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Fractional Envelope Analysis for Rolling Element
Bearing Weak Fault Feature Extraction

Jianhong Wang, Liyan Qiao, Yongqiang Ye, Senior Member, IEEE, and YangQuan Chen, Senior Member, IEEE

Abstract—The bearing weak fault feature extraction is crucial
to mechanical fault diagnosis and machine condition monitoring.
Envelope analysis based on Hilbert transform has been widely
used in bearing fault feature extraction. A generalization of the
Hilbert transform, the fractional Hilbert transform is defined
in the frequency domain, it is based upon the modification of
spatial filter with a fractional parameter, and it can be used to
construct a new kind of fractional analytic signal. By performing
spectrum analysis on the fractional envelope signal, the fractional
envelope spectrum can be obtained. When weak faults occur
in a bearing, some of the characteristic frequencies will clearly
appear in the fractional envelope spectrum. These characteristic
frequencies can be used for bearing weak fault feature extraction.
The effectiveness of the proposed method is verified through
simulation signal and experiment data.

Index Terms—Fractional analytic signal, fractional envelope
analysis, fractional Hilbert transform, rolling element bearing,
weak fault feature extraction.

I. INTRODUCTION

OLLING element bearings are at the heart of almost

every rotating machine. Therefore, they have received
a lot of attention in the field of vibration analysis as they
represent a common source of faults, which can be detected
at an early stage [1]. Recently, to ensure the reliability and
safety of modern large-scale industrial processes, data-driven
methods have been receiving considerably increasing attention,
particularly for the purpose of process monitoring [2], [3].
The collected vibration data from defective rolling element
bearings are generally non-stationary. If processed properly by
a fault feature extraction technique, this data can indicate the
existence and location of certain faults. However, the vibration
signal is still an indirect source of information, as it is often
severely corrupted by various noise effects. As a result, the
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weak signature is even more difficult to be detected at the
early stage of defect development. Its effectiveness in fault
feature extraction largely relies on the availability of proper
signal processing techniques [4]. A signal feature enhancing
method is required to provide more evident information for
incipient defect detection of rolling element bearings.

While operating a roller bearing with local faults impulse is
created, the high-frequency shock vibration is then generated
and the amplitude of vibration is modulated by the pulse
force. Therefore resonance demodulation technique provides
an important and effective approach to analyze the fault signals
of high-frequency impact vibration. Envelope analysis, some-
times known as the high frequency resonance demodulation
technique is by far the most successful method for rolling
element bearings diagnostics [5]—[9]. At present, the Hilbert
transform based envelope analysis has been widely used in
rolling element bearings fault diagnosis as one of the most
common envelope analysis methods because the characteristic
information can be obtained by Hilbert transform, which has
quick algorithm and could extract envelope of the rolling
element bearings fault vibration signal effectively [10], [11].

However, in the traditional Hilbert transform based envelope
analysis method, the fault is identified through the peak value
of envelope spectrum. Thus, this traditional method has inher-
ent disadvantages. Fast Fourier transform method is widely
used in the spectrum analysis of envelope signals; however, it
could only give the global energy-frequency distributions and
fail to reflect the details of a signal. So it is hard to analyze
a signal effectively when the fault signal is weaker than the
interfering signal. At the same time, it is easy to diffuse and
truncate the signal’s energy as fast Fourier transform regards
harmonic signals as basic components, which will lead to
energy leakage and cause lower accuracy.

One of the early works in connection with fractional is
that of Lohmann et al. [12], who proposed two fractional
generalizations of the classical Hilbert transform. One defi-
nition is a modification of the spatial filter with a fractional
parameter, and the other is based on the fractional Fourier
transform. In [13], Pei and Yeh developed the discrete version
of the fractional Hilbert transform and applied it to the
edge detection of images. Tseng and Pei [14] considered
optimized design strategies for finite impulse response designs
and infinite impulse response models of the discrete-time
fractional Hilbert transform, and proposed a novel secure SSB
communication application. So far, the research application of
fractional Hilbert transform is very young and needs to be
explored.

