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Abstract—In this paper we propose an improved fuzzy adaptive
control strategy, for a class of nonlinear chaotic fractional order
(SISO) systems with unknown control gain sign. The online
control algorithm uses fuzzy logic sets for the identification of
the fractional order chaotic system, whereas the lack of a priori
knowledge on the control directions is solved by introducing a
fractional order Nussbaum gain. Based on Lyapunov stability
theorem, stability analysis is performed for the proposed control
method for an acceptable synchronization error level. In this
work, the Grünwald-Letnikov method is used for numerical
approximation of the fractional order systems. A simulation
example is given to illustrate the effectiveness of the proposed
control scheme.

Index Terms—Adaptive fuzzy control, nonlinear fractional
order systems, fractional order Nussbaum function, chaos syn-
chronization, Lyapunov stability.

I. INTRODUCTION

FHERE order chaotic systems are gathering an important
research effort because of their powerful properties and

potential applications in secure communication and control
processing. Many mathematical models have been developed
in literature such as the fractional-order Chua system[1], the
fractional-order Duffing system[2], the fractional-order Lü sys-
tem and the fractional order Chen system[3]. Since the work of
Deng and Li[4] who investigated the synchronization problem
of fractional order chaotic Lü systems, many studies were
focused on the control and synchronization of fractional order
chaos[5−6].

This article has been accepted for publication in a future issue of this
journal, but has not been fully edited. Content may change prior to final
publication.

This work was supported by the Algerian Ministry of Higher Educa-
tion and Scientific Research (MESRS) for CNEPRU Research Project No.
A01L08UN210120110001. Recommended by Associate Editor Dingyü Xue.
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In this paper we are concerned by fractional adaptive
control of nonlinear fractional order systems using Fuzzy logic
identification technique. Fractional adaptive systems have been
largely investigated for a decade as they showed an improved
behavior comparatively to classical adaptive control for par-
tially unknown plants [7−10].

Based on the universal approximation theorem, adaptive
fuzzy control systems present an effective control solution for
a large class of nonlinear systems[11]. The adaptive controller
is synthesized from a collection of fuzzy IF-THEN rules and
the parameters of the membership functions characterizing the
linguistic terms in the IF-THEN rules change according to
some adaptive law for the purpose of controlling a plant to
track a reference trajectory[12−13].

A particular class of such nonlinear plants pose the challeng-
ing control problem with unknown control directions[15]. The
Nussbaum function approach was introduced in the 1980’s[16].
This technique was used for adaptive control of first-order
nonlinear systems in[17]. Later, many studies of adaptive
control schemes with Nussbaum function were successfully
carried out for different classes of nonlinear systems[18−20].

The main contribution of this study is the introduction of
a Nussbaum function in the fuzzy adaptive control scheme
for nonlinear fractional systems with unknown control gain
sign. Stability analysis of the proposed adaptive fuzzy control
system is performed using Lyapunov stability theory. More-
over, the influence of the approximation error and external
disturbance on the tracking error can be attenuated to an
arbitrarily prescribed level via the proposed design technique.
The fuzzy adaptive control design with Nussbaum function
is applied for nonlinear fractional order chaotic systems with
a large uncertainty or unknown variation in plant parameters
and structures. The Grünwald-Letnikov technique is used for
the numerical approximation of the fractional order chaotic
system[21].

This paper is organized as follows: in Section II, basic
definitions and preliminaries for fractional order systems are
presented with the numerical approximation technique. A
description of the Nussbaum-type function is given in Section
III. Section IV presents the fuzzy adaptive control scheme
with unknown control direction for uncertain fractional order
chaotic systems in the presence of uncertainty.
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The proposed control system stability proof is detailed in
Section V. In Section VI, application of the proposed method
on fractional order chaotic Duffing systems is investigated.
Finally, the simulation results and conclusion are presented in
Section VII.

