive noise as -stable
distribution, new methods which combine the sparse signal
representation technique and fractional lower order statistics
theory are proposed. In the new algorithms, the fractional lower
order statistics vectors of the array output signal are sparsely
represented on an overcomplete basis and the DOAs can be
effectively estimated by searching the sparsest coefficients. To
enhance the robustness performance of the proposed algorithms,
the improved algorithms are advanced by eliminating the frac-
tional lower order statistics of the noise from the fractional
lower order statistics vector of the array output through a linear
transformation. Simulation results are shown to demonstrate the
effectiveness of the proposed methods for a wide range of highly
impulsive environments.

Index Terms—α-stable distribution, direction of arrival, impul-
sive noise, sparse representation, fractional lower-order statistics.

I. INTRODUCTION

D IRECTION of arrival (DOA) estimation of multiple

emitting sources is an important issue in array processing

and has various applications in military, radar, sonar, wireless

communications and source localization[1−2]. A large number

of solutions have been proposed to solve this problem during

the past years. Usually, these solutions can be categorized

into three groups: time-delay based methods, beamforming

methods and signal subspace methods. However, majority of

DOA estimation algorithms are developed under certain as-

sumptions: the source signal needs to be statistically stationary

and uncorrelated, the number of snapshots is sufficient, and the

signal-noise ratio (SNR) is moderately high. Practically, these

conditions are barely satisfied, thus these methods achieve the

limited estimation accuracy. In order to increase the DOA

estimation accuracy, the well-known subspace-based method

This article has been accepted for publication in a future issue of this
journal, but has not been fully edited. Content may change prior to final
publication.

This work was supported in part by the National Natural Science Founda-
tion of China (61301228, 61371091), the Fundamental Research Funds for
the Central Universities (3132014212). Recommended by Associate Editor
YangQuan Chen.

Sen Li, Rongxi He (corresponding author), Bin Lin,and Fei Sun are with the
Department of Information Science and Technology, Dalian Maritime Univer-
sity, Dalian 116026, China (e-mails: listen@dlmu.edu.cn; hrx@dlmu.edu.cn;
binlin@dlmu.edu.cn; sunfei@dlmu.edu.cn).

Digital Object Identifier 10.1109/JAS.2016.7510187

of multiple signal classification (MUSIC) algorithm and esti-

mation method of signal parameters via rotational invariance

techniques (ESPRIT) have been widely used due to its high

estimation accuracy but at the price of the high complexity.

Recently, sparse representation technique of signal has been

applied in many areas, such as image processing, wireless

channel estimation and biomedical signal processing, which

also provides a new idea for DOA estimation based on the

fact that the number of sources is in general much smaller than

the number of potential source points when implementing the

array processing algorithms. Several DOA estimation methods

based on sparse representation have been proposed in the

literature[3−16]. In [3-4], a whiten sparse covariance-based

representation model is first presented for source parameter

estimation by applying the global matched filter (GMF). In

[5] the most representative sparse recovery algorithm for

DOA estimation (l1-SVD) was proposed, which can effectively

estimate DOA with single measurement. By using singular

value decomposition (SVD) of received data matrix, it not

only can work in multiple measurements case but also can

reduce the computational complexity. Although the l1-norm

minimization is a convex problem and the global minima can

be guaranteed easily, its weakness is their undemocratic penal-

ization for larger coefficients, which results in the degradation

of signal recovery performance. To conquer this problem, the

iterative reweighted l1 minimization was designed[6−7], where

the large weights could be used to discourage nonzero entries

in the recovered signals. To improve the convergence rate

and better estimation accuracy of the l2,1-norm minimization

approach, Wei et al. develop a novel greedy block coordinate

descent (GBCD) algorithm by using a greedy strategy for

choosing descent directions[8]. In [9], a mixed l2,0-norm based

joint sparse approximation technique is introduced into DOA

estimation where the l0 norm constraint is approached by a

set of convex functions, and a method called JLZA-DOA is

proposed. Algorithms in [5-9] address the DOA estimation

problem by directly representing the array output in time

domain with an overcomplete basis from the array response

vector.

To make use of the second order statistics of the array

output, a sparse iterative covariance-based estimation (SPICE)

approach for array signal processing by the minimization of

a covariance matrix fitting criterion and can be used in both

single and multiple measurements cases was proposed in [10].