A generalization of Hilbert transform based envelope anal-
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ysis, called fractional envelope analysis, is introduced here,
which provides a tool to process signal in the fractional Fourier
plane instead of a conventional Fourier plane. This method
hugs the signal optimally, and could reduce the interference
of noise to some extent. Thus, this relatively new signal
processing technique has the capability of providing more
diagnostic information than conventional Hilbert transform
based envelope analysis. Reference [5] describes that the Kur-
tosis value is very sensitive to bearing fault signal. Therefore,
the Kurtosis is feasible to be the index for selecting the optimal
fractional order envelope analysis.

The remainder of the paper is organized as follows: Section
IT presents necessary theoretical background of Hilbert trans-
form. The fractional envelope analysis based upon the modifi-
cation of spatial filter with a fractional parameter is introduced
in Section III. Simulations and experimental validations are
performed consequently in Sections IV and V. Conclusions
are drawn in Section VI.

II. HILBERT TRANSFORM

The Hilbert transform of the function z(t) is defined by an
integral transform [11], [15]:

1 [ z(7)

Hz(t)] =2(t) = — dr. 1

0] =)=+ [ ar m
Because of a possible singularity at ¢ = 7, the integral has

to be considered as a Cauchy principal value. Mathematically,

the Hilbert transform Z(¢) of the original function represents

a convolution of xz(t) and 1/(nt), which can be written as:
1
() =x(t) x| — ] . 2
a(0) = o(0)+ (3 ) @
Note that the Hilbert transform of a time-domain signal z(t)

is another time-domain signal Z(t). If x(¢) is real-valued, then
so is &(t). The transfer function of Hilbert transform becomes

—J, w>0
Hi(w) = —jsgn(w) =0, w=0 3)
7y w < 0.

Physically, the Hilbert transform can be viewed as a filter
of unity amplitude and phase +90° depending on the sign of
the frequency of the input signal spectrum. The Hilbert filter
takes an input signal and returns the Hilbert transform of the
signal as an output signal. This is also referred to as a Hilbert
transformer, a quadrature filter, or a 90° phase shifter.

III. FRACTIONAL ENVELOPE ANALYSIS

Note that the Heaviside step function, or unit step function,
is defined by [12], [15]:

1, w>0
1 1
H@) =51 +sm@) =45, w=0 @
0, w<O.

Equation (3) can be rewritten in terms of the Heaviside step
function as follows:

Hy(w) = —jH(w) + jH(-w). (5)
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Equation (5) can be put in the following form:
N T
Hy(w) = exp (—]5) H(w) 4 exp (j§> H(-w). (6)
A fractional generalization of this result can be written as
follows:

LT . T
Hy(w) = exp (—jpy ) Hw) +exp (jp% ) H(-w). ()
This can be conveniently rewritten as

H,(w) = cos (pg) — jsgn(w) sin (pg) (8)

or
H,(w) = cos (pg) Ho(w) + sin (pg) Hiw). )

In fact, the transfer function of Hilbert transform (3) can be
written as

3 w>0
exp (—jg);- exp (J%) Cw=0 (10)
exp (§5), w < 0.

We introduce the kth-order Hilbert operator H, = H* to
represent the kth-repetition of the Hilbert transform. Thus, the
Fourier transform of the kth-order Hilbert transform can be

expressed as
FHya(t)] = F(w) - [~jsgn(w)]". (1D

The formula (11) can be generalized to a non-integer p and
the transfer function of the pth-order Hilbert operator H,, is

Hy(w) = [—jsgn(w)]”

exp (—jp%) . w>0
o (-pg) e (ps) o )
exp (jp5) . w <.

This can be conveniently rewritten as (8). Thus, the pth-
order Hilbert operator H,, can be expressed as

H, = cos (pg) - I +sin (pg) - Hy

where Hy = I is the identity operator. The pth-order Hilbert
transform is

&(t) = Hplz(t)] = cos (pg) - z(t) + sin (p%) - Hy(t).
(14)

The parameter p is called the order. The above definition of
fractional Hilbert transform is a weighted sum of the original
signal and its conventional Hilbert transform, and it is based
upon modifying the spatial filter with fractional parameter. The
magnitude response and the phase response are

13)

[Hp(w)| =1 (15)
and
-p5, w>0
p(w) = (16)
Py, w<0
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respectively.

