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Variational Calculus With Conformable
Fractional Derivatives

Matheus J. Lazo and Delfim F. M. Torres

Abstract—Invariant conditions for conformable fractional
problems of the calculus of variations under the presence of ex-
ternal forces in the dynamics are studied. Depending on the type
of transformations considered, different necessary conditions of
invariance are obtained. As particular cases, we prove fractional
versions of Noether’s symmetry theorem. Invariant conditions
for fractional optimal control problems, using the Hamiltonian
formalism, are also investigated. As an example of potential
application in Physics, we show that with conformable derivatives
it is possible to formulate an Action Principle for particles under
frictional forces that is far simpler than the one obtained with
classical fractional derivatives.

Index Terms—Conformable fractional derivative, fractional
calculus of variations, fractional optimal control, invariant vari-
ational conditions, Noether’s theorem.

I. INTRODUCTION

FRACTIONAL calculus is a generalization of (integer)
differential calculus, allowing to define integrals and

derivatives of real or complex order [1] – [3]. It had its
origin in the 1600 s and for three centuries the theory of
fractional derivatives developed as a pure theoretical field
of mathematics, useful only for mathematicians. The theory
took more or less finished form by the end of the 19th
century. In the last few decades, fractional differentiation
has been “rediscovered” by applied scientists, proving to be
very useful in various fields: physics (classic and quantum
mechanics, thermodynamics, etc.), chemistry, biology, eco-
nomics, engineering, signal and image processing, and control
theory [4]. One can find in the existent literature several
definitions of fractional derivatives, including the Riemann-
Liouville, Caputo, Riesz, Riesz-Caputo, Weyl, Grunwald-
Letnikov, Hadamard, and Chen derivatives. Recently, a simple
solution to the discrepancies between known definitions was
presented with the introduction of a new fractional notion,
called the conformable derivative [5]. The new definition is
a natural extension of the usual derivative, and satisfies the
main properties one expects in a derivative: the conformable
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derivative of a constant is zero; satisfies the standard formulas
of the derivative of the product and of the derivative of the
quotient of two functions; and satisfies the chain rule. Besides
simple and similar to the standard derivative, one can say that
the conformable derivative combines the best characteristics of
known fractional derivatives [6]. For this reason, the subject is
now under strong development: see [7] – [10] and references
therein.

The fractional calculus of variations was introduced in
the context of classical mechanics when Riewe [11] showed
that a Lagrangian involving fractional time derivatives leads
to an equation of motion with non-conservative forces such
as friction. It is a remarkable result since frictional and
non-conservative forces are beyond the usual macroscopic
variational treatment [12]. Riewe generalized the usual cal-
culus of variations for a Lagrangian depending on Riemann-
Liouville fractional derivatives [11] in order to deal with
linear non-conservative forces. Actually, several approaches
have been developed to generalize the calculus of varia-
tions to include problems depending on Caputo fractional
derivatives, Riemann-Liouville fractional derivatives, Riesz
fractional derivatives and others [13] – [19] (see [20] – [22] for
the state of the art). Among theses approaches, recently it was
shown that the action principle for dissipative systems can be
generalized, fixing the mathematical inconsistencies present
in the original Riewe’s formulation, by using Lagrangians
depending on classical and Caputo derivatives [23].

In this paper we work with conformable fractional
derivatives in the context of the calculus of variations and
optimal control [20]. In order to illustrate the potential
application of conformable fractional derivatives in physical
problems we show that it is possible to formulate an action
principle with conformable fractional calculus for the frictional
force free from the mathematical inconsistencies found in the
Riewe original approach and far simpler than the formulations
proposed in [23]. Furthermore, we obtain a generalization
of Noether’s symmetry theorem for fractional variational
problems and we also consider conformable fractional optimal
control problems. Emmy Noether was the first who proved,
in 1918, that the notions of invariance and constant of motion
are connected: when a system is invariant under a family
of transformations, then a conserved quantity along the
Euler-Lagrange extremals can be obtained [24], [25]. All
conservation laws of Mechanics, e.g., conservation of energy
or conservation of momentum, are easily explained from
Noether’s theorem. In this paper we study necessary conditions
for invariance under a family of continuous transformations,
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where the Lagrangian contains a conformable fractional
derivative of order α ∈ (0, 1). When α → 1, we obtain some
well-known results, in particular the Noether theorem [25].
The advantages of our fractional results are clear. Indeed,
the classical constants of motion appear naturally in closed
systems while in practical terms closed systems do not exist:
forces that do not store energy, so-called nonconservative or
dissipative forces, are always present in real systems. Frac-
tional dynamics provide a good way to model nonconservative
systems [11]. Nonconservative forces remove energy from the
systems and, as a consequence, the standard Noether constants
of motion are broken [26]. Our results assert that it is still
possible to obtain Noether-type theorems, which cover both
conservative and nonconservative cases, and that this is done
in a particularly simple and elegant way via the conformable
fractional approach. This is in contrast with the approaches
followed in [27] – [30].

