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An Exploration on Adaptive Iterative Learning
Control for a Class of Commensurate High-order

Uncertain Nonlinear Fractional Order Systems
Jianming Wei, Yun-an Hu, and Meimei Sun

Abstract—This paper explores the adaptive iterative learning
control method in the control of fraction order systems for
the first time. An adaptive iterative learning control (AILC)
scheme is presented for a class of commensurate high-order
uncertain nonlinear fractional order systems in the presence
of disturbance. To facilitate the controller design, a sliding
mode surface of tracking errors is designed by using sufficient
conditions of linear fraction order. To relax the assumption of
the identical initial condition in iterative learning control (ILC),
a new boundary layer function is proposed by employing Mittag-
Leffler function. The uncertainty in the system is compensated
for by utilizing radial basis function neural network. Fractional
order differential type updating laws and difference type learning
law are designed to estimate unknown constant parameters and
time-varying parameter, respecitvely. The hyperbolic tangent
function and a convergent series sequence are used to design
robust control term for neural network approximation error and
bounded disturbance, simultaneously guaranteeing the learning
convergence along iteration. The system output is proved to
converge to a small neighborhood of the desired trajectory
by constructing Lyapnov-like composite energy function (CEF)
containing new integral type Lyapunov function, while keeping
all the closed-loop signals bounded. Finally, a simulation example
is presented to verify the effectiveness of the proposed approach.

Index Terms—Adaptive iterative learning control, fractional
order nonlinear systems, Mittag-Leffler function, boundary layer
function, composite energy function, fractional order differential
learning law .

I. INTRODUCTION

PAST decades have witnessed tremendous research efforts
aiming at the development of systematic design methods

for the iterative learning control (ILC) of nonlinear systems
performing control task over a finite interval repeatedly. ILC
has been proven to be the most suitable and effective control
scheme for such repeatable control tasks owing to its capacity
of achieving perfect tracking by learning along iteration.
Generally, according to the stability analysis tool, ILC can
be categorized into two classes: traditional ILC [1]−[5] and
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adaptive ILC (AILC) [6]−[16]. The basic idea of traditional
ILC is to use information of the previous execution to design
the control signal for current operation by a learning mecha-
nism, which allows to achieve improving performance from
iteration to iteration. Furthermore, the stability conclusion
of traditional ILC is usually obtained by using contraction
mapping theorem and fixed point theorem, which enables
traditional ILC to deal with nonlinear plants without needing
any information of the system. Traditional ILC has been
developed greatly in theory and application because of its
simplicity and availability. However, the main drawback of
traditional ILC lies in the requirement of the global Lipschitz
continuous condition, which restricts its application to certain
nonlinear systems. Besides, the usage of contraction mapping
theorem rather than Lyapunov method as the key tool of
stability analysis in traditional ILC makes it difficult to relax
the global Lipschitz condition to local Lipschitz or even
non-Lipschitz condition and cooperate with the mainstream
methods of nonlinear control theory, such as adaptive control
and neural control. To overcome the constraints of traditional
ILC, some researchers tried to introduce the idea of adaptive
control into ILC and proposed adaptive iterative learning
control (AILC) [6], [7]. AILC takes advantage of both adaptive
control and ILC, which successfully overcomes the restriction
of global Lipschitz condition, thus it enables us to use fuzzy
logic systems or neural networks as approximators to deal with
nonlinear uncertainties. In general, the control parameters of
AILC methods are tuned along the iteration axis, and the so-
called composite energy function (CEF) [8] is usually con-
structed to analyze the stability and convergence property of
the closed-loop systems. The past decade has witnessed great
progress in AILC of uncertain nonlinear systems [9]−[16].

Fractional calculus is a promising topic for more than 300
years. But the researches are mainly in the field of mathemati-
cal sciences [17], [18]. Until recent decade, the applications of
fractional calculus develop rapidly [19], [20]. Fractional order
systems allow us to describe and model a real object more
accurately than the classical integer order dynamical systems.
Among the investigations of fractional order systems in the
past decades, control design for some fractional order systems
has been a hot topic. Many different control methods have been
proposed for various kinds of fractional systems [20]−[28].
Especially, the research on control and synchronization control
design for fractional order chaotic systems is very active
[29]−[39].

Comparing with such a large number of results, the papers
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on the ILC control of fractional order systems are relatively
less. Only a few works are reported in the filed of ILC [40]-
[53]. Moreover, all these literatures are from the viewpoint
of traditional ILC and the stability conclusions are obtained
by using contraction mapping theorem method. Therefore, as
results of integer-order systems, global Lipschitz condition is
required for traditional ILC schemes. As for AILC problem of
fractional order systems, to the best of our knowledge, there
are no results having been reported.