II. BASICS OF FRACTIONAL ORDER SYSTEMS

A. Fractional Derivatives and Integrals

The mathematical definition of fractional derivatives and
integrals has been the subject of several descriptions. The
three most frequently used definitions for the general fractional
differ-integral are: the Grünwald-Letnikov (GL) definition,
the Riemann-Liouville (RL) and the Caputo definition[9],[21].
The Riemann-Liouville (RL) definition of the fractional order
integral is given by:

RL
a D−µ

t f(t) =
1

Γ(µ)

∫ t

a

(t− τ)µ−1f(τ)d(τ), (1)

while the definition of fractional order derivatives is

RL
a Dµ

t f(t) =
d

dt

[
RL
a D

−(1−µ)
t f(t)

]
, (2)

=
1

Γ(1− µ)
d

dt

∫ t

a

(t− τ)−µf(τ)d(τ),

where
Γ(x) =

∫ ∞

0

yx−1e−ydy, (3)

where Γ(.) is the Euler’s Gamma function, a and t are the
limits of the operation, and µ is the number identifying the
fractional order. In this paper, µ is assumed to be a real number
that satisfies the restriction 0 < µ < 1. Also, it is assumed
that a = 0. The following convention is used: aDµ

t ≡ Dµ.

B. Numerical Approximation Method

Many different approaches have been proposed to model
fractional order systems. The numerical simulation of such
systems depends on the way to approximate the fractional
derivative operator. The most common approach used in the
fractional order chaotic systems literature is an improved
version of the Adams-Bashforth-Moulton method based on
predictor-correctors[22−23]. However, we will use in this work
a simpler approach consisting of the fractional order derivative
operator discretization according to the Grünwald-Letnikov
method. This method is very simple to use and has approxi-
mately the same order of accuracy as the predictor-corrector
method, even if the simulation requires, for each step the
computation of sums of increasing dimension with time.

The Grünwald-Letnikov fractional order derivative defini-
tion is expressed as:

GL
a D−µ

t = lim
h→0

1
hµ

[ t−a
h ]∑

j=0

(−1)j

(
µ
j

)
f(t− jh), (4)

where
[

t−a
h

]
indicates the integer part and (−1)j

(
µ
j

)
are

binomial coefficients c
(µ)
j , (j = 0, 1, . . .).

The calculation of these coefficients is done by a formula
of following recurrence:

c
(µ)
0 = 1; c

(µ)
j =

(
1− 1 + µ

j

)
c
(µ)
j−1.

The general numerical solution of the fractional differential
equation,

GL
a D−µ

t = f (y(t)) , (5)

can be expressed as follows:

y(tk) = f (y(tk), tk) hµ −
k∑

j=0

c
(µ)
j y(tk−j). (6)

This approximation of the fractional derivative within the
meaning of Grünwald-Letnikov is on the one hand equivalent
to the definition of Riemman-Liouville for a broad class of
functions[24], and on the other hand, it is well adapted to the
definition of Caputo (Adams method) because it requires only
the initial conditions and has a clear physical direction.

III. NUSSBAUM-TYPE GAIN

Definition 1: A function N(ζ) is called a Nussbaum-type
function if it has the following properties[14],[25−27]:

lim
s→∞

sup
1
s

∫ s

0

N(ζ)dζ = +∞, (7)

lim
s→∞

inf
1
s

∫ s

0

N(ζ)dζ = −∞. (8)

The continuous functions N1(ζ) = ζ2 cos(ζ), N2(ζ) =
ζ cos(

√
|ζ|), N3(ζ) = cos(π

2 ζ)eζ2
and N4(ζ) = ln(ζ +

1) cos(
√

ln(ζ + 1)) are Nussbaum functions.
For example the continuous function N1(ζ) = ζ2 cos(ζ), is
positive at interval (2πn, 2πn+ π

2 ) and negative at the interval
(2πn + π

2 , 2πn + 3π
2 ), where n is an integer. And we have,

1
2πn + π

2

∫ 2πn+ π
2

0

N1(ζ)dζ = +∞,

1
2πn + 3π

2

∫ 2πn+ 3π
2

0

N1(ζ)dζ = −∞.

The following lemma[28] is used in the stability analysis.
Lemma 1: Consider the following fractional-order system,

Dαy(t) = −ay(t) + b. (9)

then there exists a constant t0 > 0 such that for all
t ∈ (t0,∞),

‖y(t)‖ ≤ 2b

a
, (10)

where y(t) is the state variable, and a, b are two positive
constants.