The paper is organized as follows. In Section II we collect
some necessary definitions and results on the conformable
fractional calculus needed in the sequel. In Section III we
obtain the conformable fractional Euler-Lagrange equation and
in Section IV we formulate an action principle for dissipative
systems, as an example of application and motivation to
study the conformable calculus of variations. In Section V,
we present an immediate consequence of the Euler-Lagrange
equation that we use later in Sections VI and VII, where we
prove, respectively, some necessary conditions for invariant
fractional problems and a conformable fractional Noether
theorem. We then review the obtained results using the Hamil-
tonian language in Section VIII. In Section IX, we consider
the conformable fractional optimal control problem, where the
dynamic constraint is given by a conformable fractional deriva-
tive. Using the Hamiltonian language, we provide an invariant
condition. In Section X we consider the multi-dimensional
case, for several independent and dependent variables.

II. PRELIMINARIES

In this section we review the conformable fractional calculus
[5] – [7]. The conformable fractional derivative is a new well-
behaved definition of fractional derivative, based on a simple
limit definition. We review in this section the generalization
of [5] proposed in [6].

Definition 1: The left conformable fractional derivative of
order 0 < α ≤ 1 starting from a ∈ R of a function f : [a, b] →
R is defined by

dα
a

dxα
a

f(x) = f (α)
a (x)

= lim
ε→0

f(x + ε(x− a)1−α)− f(x)
ε

. (1)

If the limit (1) exist, then we say that f is left α-
differentiable. Furthermore, if f

(α)
a (x) exist for x ∈ (a, b),

then
f (α)

a (a) = lim
x→a+

f (α)
a (x)

and
f (α)

a (b) = lim
x→b−

f (α)
a (x).

The right conformable fractional derivative of order α ∈
(0, 1] terminating at b ∈ R of a function f : [a, b] → R is
defined by

bd
α

bdxα
f(x) = bf

(α)(x)

= − lim
ε→0

f(x + ε(b− x)1−α)− f(x)
ε

. (2)

If the limit (2) exist, then we say that f is right α-
differentiable. Furthermore, if bf

(α)(x) exist for x ∈ (a, b),
then

bf
(α)(a) = lim

x→a+
bf

(α)(x)

and
bf

(α)(b) = lim
x→b−

bf
(α)(x).

It is important to note that for α = 1 the conformable
fractional derivatives (1) and (2) reduce to first order ordinary
derivatives. Furthermore, despite the definition of the con-
formable fractional derivatives (1) and (2) can be generalized
for α > 1 [6], we consider only 0 < α ≤ 1 in the present
work. Is is also important to note that, differently from the
majority of definitions of fractional derivative, including the
popular Riemann-Liouville and Caputo fractional derivatives,
the fractional derivatives (1) and (2) are local operators and are
related to ordinary derivatives if the function is differentiable
(see Remark 1). For more on local fractional derivatives, we
refer the reader to [31], [32] and references therein.

Remark 1: If f ∈ C1[a, b], then we have from (1) that

f (α)
a (x) = (x− a)1−αf ′(x) (3)

and from (2) that

bf
(α)(x) = −(b− x)1−αf ′(x) (4)

where f ′(x) stands for the ordinary first order derivative of
f(x).

From (3) and (4) it is easy to see that the conformable
fractional derivative of a constant is zero, differently from the
Riemann-Liouville derivative of a constant, and for the power
functions (x− a)p and (b− x)p one has

dα
a

dxα
a

(x− a)p = p(x− a)p−α

and
bd

α

bdxα
(b− x)p = p(b− x)p−α

for all p ∈ R.
The most remarkable consequence of definitions (1) and

(2) is that the conformable fractional derivatives satisfy very
simple fractional versions of chain and product rules.

Proposition 1 [5], [6]: Let 0 < α < 1 and f and g be
α-differentiable functions. Then,

1)

(c1f + c2g)(α)
a (x) = c1f

(α)
a (x) + c2g

(α)
a (x)

and

b(c1f + c2g)(α)(x) = c1bf
(α)(x) + c2bg

(α)(x)
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for all c1, c2 ∈ R.
2)

(fg)(α)
a (x) = f (α)

a (x)g(x) + f(x)g(α)
a (x)

and

b(fg)(α)(x) = bf
(α)(x)g(x) + f(x)bg

(α)(x).

3)
(

f

g

)(α)

a

(x) =
f

(α)
a (x)g(x)− f(x)g(α)

a (x)
g2(x)

and

b

(
f

g

)(α)

(x) = bf
(α)(x)g(x)− f(x)bg

(α)(x)
g2(x)

.

4) If g(x) ≥ a, then

(f ◦ g)(α)
a (x) = f (α)

a (g(x))g(α)
a (x)(g(x)− a)α−1.

5) If g(x) ≤ b, then

b(f ◦ g)(α)(x) = bf
(α)(g(x))bg

(α)(x)(b− g(x))α−1.

6) If g(x) < a, then

(f ◦ g)(α)
a (x) = −af (α)(g(x))g(α)

a (x)(a− g(x))α−1.

7) If g(x) > b, then

b(f ◦ g)(α)(x) = −f
(α)
b (g(x))bg

(α)(x)(g(x)− b)α−1.

The simple chain and product rules given in Proposition 1
justify the increasing interest in the study of the conformable
fractional calculus, since it enable us to investigate its poten-
tial applications as a tool to practical modeling of complex
problems in science and engineering.

The conformable fractional integrals are defined as follows
[5], [6].