In this paper, we present an AILC scheme for a class of
nonlinear fractional order system with both parametric and
nonparametric uncertainties in the presence of disturbance. As
far as we know, up till now no works have been presented
for such a problem. In the proposed AILC scheme, adaptive
iterative learning controller with fractional order differential
type and difference type learning laws are presented and
the CEF containing new integral type Lyapunov function is
constructed to analyze the stability and convergence property.
The main contributions of the proposed AILC scheme and
stability analysis are highlighted as follows: 1) To the best
of our knowledge, it is the first time, in the literature, that
AILC problem of fractional order system is investigated. 2) A
sliding mode surface of tracking errors is designed by using
the sufficient condition for linear fractional order systems. 3)
A new boundary layer function using Mittag-Leffler function
is designed to deal with the initial condition problem in the
ILC design of fractional order system. 4) Fractional order
differential type learning laws with alignment method for
unknown constant parameters is used in the AILC method
for the first time and integral type Lyapunov function is
used to analyze the convergence of estimation errors. 5) The
hyperbolic tangent function is used to design robust control
term for neural network approximation error and bounded
disturbance, and a convergent series is introduced to guarantee
the learning convergence along iteration index.

The rest of this paper is organized as follow. The problem
formulation and preliminaries are given in Section II. The
AILC design with parameter updating laws is developed in
section III. In Section IV, the CEF-based stability analysis is
presented. A simulation example is presented to verify the
validity of the proposed scheme in Section V, followed by
conclusion in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Preliminaries

In this subsection, some basic definitions and useful lemmas
are given.

Definition 1 [18]: Fractional calculus is a generalization of
integration and differentiation to noninteger-order fundamental
operator aDα

t , where a and t are the bounds of the operation
and α ∈ R. The continuous integro-differential operator is
defined as

aDα
t =





dα

dtα , α > 0,

1, α = 0,∫ t
a (dσ)α , α < 0.

(1)

Definition 2 [17]: The most important function used in
fractional calculus-Euler’s gamma function is defined as

Γ(α) =
∫ ∞

0
e−σ σα−1dσ . (2)

Definition 3 [17]: Another important function in the frac-
tional calculus named Mittag-Leffler type with two parameters
is defined as

Eα, β (z) =
∞

∑
j=0

z j

Γ(α j +β )
, α > 0, β > 0. (3)

Especially, when β = 1, we obtain the Mittag-Leffler func-
tion with one parameter

Eα, 1 (z) =
∞

∑
j=0

z j

Γ(α j +1)
, Eα (z) . (4)

For integer values of α , (4) reduces to the well-known
Cauchy repeated integration formula.

The three most frequently used definitions for the general
fractional differintegral are: The Grünwald-Letnikov (GL)
definition, the Riemann-Liouville (RL) and Caputo definitions.

Definition 4 [17]: The Grünwald-Letnikov derivative defi-
nition of order α is described as

aDα
t f (t) = lim

h→0

1
hα

∞

∑
j=0

(−1) j
(

α
j

)
f (t− jh) (5)

with (
α
j

)
=

α!
j!(α− j)!

=
Γ(α +1)

Γ( j−1)Γ(α− j +1)
. (6)

Definition 5 [54]: The Riemann-Liouville fractional integral
of order α of function f (t) at a time instant t ≥ 0 is defined
as:

aIα
t f (t) = aD−α

t f (t) =
1

Γ(α)

∫ t

a
f (σ)(t−σ)α−1dσ . (7)

From (7) we can write formula for the Riemann-Liouville
definition of fractional derivative of order α in the following
form

aDα
t f (t) =

1
Γ(n−α)

dn

dtn

∫ t

a

f (σ)

(t−σ)α−n+1 dσ , (8)

for n−1 < α < n.
Definition 6 [17]: The Caputo fractional integral of order

α of function f (t) at time t ≥ 0 is defined as

aDα
t f (t) =

1
Γ(n−α)

∫ t

a

f (n) (σ)

(t−σ)α−n+1 dσ , (9)

for n−1 < α < n.
Remark 1: Actually, the above three definitions are equiva-

lent under some conditions. We will use the Caputo definition
in this paper. In the rest of this paper, the notation Dα (·)
indicates the Caputo derivative of order α with a = 0, i.e.,
Dα (·) , 0Dα

t (·).
Lemma 1 [55], [56]: Consider the following fractional order

autonomous system

Dα x(t) = Ax(t) , x(0) = x0, (10)
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where 0 < α < 1, x ∈ Rn and A ∈ Rn×n. This system is
asymptotically stable if and only if |arg(λ (A))|> α π

2 . In this
situation, the components of the state vector decay toward zero
like t−α .