Fig. 1 shows the block diagram for implementing the gen-
eralized fractional Hilbert transform.

Fig. 1.
Hilbert transform.

Block diagram for implementation of the generalized fractional

As we know, Fourier transform is fundamental tool in
fractional-order systems and controls [16]. In fact, among
Hilbert, fractional Hilbert, and fractional calculus there are
the following transfer function, magnitude response, and phase
response relations (Table I).

TABLE I
COMPARISON OF HILBERT, FRACTIONAL HILBERT, AND
FRACTIONAL CALCULUS

Hilbert Fractional Hilbert Fractional calculus
Transfer —isgn(w) [—isgn(w)]P (iw)¥
Magnitude 1 1 |w]¥
Phase —Zsgn(w) —Ersgn(w) Ersgn(w)

From Table I, the phase characteristic of the fractional
calculus operator (v = —p) is the same as the phase char-
acteristic of the fractional Hilbert. However, the fractional
calculus operator is actually a singular low-pass (v < 0) filter,
or a singular high-pass (v > 0) filter (Fig.2), although the
fractional Hilbert is an all-pass filter.

n
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1
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|
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\

Magnitude

Fig.2. Magnitude response of the fractional calculus operator.

The real signal x(¢) and its fractional Hilbert transform & (¢)
can form a new complex signal, which is called the fractional
analytical signal, such that

y(t) = =(t) +j2().

The envelope A(t) of the complex signal y(t) is defined as

A(t) = |2(t) + j2(t)] = Va2(t) + 22(1).

a7

(18)
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The application to fractional envelope analysis is shown
in Fig.3 [5]. Fig.3 depicts the envelope as the modulus of
the analytic signal obtained by inverse transformation of the
selected one-sided frequency band.
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Fig.3. Procedure for envelope analysis using the fractional Hilbert transform
method.

By performing spectrum analysis on the envelope signal
A(t), the fractional envelope spectrum can be obtained. When
faults occur on a bearing, some of the characteristic frequen-
cies will clearly appear in the fractional envelope spectrum.
These characteristic frequencies can be used for bearing weak
fault feature extraction.

The algorithm for rolling element bearing fractional enve-
lope analysis consists of the following steps:

Step 1: Rolling element bearing vibration signal acquisition.

Step 2: Taking fractional Hilbert transform of vibration
signal.

Step 3: Taking magnitude of fractional analytical signal to
obtain fractional envelope signal.

Step 4: Taking fast Fourier transform (FFT) of fractional
envelope signal.

Step 5: Analyzing envelope spectrum at bearing fault fre-
quencies.

IV. SIMULATION ANALYSIS

In this section, a simple simulation is used to illustrate the
fractional envelope characteristic of the bearing fault signal
with strong background noise. The bearing system including
the transducer is simplified as a single degree of freedom
(SDOF) system and the vibration induced by a single defect
in the rolling element bearing can be given by [8]

“+o0
2(t) =Y Ape 57T o sin(wn (t — Tk))
k=0

19)

where w,, denotes the resonance angular frequency of the
system and w, = 2nf,, where f,, denotes the resonance
frequency. The amplitude of the kth transient response Ay
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is set to be 5, the sampling frequency fs; is 20kHz, the
resonance frequency f,, of system is 3 kHz, the maximal slip
ratio of its period T is 0.01s, the relative damping ratio £ is
0.1. The profile of a typical signal, contaminated with —2 dB
additive Gaussian noise, (i.e., SNR = —2), is shown in Fig. 4.
Figs.4 (a) and 4 (b) display the time waveform of the original
signal and noisy signal. The frequency spectrum of the noisy
signal is shown in Fig.4 (c). It is hard to reveal some useful
information from Fig. 4 (c). Therefore, the proposed method is
used to achieve the enhancement of fault detection.

s ]
£ T rrrrrrrr ey
0 0.05 Ti()r4nle © 0.15 0.2
‘tosis(i)*ZJ 103
0 0.05 Tigl.i © 0.15 02
(b)
E 500

Frequency (Hz)
©

Fig.4. Simulated signal: (a) time waveform of original signal, (b) time
waveform of signal contaminated with —2dB additive Gaussian noise and

(c) frequency spectrum waveform.