Definition 2: The left conformable fractional integral of
order 0 < α ≤ 1 starting from a ∈ R of a function f ∈ L1[a, b]
is defined by

Iα
a f(x) =

∫ x

a

f(u)dα
au =

∫ x

a

f(u)
(u− a)1−α

du (5)

and the right conformable fractional integral of order 0 < α ≤
1 terminating at b ∈ R of a function f ∈ L1[a, b] is defined
by

bI
αf(x) =

∫ b

x

f(u)bd
αu =

∫ b

x

f(u)
(b− u)1−α

du. (6)

It is important to mention that the conformable fractional
integrals (5) and (6) differ from the traditional fractional
Riemann-Liouville integrals [1] – [3] only by a multiplicative
constant. Moreover, for α = 1, the conformable fractional
integrals reduce to ordinary first order integrals.

In addition to these definitions, in the present work we
make use of the following properties of conformable fractional
derivatives and integrals.

Theorem 1: Let f ∈ C [a, b] and 0 < α ≤ 1. Then,

dα
a

dxα
a

Iα
a f(x) = f(x)

and
bd

α

bdxα bI
αf(x) = f(x)

for all x ∈ [a, b].

Theorem 2 (Fundamental theorem of conformable fractional
calculus): Let f ∈ C1[a, b] and 0 < α ≤ 1. Then,

Iα
a f (α)

a (x) = f(x)− f(a)

and
bI

α
bf

(α)(x) = f(x)− f(b)

for all x ∈ [a, b].

Theorem 3 (Integration by parts): Let f, g : [a, b] → R be
two functions such that fg is differentiable. Then,

∫ b

a

f(x)g(α)
a (x)dα

ax = f(x)g(x)|ba −
∫ b

a

g(x)f (α)
a (x)dα

ax

(7)

and
∫ b

a

f(x)bg
(α)(x)bd

αx

= −f(x)g(x)|ba −
∫ b

a

g(x)bf
(α)(x)bd

αx. (8)

If f, g : [a, b] → R are differentiable functions, then
∫ b

a

f(x)g(α)
a (x)dα

ax = f(x)g(x)|ba +
∫ b

a

g(x)bf
(α)(x)bd

αx.

The proof of Theorem 1 follows directly from (3), (4),
(5) and (6) since Iα

a f(x) and bI
αf(x) are differentiable. On

the other hand, the fundamental theorem of the conformable
fractional calculus (Theorem 2) is a direct consequence of
(3), (4) and definitions (5) and (6) since f, g : [a, b] → R are
differentiable functions. Finally, the integration by parts (7)
and (8) follow from Proposition 1 and Theorem 1. We also
need the following result.

Theorem 4 (Chain rule for functions of several variables):
Let f : RN → R (N ∈ N) be a differentiable function in all
its arguments and y1, . . . , yN : R → R be α-differentiable
functions. Then,

dα
a

dxα
a

f(y1(x), . . . , yN (x))

=
∂f

∂y1
y1

(α)
a +

∂f

∂y2
y2

(α)
a + · · ·+ ∂f

∂yN
yN

(α)
a

(9)

and

bd
α

bdxα
f(y1(x), . . . , yN (x))

=
∂f

∂y1
by1

(α) +
∂f

∂y2
by2

(α) + · · ·+ ∂f

∂yN
byN

(α).
(10)

Proof : For simplicity, we prove (9) only for N = 2. The
proofs for a general N and of (10) are similar. From (1) we
have for N = 2 that (by writing x = x + ε(x − a)1−α for
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simplicity)

dα
a

dxα
a

f(y1(x), y2(x))

= lim
ε→0

f(y1(x), y2(x))− f(y1(x), y2(x))
ε

= lim
ε→0

f(y1(x), y2(x))− f(y1(x), y2(x))
y1(x)− y1(x)

y1(x)− y1(x)
ε

+ lim
ε→0

f(y1(x), y2(x))− f(y1(x), y2(x))
y2(x)− y2(x)

y2(x)− y2(x)
ε

=
∂f

∂y1
y1

(α)
a +

∂f

∂y2
y2

(α)
a

since f is differentiable. ¥

III. THE CONFORMABLE EULER–LAGRANGE EQUATION

Let us first consider the fractional variational integral

J (y) =
∫ b

a

L
(
x, y(x), y(α)

a (x)
)

dα
ax (11)

defined on the set of continuous functions y : [a, b] → R
such that y

(α)
a exists on [a, b], where the Lagrangian L,

L(x, y, y
(α)
a ) : [a, b] × R2 → R, is of class C1 in each

of its arguments. The fundamental problem of the calculus
of variations consists in finding which functions extremize
functional (11). In order to obtain a necessary condition for
the extremum of (11) we need the following Lemma.

Lemma 1 (Fundamental lemma for the conformable calculus
of variations): Let M and η be continuous functions on [a, b].

If ∫ b

a

η(x)M(x)dα
ax = 0 (12)

for any η ∈ C [a, b] with η(a) = η(b) = 0, then

M(x) = 0 (13)

for all x ∈ [a, b].
Proof : We do the proof by contradiction. From (12) we

have that
∫ b

a

η(x)M(x)dα
ax =

∫ b

a

η(x)
M(x)

(x− a)1−α
dx = 0. (14)

Suppose that there exist an x0 ∈ (a, b) such that M(x0) 6=
0. Without loss of generality, let us assume that M(x0) > 0.
Since M is continuous on [a, b], there exists a neighborhood
N δ(x0) ⊂ (a, b) such that

M(x) > 0 for all x ∈ N δ(x0).