The proof of Lemma 1 can be found in[28].
A Nussbaum function will be used in future work, to estimate
the control direction.
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IV. PROBLEM STATEMENT

Consider a fractional order SISO nonlinear dynamic system
of the form:




x
(q1)
1 = x2,

...,
x

(qn−1)
n−1 = xn,

x
(qn)
n = f(x, t) + g(x, t)u + d(t),

y = x1,

(11)

where,
x = [x1, x2, ..., xn]T = [x, x(q), x(2q), ..., x((n−1)q)]T ∈ Rn

is the system’s state vector, u ∈ R is the control input and
y ∈ R is the output, with the initial conditions : u(0) = 0 and
y(0) = 0.
The initial conditions are set to zero to avoid the lack of
robustness for Nussbaum type adaptive controllers as proved
by Georgiou and Smith[29],
If q1 = q2 = ... = qn = q the above system is called a
commensurate order system. Then an equivalent form of the
above system is described as :

{
x(nq) = f(x, t) + g(x, t)u + d(t),
y = x1,

(12)

where f(x, t) and g(x, t) are unknown but bounded nonlinear
functions which express system dynamics and d(t) is the
external bounded disturbance. The control objective is to force
the system output y to follow a given bounded reference signal
y

d
, under the constraint that all signals involved must be

bounded.
The reference signal vector y

d
and the tracking error vector e

are defined as,

y
d

= [yd, y
(q)
d , y

(2q)
d , ..., y

((n−1)q)
d ]T ∈ Rn,

e = y
d
− y = [e, e(q), ..., e((n−1)q)]T ∈ Rn,

e(iq) = y
(iq)
d − y(iq).

Let k = [k1, k2, ..., kn]T ∈ Rn be chosen such that
the stability condition |arg(eig(A))| > qπ/2 is met, where
0 < q < 1 and eig(A) represents the eigenvalues of the system
state matrix.

i) Let us first suppose that the functions f(x, t) and g(x, t)
are known and the system is free of external disturbance (i.e.
d(t) = 0).
The following assumptions are considered[19−20],

Assumption 1: The control gain g(x, t) is not zero and of
known sign. It is also strictly positive or strictly negative.

Assumption 2: The external disturbance is bounded:
|d(t)| ≤ D with D an unknown positive constant.

Then the control law of the certainty equivalent controller
is obtained as[30],

u∗ =
1

g(x, t)

(
−f(x, t) + y

(nq)
d + kT e

)
, (13)

where

y
d

= [yd, y
(q)
d , y

(2q)
d , ..., y

((n−1)q)
d ]T ∈ Rn,

e = y
d
− y = [e, e(q), ..., e((n−1)q)]T ∈ Rn,

e(iq) = y
(iq)
d − y(iq),

is the tracking error vector.
Substituting (13) into (12), we have:

enq = kne(n−1)q + · · ·+ k1e = 0, (14)

which is the main objective of control, limt→∞ e(t) = 0.
ii) However, f(x, t) and g(x, t) are unknown and external

disturbance d(t) 6= 0, the ideal control effort (13) cannot
be implemented; this problem was solved by the control
strategy proposed previously by the use of fuzzy systems to
approximate unknown functions[13]. In this case, we consider
the following assumptions[19−20]:

Assumption 3: The state vector x is not measurable, except
the system output y.

Assumption 4: The reference trajectory yd(t) and its
derivatives up to order (nq) are known, continuous and
bounded.

Assumption 5: The control gain g(x, t) is not zero and of
unknown sign.

Remark 1: In Assumption 5, and contrary to the previous
case, the sign of g(x, t) need not to be known, as the Nussbaum
technique will estimate the control gain sign.

From Definition 1, one knows that Nussbaum functions
should have infinite gains and infinite switching frequencies.
Subsequently to this part, the Nussbaum function

N(ζ) = ζ2 cos(ζ),

will be used for the control of nonlinear chaotic systems.
By substituting (13) into (12) we obtain the closed loop control
system in the state space domain as follows:

x(nq) = Ax + B[f(x) + g(x)u],
y = cT x, (15)

where

A =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
−k1 −k2 −k3 −k4 · · · −k(n−1) −kn




,

B =




0
0
...
0
1




and, c =




1
0
...
0
0




.