Another method called l1-SRACV in [11] was also proposed

for DOA estimation by using the array covariance matrix
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sparse representation and exhibit some merits of increased res-

olution. Because of recovering a joint-sparse inverse problem

form multiple measurement vectors, the l1-SRACV algorithm

suffers from a high computational cost. Then a new DOA

estimation method was proposed in [12-13] which based

on the combination of the Khatri-Rao product and sparse

representation to estimate the DOAs of signals by recovering a

sparse covariance vector of only a single measurement vector,

thereby implying lower computational complexity than the

l1-SRACV algorithm. The authors of Literature [14] firstly

transform the multiple measurement vectors problem to the

virtual single measurement vector (VSMV) problem in sparse

signal representation framework, and then exploit a surrogate

truncated l1 function to approximate l0-norm, and successively

demonstrate how the nonconvex minimization problem can be

treated by the difference of convex functions decomposition

and the iterative approach. The study of [15] demonstrates how

the multiple parameters can be exactly obtained by solving

a weighted ‘group lasso’ problem in second-order statistics

using a cross-dipole array. In [16], the DOA estimation of the

wideband signal has been studied by the sparse representation

of the covariance matrix.

All the above mentioned sparse representation based DOA

estimation algorithms assume that the ambient noise is Gaus-

sian distributed. However, the noise in practice often exhibits

non-Gaussian properties, sometimes accompanied by strong

impulsiveness[17]. For example, atmospheric noise (thunder-

stroms), car ignitions, microwave ovens, office equipments,

and other types of naturally occurring or man-made signal

sources can result in aggregating noise components that may

exhibit high amplitudes for small time intervals. Under inves-

tigation, it is found that α-stable distribution (0 < α ≤ 2) is a

suitable noise model to describe this type of noise[18]. It can be

considered as the greatest potential distribution to characterize

various impulsive noises as different characteristic exponent

parameter is selected.

An important characteristic of the α-stable distribution is

that only moments of order less than α exist. Therefore

the performance of the DOA estimation algorithms based on

second order statistics of the array out will severely degrade in

the presence of the α-stable non-Gaussian noise. One way to

alleviate this problem is to introduce new covariance estimates.

Authors in [19] proposed new subspace DOA estimation

methods based on fractional lower order moments (FLOM)

matrices, namely FLOM MUSIC. However, it is limited in

range of 2 ≥ α ≥ 1. Authors in [20] introduce a new subspace

algorithm based on the phased fractional lower order moment

(PFLOM), namely PFLOM MUSIC, which it is applicable for

0 < α ≤ 2. In [21], a subspace-augmented MUSIC technique

for recovering the joint sparse support of a signal ensemble

corrupted by additive impulsive noise is introduced. In order to

mitigate the performance degradation of the DOA estimation

methods based on the sparse representation of the second order

statistics of the array output, the new algorithms are proposed

in this paper by using the sparse representation of the fractional

lower order statistics vector of the array output. To enhance

the robustness performance of the proposed algorithms, the

improved algorithms are advanced by eliminating the frac-

tional lower order statistics of the noise from the fractional

lower order statistics vector of the array output through a

linear transformation. Computer simulation experiments are

presented to illustrate the performance superiority of the

proposed methods over the DOA estimation method based on

the sparse representation of the second order statistics of the

array output under α-stable noise environments.

II. α-STABLE DISTRIBUTION

The α-stable distribution’s probability density function does

not have closed form. It can be conveniently described by its

characteristic function as

φ(t) = e{jat−γ|t|α[1+jβsgn(t)�(t,α)]} (1)

where �(t, α) = tan πα
2 , if α �= 1; �(t, α) = 2

π log |t|, if

α = 1, and sgn(t) is |t| if t �= 0 and 0 if t = 0. α is

the characteristic exponent, it controls the thickness of the

tail in the distribution and is restricted in 0 < α ≤ 2. γ is

the dispersion parameter and is similar to the variance of the

Gaussian distribution. β is the symmetry parameter. If β = 0,

the distribution is symmetric and the observation is referred to

as the SαS (symmetry α-stable) distribution. a is the location

parameter. When α = 2 and β = 0, the α-stable distribution

becomes a Gaussian distribution. The tails of stable distribu-

tion with characteristic exponent 0 < α < 2 are significantly

thicker than that of the Gaussian distribution and the smaller

α, the thicker the tails. An important difference between the

Gaussian and the α-stable distribution (0 < α < 2) is that only

moments of order less than α exist for the α-stable distribution.