Let us choose

η(x) =

{
(x− x0 − δ)2(x− x0 + δ)2, if x ∈ N δ(x0)
0, if x /∈ N δ(x0).

(15)
Clearly, η(x) given by (15) is continuous and satisfy η(a) =

0 and η(b) = 0. Inserting (15) into (14), we obtain that
∫ b

a

η(x)M(x)dα
ax

=
∫ x0+δ

x0−δ

(x− x0 − δ)2(x− x0 + δ)2
M(x)

(x− a)1−α
dx > 0

which contradicts our hypothesis. Thus,

M(x)
(x− a)1−α

> 0 for all x ∈ (a, b).

Since (x−a)1−α > 0 for x ∈ (a, b), and since M ∈ C [a, b],
we get

M(x) = 0 for all x ∈ [a, b].

¥
Theorem 5 (The conformable fractional Euler–Lagrange

equation): Let J be a functional of form (11) with L ∈ C1(
[a, b]× R2

)
, and 0 < α ≤ 1. Let y : [a, b] → R be a α-

differentiable function with y(a) = ya and y(b) = yb, ya,

yb ∈ R. Furthermore, let y ∂L

∂y
(α)
a

be a differentiable function

and ∂L

∂y
(α)
a

be α-differentiable. If y is an extremizer of J , then

y satisfies the following fractional Euler–Lagrange equation:

∂L

∂y
− dα

a

dxα
a

(
∂L

∂y
(α)
a

)
= 0. (16)

Proof : Let y∗ give an extremum to (11). We define a family
of functions

y(x) = y∗(x) + εη(x) (17)

where ε is a constant and η is an arbitrary α-differentiable

function satisfying η ∂L

∂y∗(α)
a

∈ C1 and the boundary conditions

η(a) = η(b) = 0 (weak variations). From (17), the boundary

conditions η(a) = η(b) = 0, and the fact that y∗(a) = ya and

y∗(b) = yb, it follows that function y is admissible: y is α-

differentiable with y(a) = ya, y(b) = yb, and y ∂L

∂y∗(α)
a

is dif-

ferentiable. Let the Lagrangian L be C1([a, b]×R2). Because

y∗ is an extremizer of functional J , the Gateaux derivative

δJ (y∗) needs to be identically null. For the functional (11),

δJ (y∗) = lim
ε→0

1
ε

(∫ b

a

L
(
x, y, y(α)

a

)
dα

ax

−
∫ b

a

L
(
x, y∗, y∗(α)

a

)
dα

ax

)

=
∫ b

a


η(x)

∂L
(
x, y∗, y∗(α)

a

)

∂y∗

+η(α)
a (x)

∂L
(
x, y∗, y∗(α)

a

)

∂y∗(α)
a


 dα

ax = 0.

Using the integration by parts formula (7) (η ∂L

∂y∗(α)
a

is
differentiable), we get

δJ (y∗) =
∫ b

a

η(x)


∂L

(
x, y∗, y∗(α)

a

)

∂y∗

− dα
a

dxα
a

∂L
(
x, y∗, y∗(α)

a

)

∂y∗(α)
a


dα

ax = 0

(18)
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since η(a) = η(b) = 0. The fractional Euler–Lagrange equa-
tion (16) follows from (18) by using the fundamental Lemma
1. ¥

Definition 3: A continuous function y solution of (16) is
said to be an extremal of (11).

Remark 2: For α = 1, the functional J given by (11)
reduces to the classical variational functional

J (y) =
∫ 1

0

L (x, y(x), y′(x)) dx

and the associated Euler–Lagrange equation (16) is

∂L

∂y
− d

dx

(
∂L

∂y′

)
= 0. (19)

Let us now consider the more general case where the
Lagrangian depends on both integer order and fractional order
derivatives. In this case the following theorem holds.

Theorem 6 (The generalized conformable fractional Euler–
Lagrange equation): Let J be a functional of form

J (y) =
∫ b

a

L
(
x, y(x), y′(x), y(α)

a (x)
)

dx (20)

with L ∈ C1
(
[a, b]× R3

)
, and 0 < α ≤ 1. Let y : [a, b] → R

be a differentiable function with y(a) = ya and y(b) = yb,
ya, yb ∈ R. If y is an extremizer of J , then y satisfies the
following fractional Euler–Lagrange equation:

∂L

∂y
− d

dx

(
∂L

∂y′

)
− 1

(x− a)1−α

dα
a

dxα
a

(
∂L̃

∂y
(α)
a

)
= 0 (21)

where L̃
(
x, y, y′, y(α)

a

)
= (x− a)1−αL

(
x, y, y′, y(α)

a

)
.