Fig. 1. Stability domain for fractional order linear systems with
0 < α < 1.

Lemma 1 [57]: The fractional system Dα y(t) = u(t), 0 <
α < 1, is equivalent to the following continuous frequency
distributed model{

∂ z(ω,t)
∂ t =−ωz(ω, t)+u(t) ,

y(t) =
∫ ∞

0 µ (ω)z(ω, t)dω,

(11)

with weighting function µ (ω) = sin(απ)
πωα , z(ω, t) ∈ R.

B. Problem Formulation

In this paper, we consider a class of commensurate high-
order uncertain nonlinear systems in the presence of distur-
bance which runs on a finite interval [0,T ] repeatedly given
by





Dα xi,k (t) = xi+1,k (t) , i = 1, · · · ,n−1,

Dα xn,k (t) = f (xk (t))+θ (t)ξ (xk (t))+uk (t)+d (t)
yk (t) = x1,k (t) ,

,

(12)
where t ∈ [0,T ] is the time, k ∈ N denotes the times
of iteration; xi,k (t) ∈ R i = 1, · · · ,n and yk (t) are the
pseudo state and output variables, respectively; xk (t) =[
x1,k (t) ,x2,k (t) , · · · ,xn,k (t)

]T ∈ Rn is the pseudo state vec-
tor; f (·) is an unknown smooth function. d (t) is unknown
bounded external disturbance. uk (t) ∈ R is the control input.
The control objective of this paper is to design the adaptive
iterative learning controller to steer the output yk (t) to follow
the desired reference signal r (t).

Define r1 (t) = r (t) and ri+1 (t) = Dα ri (t), i = 1,2, · · · ,n−
1. Then we can write the desired reference vector as
xd (t) = [r1 (t) ,r2 (t) , · · · ,rn (t)]T. Define the tracking errors
as ei,k (t) = xi,k (t)− ri (t), i = 1,2, · · · ,n. Then the track-
ing error vector can be given by ek (t) = xk (t)− xd (t) =

[
e1,k (t) ,e2,k (t) , · · · ,en,k (t)

]T. In the rest of this paper, the
denotation t will be omitted when no confusion arises.

Choose the sliding surface as es,k =
[
ΛT 1

]
ek, where Λ =

[λ1,λ2, · · · ,λn−1]
T and λ1, · · · ,λn−1 are chosen suitably such

that the eigenvalues of the matrix B satisfy condition of
Lemma 1, where the matrix B is given by

B =




0
... In−2
0
−λ1 · · · −λn−1


 , (13)

with In−2 as unit matrix of n−2 dimensions. Then keeping the
system’s errors on this surface leads to the asymptotic stability
of error systems and therefore output tracking of the desired
reference signal.

To facilitate control system design, the following reasonable
assumptions are made.

Assumption 1: The unknown external disturbance is
bounded.

Assumption 2: The desired state trajectory xd (t) is contin-
uous, bounded and available.

Assumption 3: The initial state errors ei,k (0) at each iteration
are not necessarily zero, small and fixed, but assumed to be
bounded.

C. RBF Neural Networks

In control engineering, two types of artificial neural net-
works are usually used to approximate unknown smooth
functions, which specifically are linearly parameterized neural
networks (LPNNs) and multilayer neural networks (MNNs).
As a kind of LPNNs, the radial basis function (RBF) neural
network (NN) [58] is usually used as a tool to model unknown
nonlinear functions owing to its nice approximation capabili-
ties. The RBF NN can be seen as a two-layer network in which
hidden layer performs a fixed nonlinear transformation with no
adjustable parameters, i.e., the input space is mapped into a
new space. The output layer then combines the outputs in the
latter space linearly. Generally, the RBF NN approximates the
continuous function Q(Z) : Rq → R as follows

Qnn (Z) = W Tφ (Z) ,

where Z ∈ΩZ ⊂Rq is the input vector, W = [w1,w2, · · · ,wl ]
T ∈

Rl is the weight vector, the NN node number l > 1; and φ (Z) =
[ϕ1(Z), · · · ,ϕl(Z)]T, with ϕi(Z) as the commonly used Gaus-
sian functions, i.e., ϕi(Z) = e−(Z−µi)