As the non-existence of the second order statistics of α-stable

distribution when the characteristic exponent is restricted in

0 < α < 2, the second order statistics, such as correlation

and covariance, does not make sense. Therefore, the fractional

lower order statistics (FLOS) has been defined[18], such as the

fraction lower order moment (FLOM) in [19] and the phased

fractional lower order moment (PFLOM) in [20].

III. DOA ESTIMATION BASED ON SPARSE

REPRESENTATION OF SECOND ORDER STATISTICS VECTOR

Consider the case of K narrow far-field signals s1(t), s2(t),
. . ., sK(t) with different DOA θ1, θ2, . . ., θK arriving at a

uniform linear array (ULA) with M sensors in presence of

additive noise n1(t), n2(t), . . ., nM (t). Assume that the noise

is i.i.d random variable and is not correlated with signals. The

received signal vector is given by

X(t) = A(θ)S(t) +N(t) (2)

where

XM×1(t) = [x1(t), x2(t), . . . , xM (t)]T,

AM×K(θ) = [a(θ1), a(θ2), . . . , a(θK)]

SK×1(t) = [s1(t), s2(t), . . . , sK(t)]T,

NM×1(t) = [n1(t), n2(t), . . . , nM (t)]T,

where xm(t), m = 1, 2, . . . ,M is the output of the mth array

element, a(θn), n = 1, 2, . . . ,K are the steering vector can
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be expressed as

a(θn) =
[
1, e−j 2π

λ d sin θn , . . . , e−j 2π
λ (M−1)d sin θn

]T
(3)

where λ is the carrier wavelength of the signal, d is the

intersensor spacing.

Assume the noise in (2) is zero-mean Gaussian white noise

with the power of σ2
n, the second order statistics covariance

matrix of the array out can be expressed as

R = E(X(t)XH(t)) = A(θ)RsA
H(θ) + σ2

nIM (4)

where the source covariance matrix Rs = E(s(t)sH(t)) =
diag(σs) is diagonal with source signal power vector σs =
[σ2

1 , . . . , σ
2
K ]T and IM denotes the M × M identity matrix.

σ2
i , i = 1, . . . ,K is the source signal power.

Applying the vectorization operator on equation (4), we

have[22]

y = vect(R) = B(θ)σs + σ2
nvect(IM ), (5)

B(θ) = [a∗(θ1)⊗ a(θ1), . . . , a
∗(θK)⊗ a(θK)] (6)

where ⊗ denote Kronecker product . It is interesting to see

that in (5) ,similar to (2), can be taken as the array output

of single snapshot where B(θ), σs and vect(IM ) are the

virtual manifold matrix with its dimension M2 ×K, equiva-

lent source vector, and equivalent noise vector, respectively.

The new signal vector y can be sparsely represented in a

redundant basis. Define a set θ̂ = [θ̂1, θ̂1, . . . , θ̂Q], which

denotes potential source location of interest and assume that

the true DOAs are exactly on this set. The number of the

potential source locations Q should be much greater than

the number of actual sources K and the number of virtual

array sensors M2. Define the overcomplete basis B(θ̂) =
[a∗(θ̂1) ⊗ a(θ̂1), . . . , a

∗(θ̂Q) ⊗ a(θ̂Q)] and the signal power

vector ν = [ν1, ν2, . . . , νQ] where a∗(θ̂i) ⊗ a(θ̂i) denotes the

steering vector of the virtual array and the elements of vector

ν have K nonzeros, that is, νj = σ2
i if θ̂j = θi, i = 1, . . . ,K.

As a result, y can be rewritten as the following form

y = B(θ̂)ν + σ2
nvect(IM ) (7)

Hence the DOA estimation can be reduced to the detection

of the nonzero elements of ν. In practice, the unknown y is

estimated from the N snapshots, let ŷ be the estimation of y,

then ŷ = vect(R̂), where R̂ = 1
N

∑N
t=1 X(t)XH(t). Define

Δy as the estimation error, then Δy = ŷ − y. Let n̂u be the

estimate of ν, the DOA estimation problem can be further

converted into the following convex optimization problem[12]:

min ‖μ‖1, s.t. ‖ŷ −B(θ̂)ν̂ − σ2
nvect(IM )‖2 ≤ ε (8)