Proof : Let y∗ give an extremum to (20). We define a
family of functions as in (17) but with y ∈ C1[a, b]. From
(17) and the boundary conditions η(a) = η(b) = 0, and the
fact that y∗(a) = ya and y∗(b) = yb, it follows that function
y is admissible. Because y∗ is an extremizer of J , the
Gateaux derivative δJ (y∗) needs to be identically null. For
the functional (20) we have

δJ (y∗) = lim
ε→0

1
ε

(∫ b

a

L
(
x, y, y′, y(α)

a

)
dx

−
∫ b

a

L
(
x, y∗, y′∗, y∗(α)

a

)
dx

)

=
∫ b

a


η(x)

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

+η′(x)
∂L

(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗


 dx

+
∫ b

a

η(α)
a (x)

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a

dx

=
∫ b

a

η(x)


∂L

(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

− d

dx

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗


 dx

+
∫ b

a

η(α)
a (x)

∂L̃
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a

dα
ax = 0

where we performed an integration by parts in the second
term in the first integral (since η(a) = η(b) = 0), and we
rewrote the second integral as a conformable integral by
using definition (5). Using the integration by parts formula
(7) (η ∂L

∂y∗(α)
a

is differentiable), we get

δJ (y∗) =
∫ b

a

η(x)


∂L

(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

− d

dx

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗


 dx

−
∫ b

a

η(x)
dα

a

dxα
a

∂L̃
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a

dα
ax

=
∫ b

a

η(x)


(x− a)1−α

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗

−(x− a)1−α d

dx

∂L
(
x, y∗, y′∗, y∗(α)

a

)

∂y′∗

− dα
a

dxα
a

∂L̃
(
x, y∗, y′∗, y∗(α)

a

)

∂y∗(α)
a


 dα

ax = 0

(22)

since η(a) = η(b) = 0. The fractional Euler–Lagrange equa-
tion (21) follows from (22) by using the fundamental Lemma
1. ¥

IV. LAGRANGIAN FORMULATION FOR
FRICTIONAL FORCES

As an example of potential application of the variational
calculus with conformable fractional derivatives, we formulate
an action principle for dissipative systems free from the
mathematical inconsistencies found in the Riewe approach
[23] and far simpler than the formulation proposed in [23].
The action principle we propose states that the equation of
motion for dissipative systems is obtained by taking the limit
a → b in the extremal of the action

S =
∫ b

a

L
(
x, x′, x(α)

a

)
dt (23)

that satisfy the fractional Euler–Lagrange equation (see (21))

∂L

∂x
− d

dt

∂L

∂x′
− 1

(t− a)1−α

dα
a

dtαa

∂L̃

∂x
(α)
a

= 0 (24)
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where L̃
(
x, x′, x(α)

a

)
= (t − a)1−αL

(
x, x′, x(α)

a

)
, x(t) is

the path of the particle and t is the time. It is important to
emphasize that the condition a → b (also considered in the
original Riewe’s approach) applied to the action principle does
not imply any restrictions for conservative systems, since in
this case x(t) is the action’s extremal for any time interval
[a, b], even when a → b. Furthermore, our action principle
is simpler than the formulation in [23] and free from the
mathematical inconsistencies present in Riewe’s approach (see
[23] for a detailed discussion). In order to show that our
method provides us with physical Lagrangians, let us consider
the simple problem of a particle under a frictional force
proportional to velocity. A quadratic Lagrangian for a particle
under a frictional force proportional to the velocity is given
by

L
(
x, x′, x( 1

2 )
a

)
=

1
2
m (x′)2 − U(x) +

γ

2

(
x

( 1
2 )

a

)2

(25)

where the three terms in (25) represent the kinetic energy,
potential energy, and the fractional linear friction energy,
respectively. Note that, differently from Riewe’s Lagrangian
[11], our Lagrangian (25) is a real function with a linear
friction energy, which is physically meaningful. Since the
equation of motion is obtained in the limit a → b, if we
consider the last term in (25) up to first order in ∆t = t− a,
we get

γ

2

(
x

( 1
2 )

a

)2

=
γ

2

(
x′∆t

1
2

)2

≈ γ

2
x′∆x

that coincides, apart from the multiplicative constant 1/2, with
the work from the frictional force γx′ in the displacement
∆x ≈ x′∆t. The appearance of an additional multiplicative
constant is a consequence of the use of fractional derivatives in
the Lagrangian and does not appear in the equation of motion
after we apply the action principle [23].

Remark 3: It is important to stress that the order of the
fractional derivative should be fixed to α = 1/2 in order
to obtain, by a fractional Lagrangian, a correct equation of
motion of a dissipative system. For α different from 1/2,
the Lagrangian does not describe a frictional system under a
frictional force proportional to the velocity. Consequently, the
fractional linear friction energy makes sense only for α = 1/2.

The Lagrangian (25) is physical in the sense it provides
physically meaningful relations for the momentum and the
Hamiltonian. If we define the canonical variables

q1 = x′, q 1
2

= x
( 1
2 )

a

and
p1 =

∂L

∂q1
= mx′, p 1

2
=

∂L

∂q 1
2

= γx
( 1
2 )

a

we obtain the Hamiltonian

H = q1p1+q 1
2
p 1

2
−L =

1
2
m (x′)2+U(x)+

γ

2

(
x

( 1
2 )

a

)2

. (26)

From (26) we can see that the Lagrangian (25) is physical
in the sense it provides us a correct relation for the momentum
p1 = mẋ and a physically meaningful Hamiltonian (it is the
sum of all energies). Furthermore, the additional fractional
momentum p 1

2
= γx

( 1
2 )

a goes to zero when we take the limit

a → b, since x ∈ C2[a, b].
Finally, the equation of motion for the particle is obtained

by inserting our Lagrangian (25) into the Euler–Lagrange
equation (24),

mx′′+γ(t− a)−
1
2

d
1
2
a

dt
1
2
a

[
(t− a)

1
2 x

( 1
2 )

a

]

= mx′′ + γx′ + γ(t− a)x′′ = F (x) (27)

where we have used (3) since x ∈ C2[a, b] and

F (x) = − d

dx
U(x)

is the external force. By taking the limit a → b with t ∈ [a, b],
we finally obtain the correct equation of motion for a particle
under a frictional force:

mx′′ + γx′ = F (x).