By using the relation y
(q)
d = Ayd + By

(nq)
d the following

equation (16) is obtained:

e(q) = Ae + B[f(x) + g(x)u∗ − y
(nq)
d ],

e = cT e. (16)

In what follows, a fuzzy adaptive control will be designed
to stabilize the system (11) or the equivalent system (16).
Replacing f(x) by the fuzzy system f(x, θf ) which is speci-
fied as:

f(x, θf ) = θT
f ξ(x). (17)
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Here the fuzzy basis function ξ(x) depends on the fuzzy
membership functions and is supposed to be fixed, while θf

is the adjusted by adaptive laws based on a Lyapunov stability
criterion.
Using (17), (16) can be rewritten as following:

e(q) = Ae + B[ξT (x)θf + g(x)u∗ − y
(nq)
d ],

e = cT e. (18)

The optimal parameter estimation vector θ∗f is defined by:

θ∗f = arg min
θf∈Ωf

[
sup

x∈Ωx

|f(x | θf )− f(x, t)|
]

. (19)

with φf = θf − θ∗f and Ωf ,Ωx are constraints sets for θf and
x respectively, and are defined as:

Ωf = {θf | |θf | ≤ Mf } ,

Ωx = {x | |x| ≤ Mx } , (20)

where Mf and Mx are positive constants.
The following theorem is proposed to show the control per-
formance of the closed loop system.

Theorem 1: Considering system (12), and the fuzzy adap-
tive control law proposed with fractional Nussbaum function
is given as follows:

u∗ = N(ζ)
[
kT e + θT

f ξ(x)− ynq
d

]
, (21)

where N(ζ) = ζ2 cos(ζ) and,

ζ(q) = eT PB
[
kT e + r1θ

T ξ(x)− y
(nq)
d

]
, (22)

and the fractional adaptive law for the vector θ is chosen as
following:

θ(q) = −r1θ + r1e
T PBξ(x), (23)

where r1 is a positive constant, and P = PT > 0 is a positive
definite matrix, also there is a positive definite symmetric
matrix Q = QT satisfying the following Lyapunov equation:

AcP + PAT
c + PBBT P = −Q.

We choose Ac = A − BkT is Hurwitz. So all signals
in the closed loop system are bounded and the tracking
error converges to a bounded compact set defined by Ω =
{e1, |e1| ≤ a1}, where a1 is a positive constant.

V. STABILITY ANALYSIS

The Lyapunov function is chosen as

V =
1
2
eT Pe +

1
2r1

φT
f φf . (24)

The derivative of (24) with respect to time verifies[31−32]:

V (q)(t) ≤ 1
2
(e(q))T Pe +

1
2
eT (t)Pe(q)(t) +

1
r1

φT
f φ

(q)
f . (25)

By substituting (18) into (25), we obtain:

V (q)(t) ≤ 1
2
eT

(
PA + AT P

)
e +

1
r1

φT
f φ

(q)
f (26)

+eT PB
[
ξ(x)θT

f + gu∗ − y
(nq)
d

]
.

By using (21) and (22), (26) becomes:

V (q)(t) ≤ 1
2
eT

(
PA + AT P

)
e +

1
r1

φT
f φ

(q)
f (27)

+eT PB
[
ξ(x)θT

f + gu∗ − y
(nq)
d

]
− ePBθT

f ξ(x)

≤ 1
2
eT

(
PA + AT P

)
e + φT

f

[
1
r1

φ
(q)
f − eT PBξ(x)

]

+eT PB
[
ξ(x)θT

f − y
(nq)
d

]
+ eT PBgN(ζ)

(
kT e

+ξ(x)θT
f − y

(nq)
d

)

≤ 1
2
eT

(
PAc + AT

c P
)
e + φT

f

[
1
r1

φ
(q)
f − eT PBξ(x)

]

+ [gN(ζ) + 1] ζ(q).

Using (23), the following inequality is obtained

φT
f

[
1
r1

φ
(q)
f − eT PBξ(x)

]
= −φT

f θ = −φT
f φf − φT

f θ∗f (28)

≤ −1
2
φT

f φf +
1
2

∥∥θ∗f
∥∥2

.

And thus (Young inequality),

eT PB ≤ 1
2
eT PBBT Pe +

1
2
b2, (29)

where b is a positive constant.
By Substituting (28) and (29) into (27), the following

inequality is obtained:

V (q)(t) ≤ 1
2
eT

(
PAc + AT

c P
)
e +

1
2
eT PBBT Pe (30)

+
1
2
b2 − 1

2
φT

f φf +
1
2

∥∥θ∗f
∥∥2 + [gN(ζ) + 1] ζ(q)

≤ −1
2
eT Qe +

1
2
b2 − 1

2
φT

f φf +
1
2

∥∥θ∗f
∥∥2

+ [gN(ζ) + 1] ζ(q)

where µ = λmin(QP−1, r1) and β =
∥∥∥θ∗f

∥∥∥
2

+ 1
2b2.