ε is a parameter which means how much of the error we

wish to allow and plays an important role in the algorithm

performance. It can be known that the error Δy satisfies

asymptotically normal (AsN) distribution[23],

Δy = ŷ−y = vect(R̂−R) ∼ AsN

(
0M2,1,

1

N
RT ⊗R

)
(9)

Define the weighted matrix W− 1
2 =

√
NR−T

2 ⊗R− 1
2 , then

W− 1
2Δy ∼ AsN

(
0M2,1, IM2

)
(10)

Then from (7), we can further get∥∥∥W− 1
2

[
ŷ −B(θ̂)ν̂ − σ2

nvect(IM )
]∥∥∥2

2
∼ Asχ2(M2) (11)

where Asχ2(M2) is the asymptotic chi-square distribution

with M2 degrees of freedom. Therefore, the parameter ε
should be introduced such that∥∥∥W− 1

2

[
ŷ −B(θ̂)ν̂ − σ2

nvect(IM )
]∥∥∥2

2
≤ ε2

with a high probability pc, that is ε =
√
χ2
pc(M

2). Let

Ŵ− 1
2 =

√
NR̂−T

2 ⊗ R̂− 1
2 be the estimate of the weighted

matrix W− 1
2 and σ̂2

n be the estimate of σ2
n by the average of

M −K smallest eigenvalue of the eigenvalue decomposition

(EVD) of the estimate covariance matrix R̂, then the statisti-

cally robust and tractable formula for DOA estimation can be

reduced as follows

min ‖ν̂‖1, s.t.
∥∥∥Ŵ− 1

2

[
ŷ −B(θ̂)ν̂ − σ̂2

nvect(IM )
]∥∥∥

2
≤ ε

(12)

This DOA estimation algorithm based on the sparse represen-

tation of the second order statistics covariance vector can be

namely as SS SOSCV algorithm.

IV. DOA ESTIMATION BASED ON SPARSE

REPRESENTATION OF FRACTIONAL LOWER ORDER

STATISTICS VECTOR

When the noise in (2) is α-stable impulsive noise with

a characteristic exponent 0 < α < 2, the performance of

the SS SOSCV algorithm will degrade since the covariance

matrix is not defined for 0 < α < 2. In this case, introducing

a modified covariance matrix instead of the covariance matrix

can alleviate the problem. In this paper, we introduce two

DOA estimation methods based on sparse representation of

fractional lower order statistics vector, and the improved

algorithms which can enhance the robustness of the proposed

algorithms are further studied.

A. SS FLOMV Algorithm

The fractional lower order moment (FLOM) matrix C which

is suitable for α-stable distribution noise environments can be

used to replace the covariance matrix R in (4). The (i, k)
element of matrix C can be defined as:

Ci,k = E{xi(t)|xk(t)|p−2x∗
k(t)} (13)

where p is the order of the moments. Setting p = 2 reduces

(13) to an appropriate covariance matrix under the condition

of Gaussianity. However, as we deviate from this condition p
should be set to a lower value and it must satisfy the inequality

1 < p < α ≤ 2 so that Ci,k is bounded. It can be proved that

the FLOM matrix C can be expressed as[19]

C = A(θ)ΛsA(θ)
H + ξIM (14)

where the diagonal matrix Λs = diag(γs) can be interpreted

as the FLOM matrix of the source signals and ξ can be

interpreted as the FLOM of the α-stable additive noise level.

γs = [γ1, . . . , γK ]T, γi, i = 1, . . . ,K is the fractional lower
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order power of the signals. Applying the vectorization operator

on (14), we have

yFLOM = vect(C) = B(θ)γs + ξvect(IM ) (15)

The vector yFLOM can be sparsely represented in the over-

complete basis B(θ̂) as the following form

yFLOM = B(θ̂)νFLOM + ξvect(IM ) (16)

As with the SS SOSCV algorithm, the DOA estimation can

be resolved by the following convex optimization problem:

min ‖ν̂FLOM‖1
s.t.