V. THE CONFORMABLE DUBOIS–REYMOND CONDITION

In the remainder of the present work, we are going to
consider only the simplest case where we have no mixed
integer and fractional derivatives. We now present the DuBois–
Reymond condition in the conformable fractional context. It
is an immediate consequence of the chain rule (9) and the
Euler–Lagrange equation (16).

Theorem 7 (The conformable fractional DuBois-Reymond
condition): If y is an extremal of J as in (11), then

dα
a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
=

∂L

∂x
· (x− a)1−α. (28)

Proof : By the chain rule (9) and the Leibniz rule in
Proposition 1:

dα
a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)

=
∂L

∂x
x(α)

a +
∂L

∂y
y(α)

a +
∂L

∂y
(α)
a

dα
a

dxα
a

y(α)
a

− dα
a

dxα
a

(
∂L

∂y
(α)
a

)
y(α)

a − ∂L

∂y
(α)
a

dα
a

dxα
a

y(α)
a

=
∂L

∂x
x(α)

a + y(α)
a

[
∂L

∂y
− dα

a

dxα
a

(
∂L

∂y
(α)
a

)]

=
∂L

∂x
· (x− a)1−α.

¥
Corollary 1: If (11) is autonomous, that is, if L = L(y, y

(α)
a )

does not depend on x, then

dα
a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
= 0

along any extremal y.
Remark 4: When α = 1 and y ∈ C1, Theorem 7 is the

classical DuBois–Reymond condition: if y ∈ C1 is an extremal
of J (y) =

∫ 1

0
L(x, y, y′)dx (i.e., y satisfies (19)), then

d

dx

(
L− ∂L

∂y′
y′

)
=

∂L

∂x
.
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VI. FRACTIONAL INVARIANT CONDITIONS

We consider invariance transformations in the (x, y)-space,
depending on a real parameter ε. To be more precise, we
consider transformations of type

{
x = x + ετ(x, y(x))
y = y + εξ(x, y(x)) (29)

where the generators τ and ξ are such that x ≥ a and there
exist τ

(α)
a and ξ

(α)
a .

Definition 4: We say that the fractional variational integral
(11) is invariant under the family of transformations (29) up
to the Gauge term Λ, if a function Λ = Λ(x, y) exists such
that for any function y and for any real x ∈ [a, b], we have

L

(
x, y,

dα
ay

dxα
a

)
dα

ax

dα
ax

= L(x, y, y(α)
a ) + ε

dα
aΛ

dxα
a

(x, y) + o(ε)

(30)
for all ε in some neighborhood of zero, where dα

a x
dα

a x stands for

dα
ax

dxα
a

dα
ax

dxα
a

= 1 + ε
τ

(α)
a

(x− a)1−α
. (31)

We note that for α = 1 our Definition 4 coincides with the
standard approach (see, e.g., [33]). When Λ ≡ 0, one obtains
the concept of absolute invariance. The presence of a new
function Λ is due to the presence of external forces in the
dynamical system, like friction. The function Λ is called a
Gauge term. In fact, many phenomena are nonconservative
and this has to be taken into account in the conservation laws
[26], [34]. We give an example.

Example 1: Consider the transformation
{

x = x
y = y + ε 1

2α (x− a)α (32)

and the functional

J (y) =
∫ b

a

(
y(α)

a (x)
)2

dα
ax. (33)

Since
dα

a

dxα
a

1
2α

(x− a)α =
1
2

it is easy to verify that (33) is invariant under (32) up to the
Gauge function Λ = y.

Definition 5: Given a function C = C(x, y, y
(α)
a ), we say

that C is a conserved quantity for (11) if

dα
aC

dxα
a

(x, y(x), y(α)
a (x)) = 0 (34)

along any solution y of (16) (i.e., along any extremal of (11)).

Remark 5: Applying the conformable integral (5) to
both sides of equation (34), Definition 5 is equivalent to
C(x, y(x), y(α)

a (x)) ≡ const.

We now provide a necessary condition of invariance.

Theorem 8: If J given by (11) is invariant under a family

of transformations (29), then

∂L

∂x
τ +

∂L

∂y
ξ

+
∂L

∂y
(α)
a

[
ξ(α)
a − y(α)

a

(
(α− 1)

τ

(x− a)
+

τ
(α)
a

(x− a)1−α

)]

+ L
τ

(α)
a

(x− a)1−α
=

dα
aΛ

dxα
a

.

(35)

Proof : By the fractional chain rule (see Proposition 1),

dα
ay

dxα
a

=

dα
ay

dxα
a

(x− a)α−1
dα

ax

dxα
a

=
y
(α)
a + εξ

(α)
a

(x + ετ − a)α−1[(x− a)1−α + ετ
(α)
a ]

.