The inequality (30) can be expressed as:

V (q) ≤ −µV + ω, (31)

where ω = β + [gN(ζ) + 1] ζ(q).
Then depending on the sign of ω two cases arise:
1) If ω ≤ 0 then we have V (q) ≤ 0 and the uniform

continuity of the fractional order derivative (3) allows
to apply Barbalats lemma[33]. Hence, V (t) is bounded
and e and θf are also bounded.

2) If ω > 0 then according to Lemma 1, we have

‖V (t)‖ ≤ 2ω

µ
. (32)
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which yields that

‖e(t)‖ ≤ 2
√

ω

µλmin(P )
.

This means that ‖e(t)‖ can be made arbitrarily small, and
θf is bounded. From (21), u is bounded. Then all the signals
in the closed loop system are bounded.

The diagram of the proposed control is given in Fig. 1.

Fig. 1. Global block diagram of the proposed fuzzy adaptive control
with unknown control sign gain.

VI. SIMULATION RESULTS

To illustrate the performance of the proposed control ap-
proach, we consider two fractional order chaotic systems of
Duffing as follows [34],

The first one is a reference system:

Dqyd1 = yd2, (33)
Dqyd2 = 1.2 yd1 − yd2 − y2

d1 + 0.5 cos(t).

The second is the response system (to be controlled):

Dqy1 = y2, (34)
Dqy2 = y1 − 1.8 y2 − y2

1 + 0.9 cos(t) + u(t) + d(t).

Initial conditions are selected as follows:
yd(0) = [0, 0]T and y(0) = [1,−1]T.
We consider in this case the fractional order value q = 0.98,
with the external disturbance d(t) = 0.1 sin(t).

The other design constants are set as:
k1 = k2 = 1, r1 = 200, ρ = 0.05, h = 0.01 and Tsim = 40 s.

The main objective is to control our response system to
track the reference system output with consideration that the
functions f(x, t) and g(x, t) are completely unknown.

Fig. 2 shows the phase plane without the studied control
systems.

Results & Discussion:

• According to the Fig. 4, the trajectories of the responses
converge accurately to the reference trajectories, even in
the presence of external disturbances.

• One can remark the vibrations in the beginning of
Fig. 4(b) and Fig. 4(c). This transitory phase is necessary

for converge of the system model estimated parameters.
They depend mainly on the arbitrary choice of initial
conditions.

Fig. 2. Phase portrait of Duffing chaotic systems (without control
action).

Fig. 3. Synchronization performance of Duffing chaotic drive and
response systems.

Fig. 4. (a) Trajectories of the states of systems y1 and yd1.
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Fig. 4. (b) Trajectories of the states of systems y2 and yd2.

Fig. 4. (c) Control signal u(t).

• Fig. 5 shows that the errors are bounded and converge
asymptotically to zero.

• From Fig. 6 and Fig. 7 one can remark that the adopted
settings and the function of Nussbaum which estimates
the sign of control gain are always bounded.

Fig. 5. (d) The error signal e1 = y1 − yd1.

Fig. 5. (e) The error signal e2 = y2 − yd2.

Fig. 6. Nussbaum function N(ζ) and its variation ζ(t).

Fig. 7. Optimal parameters vector θf (t).

VII. CONCLUSION

In this work, a fuzzy adaptive control scheme is proposed
for a class of nonlinear fractional order SISO systems with
unknown control gain sign. The fuzzy systems were used
to approximate online the unknown dynamics including all
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nonlinearities of the system. The numerical approximation
of the fractional order systems is realized by means of the
Grünwald-Letnikov method.

The main contribution of this paper is to introduce the tech-
nique of fractional order Nussbaum-type function to estimate
the control gain sign for the fractional chaotic system. The
developed controller guarantees the boundedness of all the
signals in the closed-loop and the tracking error convergence.
Simulation results show the good tracking performance of the
proposed fuzzy adaptive control method.
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