∥∥∥Ŵ− 1
2

FLOM

[
ŷFLOM−B(θ̂)ν̂FLOM − ξ̂vect(IM )

]∥∥∥
2
≤ ε

(17)

where the weighted matrix Ŵ
− 1

2

FLOM can be defined as

Ŵ
− 1

2

FLOM =
√
NĈ−T

2 ⊗ Ĉ− 1
2 (18)

Ĉ is the estimate of the FLOM matrix C and the (i, k) element

of matrix Ĉ can be defined as

Ĉi,k =
1

N

N∑
t=1

{
xi(t)|xk(t)|p−2x∗

k(t)
}

(19)

ν̂FLOM and ŷFLOM are the estimation of νFLOM and

yFLOM , ξ̂ is the estimation of ξ by the average of M − K
smallest eigenvalue of the EVD of the matrix Ĉ. This DOA

estimation method based on the sparse representation of the

FLOM vector can be namely as SS FLOMV algorithm.

B. SS PFLOMV Algorithm

Form the FLOM definition, it can be seen that it is limited

in range of 2 ≥ α > 1 , so the SS FLOMV algorithm is

not applicable under the α-stable noise with characteristic

exponent 0 < α ≤ 1. In [20] a new class of robust bounded

covariance matrices based on phased fraction lower order

moment (PFLOM) which is applicable for 0 < α ≤ 2 was

used. The (i, k) element of PFLOM matrix Γ can be defined

as

Γi,k = E
{
x
〈b〉
i (t)x

〈−b〉
k (t)

}
, 0 < b < α/2 (20)

where the PFLOM operation on a complex number z is

z〈b〉 =

{ |z|b+1

z∗ , z �= 0

0, z = 0
(21)

and the conjugate of the bth PFLOM of z as z−〈b〉 = (z∗)〈b〉 =
(z〈b〉)∗. It can be proved that the matrix Γ can be expressed

as[20]

Γ = A(θ)ΦsA(θ)
H + κIM (22)

where the diagonal matrix Φs = diag(ϕs) can be interpreted

as the PFLOM matrix of the source signals and κ can be

interpreted as the PFLOM of the α-stable additive noise

level. ϕs = [ϕ1, . . . , ϕK ]T, ϕi, i = 1, . . . ,K is the phased

fractional lower order power of the signals. Applying the

vectorization operator on (22) and then sparse representation

in the overcomplete basis B(θ̂), we can have

yFLOM = vect(Γ) = B(θ)ϕs + κvect(IM ) (23)

yPFLOM = B(θ)νPFLOM + κvect(IM ) (24)

Likewise, the DOAs can be estimated by solving the following

optimization problem

min ‖ν̂PFLOM‖1
s.t.

∥∥∥Ŵ− 1
2

PFLOM

[
ŷPFLOM−B(θ̂)ν̂PFLOM − κ̂vect(IM )

]∥∥∥
2
≤ ε

(25)

where the weighted matrix Ŵ
− 1

2

PFLOM can be defined as

Ŵ
− 1

2

PFLOM =
√
N Γ̂−T

2 ⊗ Γ̂− 1
2 (26)

Γ̂ is the estimation of the PFLOM matrix Γ and the (i, k)
element of matrix Γ̂ can be defined as

Γ̂i,k =
1

N

N∑
t=1

{
x
〈b〉
i (t)x

〈−b〉
k (t)

}
(27)

ν̂PFLOM and ŷPFLOM are the estimation of νPFLOM and

yPFLOM , κ̂ is the estimation of κ by the average of M −K
smallest eigenvalue of the EVD of the matrix Γ̂. This DOA

estimation method based on the sparse representation of the

PFLOM vector can be namely as SS PFLOMV algorithm.

C. Improved Algorithms

The equation (16) and (24) can be unified expressed as

yFLOS = B(θ̂)νFLOS + (ξ|κ)vect(IM ) (28)

Notice that the vector (ξ|κ)vect(IM ) has only M nonzero

elements, then these elements of yFLOS corresponding to

these positions of nonzero elements in (ξ|κ)vect(IM ) can be

removed and the rest M(M−1) entries of yFLOS correspond-

ing to these positions of zeros elements in (ξ|κ)vect(IM ) can

be preserved. Mathematically, this operation can be formulated

as

yIFLOS =JyFLOS

=J
{
B(θ̂)νFLOS + (ξ|κ)vect(IM )

}
=D(θ̂)νFLOS (29)

where, J is a M(M − 1) ×M2 selecting matrix and can be

represented as

JT = [J1, J2, . . . , JM−1] (30)

where

Jm = [e(m−1)(M+1)+2,e(m−1)(M+1)+3, . . . , em(M+1)] ∈ RM2×M ,

m = 1, . . . ,M − 1 (31)

ei (i = (m − 1)(M + 1) + 2, . . . ,m(M + 1)) is an M2 × 1
column vector with 1 at the ith position and 0 elsewhere.