T(Z−µi)/σ2
i , i = 1, · · · , l,

where µi = [µi1,µi2, · · · ,µiq] is the center of the receptive field
and σi is the width of the Gaussian function. It has been proven
that if l is chosen sufficiently large, W Tφ (Z) can approximate
any continuous function, Q(Z), to any desired accuracy over a
compact set ΩZ ⊂Rq in the form of Q(Z) =W ∗Tφ(Z)+ε (Z),
∀Z ∈ΩZ ⊂ Rq where W ∗ is the ideal constant weight vector,
and ε (Z) is the approximation error which is bounded over
the compact set, i.e., |ε (Z)| ≤ ε∗, ∀Z ∈ΩZ , where ε∗ > 0 is an
unknown constant. The ideal weight vector W ∗ is an artificial
quantity required for analytical purposes. W ∗ is defined as the
value of W that minimizes |ε (Z)| for all Z ∈ ΩZ ⊂ Rq, i.e.,
W ∗ := argminW∈Rl

{
supZ∈ΩZ

∣∣h(Z)−W Tφ (Z)
∣∣}.
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III. AILC SCHEME DESIGN

According to the systems dynamic equation (10) and defini-
tion of tracking errors, we can have the dynamics of tracking
errors




Dα ei,k (t) = ei+1,k (t) , i = 1, · · · ,n−1,

Dα en,k (t) = f (xk (t))+θ (t)ξ (xk (t))+uk (t)
+d (t)−Dα rn.

(14)

By taking the derivative of order α of sliding surface, one
has

Dα es,k = Dα en,k +Dα

(
n−1

∑
i=1

λiei,k

)

= Dα en,k +
n−1

∑
i=1

λiDα ei,k

= f (xk (t))+θ (t)ξ (xk (t))+uk (t)+d (t)

−Dα rn +
n−1

∑
i=1

λiei+1,k. (15)

According to Assumption 3, there exist known constants εi,
such that,

∣∣ei,k(0)
∣∣≤ εi, i = 1,2, · · · ,n for any k ∈ N. In order

to overcome the uncertainty from initial resetting errors, we
define a novel boundary layer function by employing Mittag-
Leffler function

η(t) = εEα (−Kt) , K > 0, (16)

where ε =
[
ΛT 1

]
[ε1,ε2, · · · ,εn]

T.
Remark 2: As the boundary layer function[13−15] in integer

order case, η(t) has good property of decreasing along time
axis with initial condition η(0) = ε . Moreover, it is clear that
Dα η (t) = εDα Eα (−Kt) =−KεEα (−Kt) =−Kη (t).

Then we can define an auxiliary error signal as

sk(t) = es,k(t)−η(t)sat
(

es,k(t)
η(t)

)
, (17)

where sat(·) is the saturation function which is defined as

sat(·) = sgn(·) ·min{|·| ,1} , (18)

with sgn(·) =





1, if · > 0
0, if · = 0
−1, if · < 0

as the sign function.

Subsequently, it can be easily obtained that

|esk (0)|= ∣∣λ1e1,k (0)+λ2e2,k (0)+ · · ·+ en,k (0)
∣∣

≤ λ1
∣∣e1,k (0)

∣∣+λ2
∣∣e2,k (0)

∣∣+ · · ·+ ∣∣en,k (0)
∣∣

≤ λ1ε1 +λ2ε2 + · · ·+ εn = η (0) , (19)

which implies that sk (0) = esk (0)−η (0) esk(0)
η(0) = 0 is satisfied

for all k ∈ N. Moreover, there exists the fact that

sk (t)sat
(

esk(t)
η(t)

)
=





0, if
∣∣∣ esk(t)

η(t)

∣∣∣≤ 1

sk (t)sgn(esk (t)) , if
∣∣∣ esk(t)

η(t)

∣∣∣ > 1

= sk (t)sgn(sk (t)) = |sk (t)| . (20)

To overcome the design difficulty from uncertainty
f (xk (t)), we employ radial basis function neural network to
approximate f (xk (t)) in the form of

f (xk (t)) = W ∗Tφ (xk)+ ε (xk) . (21)

From Lemma 2, we can obtain the equivalent continuous
frequency distributed model of dynamical system of sk{

∂ zk(ω,t)
∂ t =−ωzk (ω, t)+Dα sk,

sk (t) =
∫ ∞

0 µ (ω)zk (ω, t)dω,

(22)

with weighting function µ (ω) = sin(απ)
πωα , zk (ω, t) ∈ R is the

true error variable.
Define a smooth scalar positive function as

Vs,k (t) =
1
2

∫ ∞

o
µ (ω)z2

k (ω, t)dω. (23)