As a matter of fact, the Kurtosis has often been employed
in the signal processing community to solve “blind” problems:
blind identification and equalisation of systems by output
Kurtosis maximisation, blind separation of mixed signals by
individual maximisation of the source Kurtosis, etc [17]. Here,
the sample version of the Kurtosis (20) is used to blindly
identify the optimal order of fractional Hilbert transformer.
This Kurtosis is taken as the normalised fourth order moment
given by [5]

4

2|
M=

(z; — )

(s - w>2)2

where my is the fourth sample moment about the mean, my is
the second sample moment about the mean (sample variance),
N is the number of samples, z; is the ith sample and Z is the
sample mean. For symmetric unimodal distributions, positive
Kurtosis indicates heavy tails and peakedness relative to the
normal distribution, whereas negative Kurtosis indicates light
tails and flatness [18].

Table II presents the comparison of Kurtosis using differ-
ent order Hilbert transformer filtering simulation signal (19)
contaminated with —2 dB additive white Gaussian noise. Note

3
N
<
I
—_

(20)

3
VRS
2|~

M=z

I
—

i
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that, 0.2-order is suitable for this envelope spectrum analysis.
For this reason, our method has larger design flexibility than
the integer (1-order) Hilbert transform-based method. The 0.2-
order envelope signal and 0.2-order envelope spectrum of
the 0.2-order Hilbert transformer filtered signal are shown
in Fig.5. It can be seen that in Fig.5(b) the characteristic
frequencies clearly appear in the 0.2-order envelope spectrum.
These characteristic frequencies can be used for bearing fault
diagnosis.

TABLE I
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER
HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4
Kurtosis 3.0461 3.3907 3.7015 3.5582 2.9891
0.5 0.6 0.7 0.8 0.9 1.0
2.5702 2.7531 3.1859 3.3133 3.0536 2.7558

p=0.2, Kurtosis = 3.7015
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Fig.5. Envelope spectrum obtained by the 0.2-order Hilbert transform.

V. EXPERIMENTAL VALIDATION

The success of the proposed method in detecting early
defect under strong additive stationary noise is clearly demon-
strated in the above simulation. In this section, the application
to actual vibration signals collected in a rolling element
bearing accelerated life test is presented.

Generally, the vibration spectrum of a healthy bearing
contains only the information related to the shaft rotation speed
and its harmonics, which is shown as Zone I in Fig.6. Any
other frequencies might indicate noise, or frequencies related
to other rotating parts operating at the same time with the
bearing under test [19]. A rolling element bearing fault could
appear at the outer, the inner race and (or) on the rolling
elements. During its early stages, the damage on the surface
is mostly only localized. The vibration signal in this case
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includes repetitive impacts of the moving components on the
defect. These impacts might create repetition frequencies that
depend on whether the defect is on the outer or the inner race,
or on the rolling element (Fig. 7).

Zone | Zone 11 Zone 1T Zone IV
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(& b

:q‘i; )

gl

b

=]

T | 1] |
222 B £ E SomYewn noo [
By B = & = caring natural  High frequencics
ENE Y resonances

Bearing fault frequencies

Fig.6. Frequency content of a vibration signal of a damaged rolling element

bearing.

Outer race fault (ORF)

Tnner race fault (TRF)

Fig.7. A series of bearing components with faults induced in them indicated
in bold line [20].

The repetition rates are denoted bearing frequencies. The
formulae for the ball passing frequency outer (BPFO) race, ball
passing frequency inner (BPFI) race, and ball fault frequency
(BFF) are as follows [5]:

n d
fBPFO = §fr (1 ) COS@)

n d
fBPFI = §f'r (1 + BCOSQ)

2
JBFF = %fr [1 — (% cos@) ]

where n is the number of rolling elements, f,. is the shaft
rotational frequency (RPM), d is the diameter of rolling
element, (i.e., ball) diameter, D is the pitch diameter, and @ is
the angle of the load from the radial plane.