D(θ̂) = JB(θ̂) ∈ CM(M−1)×Q is the new steering matrix.

This elimination operation avoids the estimation of the frac-

tional lower order statistics of the impulsive noise and further

reduces the effect of the impulsive noise. Hence the DOAs

estimation can be obtained by the following minimization

min ‖νFLOS‖1, s.t.
∥∥∥yIFLOS − D(θ̂)νFLOS

∥∥∥
2
< εI (32)
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Let ŷIFLOS be the estimation of yIFLOS and ΔyIFLOS =
ŷIFLOS − yIFLOS is the estimation error, we can get

ΔyIFLOS = JΔyFLOS . From (9), we can further get that

ΔyIFLOS satisfies

ΔyIFLOS ∼ AsN
(
0M(M−1),1,

1

N
J
(
(C|Γ)T ⊗ (C|Γ))JT

)
(33)

Define the weighted matrix Ŵ
− 1

2

IFLOS as

Ŵ
− 1

2

IFLOS =
√
NJ− 1

2

(
(C|Γ)−T

2 ⊗ (C|Γ)− 1
2

)
J−T

2 (34)

and its estimation as Ŵ
− 1

2

IFLOS , then

W
− 1

2

IFLOSΔyIFLOS ∼ AsN
(
0M(M−1),1, IM(M−1),1

)
(35)

∥∥∥W− 1
2

IFLOS

[
ŷIFLOS − D(θ̂)ν̂FLOS

]∥∥∥2
2
∼ Asχ2[M(M − 1)]

(36)

Therefore, a parameter εI should be selected such that∥∥∥W− 1
2

IFLOS

[
ŷIFLOS − D(θ̂)ν̂FLOS

]∥∥∥2
2
≤ ε2I with a high prob-

ability pc, that is εI =
√
χ2
pc(M(M − 1)). Likewise, the

DOAs can be estimated by solving the following optimization

problem:

min ‖ν̂FLOS‖1
s.t.

∥∥∥Ŵ− 1
2

IFLOS

[
ŷIFLOS − D(θ̂)ν̂FLOS

]∥∥∥
2
≤ εI (37)

The DOA estimation methods based on (37) by using the

FLOM matrix C and the PFLOM matrix Γ can be namely

as SS IFLOMV and SS IPFLOMV, respectively.

D. Algorithm Computational Costs and Steps

The main computational costs of the SS FLOMV or

SS PFLOMV algorithms include the calculation of the FLOM

matrix C or the PFLOM matrix Γ, the EVD of the matrix

C or Γ to estimate the parameter ξ and κ, and solving the

optimization problem of (17) and (25), require O(NM2),
O(M3) and O(Q3), respectively. As the SS IFLOMV and

SS IPFLOMV algorithms don’t need to estimate the param-

eter ξ and κ, so their computational costs are slighter lower

than those of the SS FLOMV and SS PFLOMV algorithm.

But the computational costs of these four algorithms are

higher than those of subspace-based FLOM MUSIC and

PFLOM MUSIC algorithms, where the main complexity of

these two algorithms are in calculating the array covariance

matrix R and its EVD.

From the above analysis, the SS FLOMV and

SS PFLOMV algorithms’ steps can be summarized as

following:

Step 1: Obtain the FLOM estimate matrix Ĉ or the PFLOM

estimate matrix Γ̂ using the array received data by equation

(19) or (27). Then apply the vectorization operator on them to

get the vector ŷFLOM and ŷPFLOM .

Step 2: Get the estimation of the parameter ξ̂ or κ̂ by the

average of M − K smallest eigenvalue of the EVD of the

matrix Ĉ or Γ̂.

Step 3: Calculate the weighted matrix Ŵ
− 1

2

FLOM or

Ŵ
− 1

2

PFLOM by equation (18) and (26).

Step 4: Solve the convex optimization problem of (17) or

(25) to get the estimation of the vector ν̂FLOM or ν̂PFLOM .
Step 5: Estimate the DOAs according the location of

nonzero elements in the vector ν̂FLOM or ν̂PFLOM .
The SS IFLOMV and SS IPFLOMV algorithms’ steps are

similar to that of SS FLOMV and SS PFLOMV algorithms

except that step 2 is applying the elimination operation (29)

on the vector ŷFLOS to get the vector ŷIFLOS .