The time derivative of Vs,k (t) can be expressed as

V̇s,k (t) =
∫ ∞

0
µ (ω)zk (ω, t)

∂ zk (ω, t)
∂ t

dω

=
∫ ∞

0
µ (ω)zk (ω, t)(−ωzk (ω, t)+Dα sk)dω

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + skDα sk

=





−∫ ∞
0 µ (ω)ωz2

k (ω, t)dω
+sk

(
Dα es,k−Dα η (t)sgn(sk)

)
,
∣∣es,k

∣∣ > η (t)
−∫ ∞

0 µ (ω)ωz2
k (ω, t)dω,

∣∣es,k
∣∣≤ η (t)

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
Dα es,k−Dα η (t)sgn(sk)

)

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
W ∗Tφ (xk)+ ε (xk)

+θ (t)ξ (xk)+uk +d (t)−Dα rn +
n−1

∑
i=1

λiei+1,k

+Kη (t)sgn(sk))

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
W ∗Tφ (xk)+ ε (xk)

+θ (t)ξ (xk)+uk +d (t)−Dα rn +
n−1

∑
i=1

λiei+1,k

−Kes,k +Kes,k +Kη (t)sgn(sk)
)

=−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω + sk
(
W ∗Tφ (xk)+θ (t)ξ (xk)

+uk + d̄ (t)−Dα rn +
n−1

∑
i=1

λiei+1,k +Kes,k

)
−Ks2

k , (24)

where d̄ (t) = d (t)+ ε (xk) and using the equality

sk (t)(−Kesk (t)+Kη (t)sgn(sk (t)))

= sk (t)
(
−Ksk (t)−Kη (t)sat

(
esk (t)
η (t)

)

+Kη (t)sgn(sk (t)))

=−Ks2
k (t)−Kη (t) |sk (t)|+Kη (t) |sk (t)|

=−Ks2
k (t) . (25)

Obviously, d̄ (t) is bounded, i.e., there exists an unknown
positive constant ρ such that

∣∣d̄ (t)
∣∣≤ ρ .
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Then we can determine the control law as

uk (t) =Dα rn−
n−1

∑
i=1

λiei+1,k−Kes,k−Ŵ T
k φ (xk)

− θ̂k (t)ξ (xk)− ρ̂k tanh
(

skρ̂k

∆k

)
, (26)

where Ŵk, θ̂k (t) and ρ̂k are the estimates of W ∗, θ (t) and
ρ , respectively, ∆k is a convergent series sequence which is
defined as ∆k = q

km , l and q are constant design parameters and
q(∈ R) > 0, m(∈ Z+) ≥ 2. For preceding analysis, we need
the following lemmas.

Lemma 3 [59]: For any ∆k > 0 and x ∈ R, the inequality
|x|− x tanh(x/∆k )≤ γ∆k is established, where γ is a positive
constant and γ = e−(γ+1) or γ = 0.2785.

Lemma 4 [60]: limk→∞ ∑k
j=1 ∆ j ≤ 2q.

The adaptive learning laws for unknown parameters are
designed as

{
DαŴk (t) = ΓW sk (t)φ (xk) ,
Ŵk (0) = Ŵk−1 (T ) , Ŵ1 (0) = 0,

(27)

{
θ̂k (t) = θ̂k−1 (t)+qθ sk (t)ξ (xk) ,
θ̂0 (t) = 0, t ∈ [0,T ],

(28)

{
Dα ρ̂k (t) = qρ |sk (t)| ,
ρ̂k (0) = ρ̂k−1 (T ) , ρ̂1 (0) = 0,

(29)

where ΓW ∈ Rl×l is a positive square matrix and qθ ,qρ > 0
are design parameters. In the following parts, we define the
estimation error of Θ(t) as Θ̃k (t) = Θ̂k (t)−Θ(t) where Θ(t)
denotes W ∗, θ (t) and ρ .