21

For early faults, the repetition impulses could create initially
an increase of frequencies in the high frequency range (Zone
IV), and may excite the resonant frequencies of the bearing
parts later in Zone III, as well as the repetition frequencies of
Zone II (BPFO, BPFI, BFF).

The vibration signals collected in the bearing center of case
western reserve university (CWRU) [21] are used to illustrate
the fractional envelope analysis. The test stand consists of
a 2 hp drive induction motor, a torque transducer/encoder,
a dynamometer, and control electronics (Figs.8 and 9). The
test bearings which support the motor shaft have single point
faults with the diameters of 0.007 inch, 0.014 inch, 0.021
inch, and 0.028 inch on the outer race, inner race, and ball
of the drive end bearings produced by an electro-discharge
machine. Faulted bearings were reinstalled into the test motor
and vibration data was recorded for motor loads of 0 to 3
horsepower (motor speeds of 1797 to 1720 rpm). The number
n of rolling elements is 9 and the angle 6 of the load from
the radial plane is 0°. Vibration data was collected using a
16 channel DAT recorder at 12 000 samples per second. The
bearing is a deep groove ball bearing and the model is 6205-
2RS JEM SKF. The diameter and depth of the pit are 0.18 mm
and 0.28 mm respectively. The geometry (outside diameter,
inside diameter, thickness, ball diameter, and pitch diameter)
and defect frequencies of the bearing are listed in Tables III
and IV.

o~
Drive end bearing
location

Fig.8.

torque transducer/encoder, load [21].

Experimental test rig, composed of a 2hp drive induction motor, a

PC running NI labVIEW data
acquisition & control

7 3-phase 50 Hz
power source Acquisition card
(NT DAQ pads)

Accelerometers
r

ol
sl’

Exchangeable
drive end bearing

2 bp drive IM Torque transducer/encoder Load

Fig.9. Schematic of the experimental test rig [22].
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TABLE III
SIZE OF ROLLING ELEMENT BEARING (MM)
Type Outside Inside Thickness Ball Pitch
SKF6025 51.9989 25.0012 15.0012 7.9400 39.0398

TABLE 1V

DEFECT FREQUENCIES OF ROLLING ELEMENT BEARING,

(MULTIPLE OF RUNNING SPEED)
Type Outer ring Inner ring Rolling element
SKF6025 3.5848 5.4152 4.7135

A. Case 1: Outer Race Fault

The outer race fault is located at the 6 o’clock position and
the accelerometer is attached to the housing with a magnetic
base. In this case, the shaft frequency f, is 29.17 Hz (1750/60,
shaft rotates at the speed of 1750 rpm). The characteristic bear-
ing defect frequency fppro is equal to 3.5848 times the shaft
rotation speed based on (21). Thus, the fault characteristic
frequency fppro is 104.56 Hz.

Fig. 10 (a) gives the temporal waveform of outer race fault
diameter of 0.007 inch. Fig. 10(b) shows the corresponding
optimal fractional (0.1-order, Table V) envelope spectrum. The
fault characteristic frequency fgpro is located at 105 Hz, and
its associated harmonics, at 209.8 Hz, 314.8 Hz, 419.7 Hz, and
so on, can be easily detected.

4 T T T
2
2
<
£ of
£
< -2
—4 L L 1 L L
0 1000 2000 3000 4000 5000 6000
Time (s)
(2)
p=20.1, Kurtosis = 5.912
0.4 T T T T
X105
2 Pe X:2098
N 031 Y0255t e
E N "
= 02} X:314.8 X:524.6
& . X:4197 L0124
5 YOS S perey M
0.1t . . |
O‘IUMLLJ\[JLJlJ A . m‘ \h.\m |
0 1000 2000 3000 4000 5000 6000
Frequency (Hz)

)

Fig.10. The temporal waveform of the signal of OR007@6-2 and the
corresponding envelope spectrum obtained by the 0.1-order Hilbert transform.