V. SIMULATION RESULTS

In this section, a series of numerical experiments under

different conditions are conducted to compare the performance

of the proposed SS FLOMV, SS PFLOMV, SS IFLOMV and

SS IPFLOMV algorithms with that of the FLOM MUSIC,

PFLOM MUSIC and SS SOSCV methods. Throughout this

section, the convex optimization problem of (12), (17), (25)

and (37) are resolved by using the software package CVX[24],

the probability pc in the proposed algorithms is set as 0.999.

A M = 8 element ULA with an intersensors pacing of half

a wavelength is used. The direction grid is set to have 181

points sampled form −90◦ to 90◦ with 1◦ intervals. Two

performance criteria are used to assess the performance of the

algorithms. The first one is the probability of resolution. The

DOAs are considered to be resolved within 1◦ estimate error.

2000 independent Monte Carlo experiments are performed,

the experiment number that DOAs can be resolved is denot-

ed as Nok, then the probability of resolution is defined as

Nok/2000. In the case of DOAs can be resolved, set θi(n),
i = 1, 2, . . . ,K as the estimation of θi for the nth Monte

Carlo experiment, the average mean square error (RMSE) of

the DOAs estimation is defined as:

RMSE =
1

Nok

Nok∑
n=1

√√√√ 1

K

K∑
i=1

(
θ̄i(n)− θi(n)

)2

(38)

As the characteristic of the α-stable distribution makes the

use of the standard SNR meaningless, a new SNR measure,

generalized signal-to-noise ratio (GSNR), is defined as[18]:

GSNR = 10 log10
σ2
s

γ
(39)

where σs is the variance of the signal, γ is the dispersion

parameter of the α-stable noise.
Example 1. Three sources impinging on array from −50◦,

0◦ and 50◦ under the condition of α stable distribution noise

with characteristic exponent α = 1.5 are considered. The

GSNR is 10dB and the number of snapshots is fixed at

100. Fig. 1 to Fig. 7 are the normalized spatial spectrum of

FLOM MUSIC, PFLOM MUSIC, SS SOSCV, SS FLOMV,

SS PFLOMV, SS IFLOMV and SS IPFLOMV algorithm,

respectively. It can be seen that sparse representation based

methods have the higher resolution than that of the subspace

based methods, that is the normalized spatial spectrum in

Fig. 3-Fig. 7 are sharper than that in Fig. 1-Fig. 2. In these

sparse representation based methods, the SS FLOMV and

SS PFLOMV methods proposed in this paper have a better

spatial spectrum performance than that of SS SOSCV algo-

rithm. And the improved SS IFLOMV and SS IPFLOMV

algorithms have the best spatial spectrum performance.
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Fig. 1. Normalized Spatial spectrum of FLOM MUSIC algorithm.
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Fig. 2. Normalized Spatial spectrum of PFLOM MUSIC algorithm.
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Fig. 3. Normalized Spatial spectrum of SS SOSCV algorithm.
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Fig. 4. Normalized Spatial spectrum of SS FLOMV algorithm.
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Fig. 5. Normalized Spatial spectrum of SS PFLOMV algorithm.
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Fig. 6. Normalized Spatial spectrum of SS IFLOMV algorithm.
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Fig. 7. Normalized Spatial spectrum of SS IPFLOMV algorithm.
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Fig. 8. Probability of resolution versus GSNR.
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Fig. 9. RMSE of DOA estimation versus GSNR.

Example 2. Three sources impinging on array from −50◦,

0◦ and 50◦ under the condition of α stable distribution noise

with characteristic exponent α = 1.5 are considered, the

number of snapshots is fixed at 100. Fig. 8 and Fig. 9 show

the comparison of the probability of resolution and the RMSE

with the increase of GSNR between the proposed methods

and the SS SOSCV method, respectively. It can be seen that

the probability of resolution and RMSE performance of all

methods improve with the increased GSNR. However, the

performance of the proposed methods which are based on the

sparse representation of the fractional lower order statistics

vector are much better than that of second order statistics

based methods. At the same time, the SS IFLOMV and

SS IPFLOMV methods have a better performance than the

SS FLOMV and SS PFLOMV methods, since the effects of

the noise on the algorithms are further reduced by the linear

transform on the fractional lower order statistics vector of the

array output. It also can be seen that the performance of the

methods which are based on the sparse representation of the

PFLOM vector are slightly better than that of the methods

which are based on the sparse representation of the FLOM

vector.