Substituting the controller (26) back into (24) yields

V̇s,k (t)≤−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω− skW̃ T
k φ (xk)

− skθ̃k (t)ξ (xk)+ |sk|ρ−|sk| ρ̂k

+ |sk| ρ̂k− skρ̂k tanh
(

skρ̂k

∆k

)
−Ks2

k

≤−
∫ ∞

0
µ (ω)ωz2

k (ω, t)dω− skW̃ T
k φ (xk)

− skθ̃k (t)ξ (xk)−|sk| ρ̃k + γ∆k−Ks2
k

≤−skW̃ T
k φ (xk)− skθ̃k (t)ξ (xk)

−|sk| ρ̃k + γ∆k−Ks2
k . (30)

From adaptive updating laws (27) and (29) it follows

DαW̃k = DαŴk−DαW ∗ = DαŴk, (31)

Dα ρ̃k = Dα ρ̂k−Dα ρ = Dα ρ̂k. (32)

According to Lemma 2, we can obtain the distributed
frequency model of (31) and (32) as follows

{
∂ zW,k(ω,t)

∂ t =−ωzW,k (ω, t)+ΓW sk (t)φ (xk) ,
W̃k (t) =

∫ ∞
0 µ (ω)zW,k (ω, t)dω,

(33)

{
∂ zρ,k(ω,t)

∂ t =−ωzρ,k (ω, t)+qρ |sk (t)| ,
ρ̃k (t) =

∫ ∞
0 µ (ω)zρ,k (ω, t)dω,

(34)

where zW,k (ω, t)∈Rl and zρ,k (ω, t)∈R are the true estimation
error variables.

Define a positive scalar positive function of parameter
estimation errors as

Vp,k (t) =
1
2

∫ ∞

o
µ (ω)zT

W,k (ω, t)Γ−1
W zW,k (ω, t)dω

+
1

2qρ

∫ ∞

o
µ (ω)z2

ρ,k (ω, t)dω. (35)

Taking the time derivative of Vp,k (t) results in

V̇p,k (t) =
∫ ∞

o
µ (ω)zT

W,k (ω, t)Γ−1
W

∂ zW,k (ω, t)
∂ t

dω

+
1

qρ

∫ ∞

o
µ (ω)zρ,k (ω, t)

∂ zρ,k (ω, t)
∂ t

dω

=−
∫ ∞

o
µ (ω)ωzT

W,k (ω, t)Γ−1
W zW,k (ω, t)dω

+Γ−1
W DαW̃ T

k

∫ ∞

o
µ (ω)zW,k (ω, t)dω

− 1
qρ

∫ ∞

o
µ (ω)ωz2

ρ,k (ω, t)dω

+
1

qρ
Dα ρ̃k

∫ ∞

o
µ (ω)zρ,k (ω, t)dω

≤skW̃ T
k φ (xk)+ |sk| ρ̃k. (36)

Define a Lyapunov candidate as Vk (t) = Vs,k (t) +Vp,k (t).
Hence, we can obtain the derivative of Vk (t) with respect to
time by combining (30) and (36)

V̇k ≤−Ks2
k − skθ̃k (t)ξ (xk)+ γ∆k. (37)

IV. ANALYSIS OF STABILITY AND CONVERGENCE

In this section, we will prove that the controller can guaran-
tee the stability of the closed-loop system and the convergence
of tracking errors.

The stability of the proposed AILC scheme is summarized
as follows.

Theorem 1: Considering the fractional order system (12),
and designing adaptive iterative learning controller (26) and
with parameter adaptive learning algorithms (27)−(29), the
following properties can be guaranteed: 1) all the signals
of the closed-loop system are bounded; 2) the pseudo
error variable sk (t) converges to zero as k → ∞, i.e.,
limk→∞

∫ T
0 (sk (σ))2dσ ≤ 0.

Proof: Define the Lyapunov-like CEF as

Ek (t) = Vk (t)+
1

2qθ

∫ t

0
θ̃ 2

k (σ)dσ . (38)

The proof includes four parts.
1) Difference of Ek (t)
Compute the difference of Ek (t), which is

∆Ek (t) =Ek (t)−Ek−1 (t)
=Vk (t)−Vk−1 (t)

+
1

2qθ

∫ t

0

[
θ̃ 2

k (σ)− θ̃ 2
k−1 (σ)

]
dσ . (39)



6 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

Considering (37), one has

Vk (t)≤Vk (0)+
∫ t

0

(−Ks2
k − skθ̃k (t)ξ (xk)+ γ∆k

)
dσ

= Vp,k (0)−K
∫ t

0
s2

kdσ −
∫ t

0
skθ̃k (σ)ξ (xk)dσ + γ∆kt.