Substituting this formula into (30), differentiating with
respect to ε and then putting ε = 0, we obtain relation (35).¥

Remark 6: Allowing α to be equal to 1, for Λ ≡ 0 our
equation (35) becomes the standard necessary condition of
invariance (cf., e.g., [24]):

∂L

∂x
τ +

∂L

∂y
ξ +

∂L

∂y′
(ξ′ − y′τ ′) + Lτ ′ = 0.

For α = 1 and an arbitrary Λ, see [33].
In particular, if we consider “time invariance” (i.e., τ ≡ 0),

we obtain the following result.
Corollary 2: Let y = y + εξ(x, y(x)) be a transformation

that leaves invariant J in the sense that

L(x, y, y(α)
a ) = L(x, y, y(α)

a ) + ε
dα

aΛ
dxα

a

(x, y) + o(ε).

Then,
∂L

∂y
ξ +

∂L

∂y
(α)
a

ξ(α)
a =

dα
aΛ

dxα
a

.

VII. THE CONFORMABLE NOETHER THEOREM

Noether’s theorem is a beautiful result with important
implications and applications in optimal control [35]−[37].
We provide here a conformable fractional Noether theorem in
the context of the calculus of variations. Later, in Section IX,
we provide a conformable fractional optimal control version
(see Theorem 11).

Theorem 9 (The conformable fractional Noether theorem):
If J given by (11) is invariant under (29) and if y is an
extremal of J , then

dα
a

dxα
a

[(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α

]

= (1− α)
∂L

∂y
(α)
a

[
ξ(x− a)1−2α − y

(α)
a τ

(x− a)α

]

+
dα

aΛ
dxα

a

(x− a)1−α. (36)
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Proof : From Theorem 8, and using the conformable frac-
tional Euler-Lagrange equation (16) and the DuBois-Reymond
condition (28), we deduce successively that

dα
aΛ

dxα
a

(x− a)1−α

=

[
dα

a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ

(x− a)1−α

+
dα

a

dxα
a

(
∂L

∂y
(α)
a

)
ξ +

∂L

∂y
(α)
a

ξ(α)
a

]
(x− a)1−α

− ∂L

∂y
(α)
a

y(α)
a

[
(α− 1)τ
(x− a)α

+ τ (α)
a )

]
+ Lτ (α)

a

=

[
dα

a

dxα
a

(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

dα
a

dxα
a

(
∂L

∂y
(α)
a

ξ

)
(x−a)1−α

]

− ∂L

∂y
(α)
a

y(α)
a

[
(α− 1)τ
(x− a)α

+ τ (α)
a )

]
+ Lτ (α)

a

=
dα

a

dxα
a

[(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α

]

− ∂L

∂y
(α)
a

y(α)
a

[
(α− 1)τ
(x− a)α

+ τ (α)
a

]

+ Lτ (α)
a −

(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ (α)
a

− ∂L

∂y
(α)
a

ξ(1− α)(x− a)1−2α

=
dα

a

dxα
a

[(
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α

]

+
∂L

∂y
(α)
a

y(α)
a

(1− α)τ
(x− a)α

− ∂L

∂y
(α)
a

ξ(1− α)(x− a)1−2α.

Thus, we obtain equation (36). ¥

Remark 7: When α = 1, equation (36) is simply Noether’s
conservation law in the presence of external forces: for any
extremal of J and for any family of transformations (x, y)
for which J is invariant, the conservation law

(
L− ∂L

∂y′
y′

)
τ +

∂L

∂y′
ξ = Λ + constant

holds [33, Theorem 2.1]. In addition, if system is conservative
(Λ ≡ 0), then one has the classical Noether theorem

(
L− ∂L

∂y′
y′

)
τ +

∂L

∂y′
ξ = constant.

Corollary 3 (The conformable fractional Noether theorem
under the presence of an external force f ): If J given by (11)
is invariant under (29), y is an extremal of J , and the function
f = f(x, y, y

(α)
a ) satisfies the equation

dα
af

dxα
a

=(1− α)
∂L

∂y
(α)
a

[
ξ(x− a)1−2α − y

(α)
a τ

(x− a)α

]

+
dα

aΛ
dxα

a

(x− a)1−α

then (
L− ∂L

∂y
(α)
a

y(α)
a

)
τ +

∂L

∂y
(α)
a

ξ(x− a)1−α − f

is a conserved quantity.
Corollary 4: If J given by (11) is invariant under the

transformation x = x, y = y + εξ(x, y(x)), and if y is an
extremal of J , then

∂L

∂y
(α)
a

ξ − Λ

is a conserved quantity.
Proof : Given that

dα
a (x− a)1−α

dxα
a

= (1− α)(x− a)1−2α

the result follows immediately from Theorem 9. ¥

VIII. THE HAMILTONIAN FORMALISM

The Hamiltonian formalism is related to the Lagrangian one
by the so called Legendre transformation, from coordinates
and velocities to coordinates and momenta. Let the momenta
be given by

p(x) =
∂L

∂y
(α)
a

(x, y(x), y(α)
a (x)) (37)

and the Hamiltonian function by

H(x, y, v, ψ) = −L(x, y, v) + ψ v. (38)

To simplify notation, [y](x) and {y}(x) will denote
(x, y(x), y(α)

a (x)) and (x, y(x), y(α)
a (x), p(x)), respectively.