Example 3. Three sources impinging on array from −50◦,

0◦ and 50◦ under the condition of α stable distribution noise

with characteristic exponent α = 1.5 are considered under

the condition of GSNR=4dB. Fig. 10 and Fig. 11 show the

simulated performance of five algorithms versus the number

of snapshots. It can be seen from Fig. 10 that the proposed

SS IFLOMV and SS IPFLOMV algorithms have the similar

probability of resolution performance, and are better than that

of the SS PFLOMV and SS FLOMV, the SS SOSCV method

has the worst probability of resolution performance compared

with the other algorithms. It can be seen from Fig. 11 that the

RMSEs of the proposed algorithms decrease monotonically

with the number of snapshots, the proposed SS IFLOMV and

SS IPFLOMV algorithms show a more satisfactory perfor-

mance than the SS FLOMV and SS PFLOMV algorithms,

especially when the snapshot is smaller than 400.

Example 4. In this example, the performance of the pro-

posed algorithms versus the characteristic exponent α of the

noise is assessed. The other simulation conditions are similar

to the example 1 except that the GSNR is set at 10dB.

Firstly, the situation that the characteristic exponent varying
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0.8
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Fig. 10. Probability of resolution versus number of snapshots.
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C−VEC

Fig. 11. RMSE versus number of snapshots.

from α = 1 to α = 2 is considered. The probability of

resolution and RMSE performance of the five methods are

displayed in Fig. 12 and Fig. 13. It can be seen from these

figures that the results are similar to those of before mentioned

examples. As expected, the resolution capability improves and

the RMSE decreases with increased characteristic exponent

and the performance of the FLOS based methods outperform

the SOS based methods. The performance of the SS IFLOMV

and SS IPFLOMV algorithms outperforms the SS FLOMV

and SS PFLOMV algorithms, and at the same time the

performance of the PFLOM vector based methods outperforms

the FLOM vector based methods.

Although the FLOM and PFLOM have the good perfor-

mance in suppressing the α-stable impulsive noise, they are

applicable for different impulsive environment. The FLOM is

limited in range of 2 ≥ α > 1 and the PFLOM is applicable

for 0 < α ≤ 2. In other words, although FLOM can be

calculated by the average in practice, there is no definition

for FLOM in theory for 0 < α ≤ 1. So, it can be predicted

that the performance of the SS FLOMV algorithm is inferior

to that of the SS PFLOMV algorithm, even the SS FLOMV

algorithm will does not work, when the characteristic exponent

of the impulsive noise is in the range of 0 < α ≤ 1. To

verify this, Fig. 14 and Fig. 15 show the simulated performance

of the SS FLOMV and SS PFLOMV algorithm under the

condition of 0.1 ≤ α ≤ 1. It can be seen that the probability of

resolution of the SS FLOMV algorithm is zero, that is it does

not work, when 0.1 < α ≤ 0.6. So at this time the RMSE of

the SS FLOMV algorithm also does not exist. However, the
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SS PFLOMV algorithm maintains a stable lower probability

of resolution and has a fluctuating RMSE when 0.1 < α ≤ 0.6.

And the performance of SS FLOMV algorithm is much lower

than that of SS PFLOMV algorithm when 0.6 < α ≤ 1.
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Fig. 12. Probability of resolution versus characteristic exponent α.
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Fig. 13. RMSE versus characteristic exponent α.

0.2 0.4 0.6 0.8 10

0.2
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Fig. 14. Probability of resolution versus characteristic exponent α when
α ≤ 1.

VI. CONCLUSION

The new methods based on sparse representation of the

fractional lower order statistics vector are proposed for DOAs

estimation under α-stable distribution impulsive noise en-

vironments. To enhance the performance of the proposed

algorithms, the improved algorithms are advanced by a linear

transformation on the fractional lower order statistics vector of

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Characteristic Exponent

SS_FLOMV
SS_PFLOMV

Fig. 15. RMSE versus characteristic exponent α when α ≤ 1.

the array output. Simulation results are shown to demonstrate

the effectiveness of the proposed methods for a wide range of

highly impulsive environments.
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