(40)

Utilizing the algebraic relation (aaa−bbb)T (aaa−bbb) −
(aaa−ccc)T (aaa−ccc) = (ccc−bbb)T [2(aaa−bbb)+(bbb−ccc)] and taking the
adaptive learning laws (28) into consideration, we have

1
2qθ

∫ t

0

[
θ̃ 2

k (σ)− θ̃ 2
k−1 (σ)

]
dσ

=
∫ t

0
skθ̃k (σ)ξ (xk)dσ − qθ

2

∫ t

0
s2

k (σ)ξ 2 (xk)dσ . (41)

Substituting (40) and (41) back into (39), it follows that

∆Ek (t)≤Vp,k (0)−Vk−1 (t)−K
∫ t

0
s2

kdσ + γ∆kt. (42)

Let t = T in (42). From the adaptive parameter updating
laws we know Vp,k (0) =Vp,k−1 (T ). Therefore, it follows from
(42) that

∆Ek (T )≤Vp,k (0)−Vp,k−1 (T )−Vs,k−1 (T )

−K
∫ t

0
s2

kdσ + γ∆kT

≤−K
∫ t

0
s2

kdσ + γ∆kT. (43)

2) The finiteness of Ek (T )
According to (38), we know

E1 (t) = V1 (t)+
1

2qθ

∫ t

0
θ̃ 2

1 (σ)dσ . (44)

Recalling adaptive updating law (28), we can have θ̂1 (t) =
qθ s1 (t)ξ (x1), which leads to time derivative of E1 (t) as
follows

Ė1 (t) = V̇1 (t)+
1

2qθ
θ̃ 2

1 (t)

≤−Ks2
1− s1θ̃1 (t)ξ (x1)+ γ∆1

+
1

2qθ

(
θ̃ 2

1 (t)−2θ̃1 (t) θ̂1 (t)
)
+

1
qθ

θ̃1 (t) θ̂1 (t)

=−Ks2
1− s1θ̃1 (t)ξ (x1)+ γ∆1+s1θ̃1 (t)ξ (x1)

+
1

2qθ

[(
θ̂1 (t)−θ (t)

)2−2
(
θ̂1 (t)−θ (t)

)
θ̂1 (t)

]

≤−Ks2
1 + γ∆1 +

1
2qθ

θ 2 (t) . (45)

Denote c = maxt∈[0,T ]
{

θ 2 (t)/(2qθ )
}

. Integrating the
above inequality over [0, t] yields

E1 (t)−E1 (0)≤−K
∫ t

0
s2

1 (σ)dσ + t · c+θ∆1t. (46)

According to the adaptive updating laws it is clear that
E1 (0) = Vp,1 (0), which is determined by W ∗ and ρ . Thus
the boundedness of E1 (t) can be ensured since

E1 (t)≤−K
∫ t

0
s2

1 (σ)dσ + t · c+θ∆1t +Vp,1 (0) , t ∈ [0,T ] .
(47)

Letting t = T in (47), we can obtain the boundedness of
E1 (T )

E1 (T )≤−K
∫ T

0
s2

1 (σ)dσ +T (c+ γ∆1)+Vp,1 (0)

< ∞. (48)

Applying (43) repeatedly, we may have

Ek (T ) = E1 (T )+
k

∑
j=2

∆E j (T )

≤−K
k

∑
j=1

∫ T

0
s2

j (σ)dσ +T · cmax + γT
k

∑
j=1

∆k +Vp,1 (0)

≤ T · cmax + γT
k

∑
j=1

∆k +Vp,1 (0) . (49)

Recalling Lemma 4 we have γT ∑k
j=1 ∆k ≤

limk→∞ γT ∑k
j=1 ∆k ≤ 2γT q, which further implies the bound-

edness of Ek (T ).
3) The finiteness of Ek (t)
Next we will prove the boundedness of Ek (t) by induction.

The boundedness of Ek (T ) is guaranteed for all iterations.
Consequently, ∀k ∈ N, there exists a constant M1 satisfying∫ T

0 θ̃ 2
k (σ)dσ ≤M1, thus it follows

Ek (t) = Vk (t)+
∫ t

0
θ̃ 2

k (σ)dσ

≤Vk (t)+
∫ T

0
θ̃ 2

k (σ)dσ

≤Vk (t)+M1. (50)

On the other hand, from (42), we obtain

∆Ek+1 (t)≤Vp,k+1 (0)−Vk (t)−K
∫ t

0
s2

k+1dσ + γ∆k+1t. (51)

Adding (51) to (50) leads to

Ek+1 (t) = Ek (t)+∆Ek+1 (t)
≤Vk (t)+M1 +Vp,k+1 (0)−Vk (t)

−K
∫ t

0
s2

k+1dσ + γ∆k+1t

≤M1 +Vp,k (T )+ γ∆k+1t. (52)

As we have proven that E1 (t) is bounded, therefore Ek (t)
is finite by induction. In the sequel, we can obtain the
boundedness of Ŵk (t), θ̂k (t) and ρ̂k.