B. Case 2: Inner Race Fault

In this case, the shaft frequency f,. is 29.13 Hz (shaft rotates
at the speed of 1748 rpm). The characteristic bearing defect
frequency fpprr is equal to 5.4152 times the shaft rotation
speed based on (22). Thus, the fault characteristic frequency
fBPFI is 157.76 Hz.
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TABLE V
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER
HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4
Kurtosis 5.8875 5.9120 5.8019 5.3508 4.2234
0.5 0.6 0.7 0.8 0.9 1.0
3.0349 1.3953 0.4235 0.3769 0.9572 1.8214

Fig. 11 (a) gives the temporal waveform of inner race fault
diameter of 0.007 inch and the corresponding optimal frac-
tional (0.5-order, Table VI) envelope spectrum is shown in
Fig. 11 (b). It can be seen that the 1x, 2x, 3x BPFI are very
clear in Fig. 11 (b).
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Fig.11. The temporal waveform of the signal of IR0O07-2 and the corre-

sponding envelope spectrum obtained by the 0.5-order Hilbert transform.

TABLE VI
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER
HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4
Kurtosis 4.7495 4.7805 4.7163 4.2787 3.1397
0.5 0.6 0.7 0.8 0.9 1.0
6.2135 0.4184 0.4780 1.1967 1.6665 1.6513

C. Case 3: Ball Fault

In this case, the shaft frequency f, is 29.13 Hz (shaft rotates
at the speed of 1748 rpm). The characteristic bearing defect
frequency fppp is equal to 4.7135 times the shaft rotation
speed based on (23). Thus, the fault characteristic frequency
fBFF is 137.30 Hz.

Fig. 12 (a) gives the temporal waveform of ball fault diam-
eter of 0.028 inch. It can be seen that there are many obvious
periodic impulses in Fig. 12 (a), which may be caused by the
interaction between the faulty parts and connected rolling
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element surfaces. In order to obtain clear fault information,
the corresponding optimal fractional (0.9-order, Table VII)
envelope spectrum is shown in Fig.12(b). It can be seen
that the characteristic frequencies are 1x, 2x, 3x BFF and
its harmonics modulated by f,. (Fig.6), which implies the
occurrence of ball fault. Moreover, there are some frequency
components in Fig. 12 (b). The fault information can hardly be
obtained from single fractional envelope analysis without prior
filtration. The possible reason for other frequency components
may be that the signals collected are usually disturbed by the
nearby bearings or other background noise [19].
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Fig.12. The temporal waveform of the signal of B028-2 and the correspond-
ing envelope spectrum obtained by the 0.9-order Hilbert transform.

TABLE VII
COMPARISON OF KURTOSIS BETWEEN DIFFERENT ORDER
HILBERT TRANSFORM

Order 0 0.1 0.2 0.3 0.4
Kurtosis 1.9349 1.9552 1.9037 1.5660 0.6402

0.5 0.6 0.7 0.8 0.9 1.0
0.9391 1.0778 1.4084 1.7998 2.1421 1.0845

Figs. 10—12 altogether show that the proposed fractional
Hilbert transform based envelop analysis provides better en-
velop detection results and achieves better Kurtosis perfor-
mance than the envelop analysis based on traditional Hilbert
transform on the studied bearing fault signals. These results
demonstrate the excellent compromise capability of the frac-
tional Hilbert transformer in detect accuracy and filtering noisy
bearing fault signal. This method may therefore serve as an
effective framework for the model-based detection of noisy
rolling element bearings.

VI. CONCLUSION

The fractional Hilbert transform signal detect model based
upon the modification of spatial filter with a fractional pa-

rameter technique is constructed in this work, which breaks
the thought that the traditional fault detect model can only be
based on integer-order Hilbert transform. By setting a flexible
fractional order, our model can better enhance the compromise
capability in detect accuracy and filtering noisy bearing fault
signal. The effectiveness of the method is demonstrated on
both simulated signal and actual data are collected in rolling
bearing accelerated life test. The proposed technique exhibits
excellent performances on visual sense and quantitative com-
parison. While the cyclic frequency error has some influence
on the performance of the proposed method, how to reduce
the cyclic frequency error and extract the coupled faults are
worthy of further study.
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