4) Learning convergence property
Rewrite inequality (49) as

k

∑
j=1

∫ T

0
s2

j (σ)dσ

≤

(
T · cmax + γT

k
∑
j=1

∆k +Vp,1 (0)−Ek (T )

)

K
. (53)
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Taking the limitation of (53), it follows that

lim
k→∞

k

∑
j=1

∫ T

0
s2

j (σ)dσ

≤ lim
k→∞

(
T · cmax + γT

k

∑
j=1

∆k +Vp,1 (0)−Ek (T )

)
/K

≤ T · cmax +2γqT +Vp,1 (0) . (54)

According to the convergence theorem of the sum of series,
limk→∞

∫ T
0 s2

k (σ)dσ = 0. Since xd is bounded, the bounded-
ness of xk is established. Based on the above reasoning, we
can arrive at that uk (t) is bounded. ¤

V. SIMULATION STUDY

In this section, a simulation study is presented to verify
the effectiveness of the AILC scheme. Consider the following
second-order nonlinear fractional order system:





Dα x1,k (t) = x2,k (t) ,
Dα x2,k (t) = f (xk)+θ (t)ξ (xk)+uk (t)+d (t) ,
yk (t) = x1,k (t) ,

where α = 0.9, f (xk) = −x1,kx2,k sin
(
x1,kx2,k

)
, θ (t) = 1 +

0.5sin t, ξ (xk) = sin
(
x1,k

)
cos

(
x2,k

)
, d (t) = 0.1∗ rand ∗ sin(t)

with rand presenting a Gaussian white noise. The desired
reference trajectory is given by r (t) = sin t. The design param-
eters are chosen as ε1 = ε2 = 1, λ = 2, K = 6, ΓW = diag{0.6},
qθ = 2, qρ = 0.8, ε = λε1 + ε2 = 3. It is clear that |λ |> α

2 π .
Additionally, the boundary layer function is specified by
η(t) = 3E0.9 (−Kt), a graphic representation of η(t) is shown
in Fig. 2.

Fig. 2. Mittag-Leffler type boundary layer function η(t).

The parameters for neural network are chosen as l = 30,
µ j = 1

l (2 j− l) [2,3], σ j = 2, j = 1,2, · · · , l. The initial con-
dition x1,k (0) and x2,k (0) are randomly taken as r (0) +
0.5(1−2rand) and r1 (0)+0.5(1−2rand) , respectively. For
ease of programming, we use the Grünwald-Letnikov defini-
tion in the simulation. The system runs on [0,2π] repeatedly.
Parts of the simulation results are shown in Fig. 3∼Fig. 7.

Fig. 3. System output yk (t) on r (t) (k = 1).

Fig. 4. Control input (k = 1).

Fig. 5. System output yk (t) on r (t) (k = 30).

Figs. 3∼ 4 and Figs. 5∼ 6 show the output tracking trajec-
tory and control input of the 1st and the 30th iteration. Obvi-
ously, the signals are bounded and the tracking performance
of 1st iteration is much worse than that of 30th iteration.
Fig. 7 gives the convergence of

∫ T
0 s2

k (t)dt along the iteration
axis, which indicates that the proposed AILC scheme achieves
perfect tracking by learning.
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Fig. 6. Control input (k = 30).

Fig. 7.
∫ T

0 s2
k (t)dt versus the number of iterations.

VI. CONCLUSIONS

In this paper, an adaptive iterative learning control scheme
has been presented for a class of nonlinear fractional order
systems in the presence of disturbance. A new boundary layer
function by introducing Mittag-Leffler function is designed
to deal with the initial condition problem of ILC. RBF
NN is utilized to approximate the system uncertainty while
fractional order differential type updating laws are designed
to estimate ideal neural weight and the upper bound of neural
approximation error and disturbance. The hyperbolic tangent
function with a convergent series sequence is employed to
form the robust control term. Theoretical analysis by con-
structing Lyapunov-like CEF has been presented to show the
boundedness of all signals and convergence along iteration
of tracking error. Simulation results have been provided to
show the validity the proposed scheme. This is the first time
consideration of the AILC problem of fractional order system.
Compared with traditional ILC of fractional systems, our
AILC scheme relaxes the global Lipschitz condition and a new
framework of stability analysis by using Lyapunov-like CEF is
presented. Although we only consider the class of fraction as
(12), the idea of the proposed AILC method can be applied to
more kinds of fractional order systems and provide a reference
for AILC design of fractional order systems.
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