Differentiating (38), and using definition (37), it follows that

dα
aH

dxα
a

{y}(x)

= −∂L

∂x
[y](x)x(α)

a − ∂L

∂y
[y](x) · y(α)

a (x)

− ∂L

∂v
[y](x) · dα

a

dxα
a

y(α)
a (x) + p(α)

a (x) · y(α)
a (x)

+
∂L

∂v
[y](x) · dα

a

dxα
a

y(α)
a (x)

= −∂L

∂x
[y](x) · (x− a)1−α − ∂L

∂y
[y](x) · y(α)

a (x)

+ p(α)
a (x) · y(α)

a (x). (39)

On the other hand, by the definition of Hamiltonian (38),
one has immediately that





∂H

∂x
(x, y, v, ψ) = −∂L

∂x
(x, y, v)

∂H

∂y
(x, y, v, ψ) = −∂L

∂y
(x, y, v)

∂H

∂ψ
(x, y, v, ψ) = v
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and so we can write (39) in the form

dα
aH

dxα
a

{y}(x)

=
∂H

∂x
{y}(x)(x− a)1−α

+
∂H

∂y
{y}(x) · y(α)

a (x) +
∂H

∂ψ
{y}(x) · p(α)

a (x). (40)

If y is an extremal of J , then by the conformable fractional
Euler-Lagrange equation (16) one has

∂L

∂y
[y](x)− dα

a

dxα
a

(
∂L

∂v
[y]

)
(x) = −∂H

∂y
{y}(x)−p(α)

a (x) = 0

and we can write



y(α)
a (x) =

∂H

∂ψ
{y}(x)

p(α)
a (x) = −∂H

∂y
{y}(x).

(41)

The system (41) is nothing else than the conformable
fractional Euler-Lagrange equation in Hamiltonian form. Sub-
stituting the expressions of (41) into (40), we get the analog
to the DuBois–Reymond condition (28) in Hamiltonian form:

dα
aH

dxα
a

{y}(x) =
∂H

∂x
{y}(x)(x− a)1−α. (42)

If the Lagrangian L is autonomous, i.e., L does not depend
on x, then

∂L

∂x
= 0

and, consequently, by (42) H is a conserved quantity. If the
Lagrangian L does not depend on y, then

∂L

∂y
= −∂H

∂y
= 0

and so p
(α)
a = 0, i.e., p is a conserved quantity.

We now exhibit Corollary 3 within the Hamiltonian frame-
work.

Theorem 10 (Conformable fractional Noether’s theorem in
Hamiltonian form under the presence of an external force f ):
If J given by (11) is invariant under (29), y is an extremal of
J , and function f = f(x, y(x), y(α)

a (x)) satisfies the equation

dα
af

dxα
a

(x, y(x), y(α)
a (x))

= (1− α)p(x)

[
ξ(x− a)1−2α − y

(α)
a (x)τ

(x− a)α

]

+
dα

aΛ
dxα

a

(x, y(x))(x− a)1−α

then

p(x)ξ(x− a)1−α −H{y}(x)τ − f(x, y(x), y(α)
a (x))

is a conserved quantity.

IX. CONFORMABLE FRACTIONAL OPTIMAL CONTROL

The conformable fractional optimal control problem is
stated as follows: find a pair of functions (y(·), v(·)) that

minimizes

J (y, v) =
∫ b

a

L(x, y(x), v(x)) dα
ax (43)

when subject to the (nonautonomous) fractional control system

y(α)
a (x) = ϕ(x, y(x), v(x)). (44)

A pair (y(·), v(·)) that minimizes functional (43) subject to
(44) is called an optimal process. The reader interested on the
fractional optimal control theory is referred to [28], [29], [38].
Here we note that if α = 1, then (43) and (44) is the standard
optimal control problem: to minimize

J (y, v) =
∫ b

a

L(x, y(x), v(x)) dx

subject to the control system

y′(x) = ϕ(x, y(x), v(x)).

We assume that the Lagrangian L and the velocity vector ϕ
are functions at least of class C1 in their domain [a, b]× R2.
Also, the admissible state trajectories y are such that y

(α)
a exist.

Remark 8: In case ϕ ≡ v, the previous problem (43) and
(44) reduces to the fundamental problem of the conformable
fractional variational calculus (11), as stated in Section III.

Following the standard approach [37], [39], we consider the
augmented conformable fractional functional

I(y, v, p) =
∫ b

a

[L(x, y(x), v(x)) + p(x)(y(α)
a (x)

− ϕ(x, y(x), v(x)))] dα
ax

(45)

where p is such that p
(α)
a exists. Consider a variation vector

of type (y + εy1, v + εv1, p + εp1) with |ε| ¿ 1. For conve-
nience, we restrict ourselves to the case y1(a) = y1(b) = 0.
If (y(·), v(·)) is an optimal process, then the first variation
is zero when ε = 0. Thus, using the conformable fractional
integration by parts formula (Theorem 3), we obtain that

0 =
∫ b

a

[
∂L

∂y
y1 +

∂L

∂v
v1 + p1(y(α)

a − ϕ)

+p
(
y1

(α)
a − ∂ϕ

∂y y1 − ∂ϕ
∂v v1

)]
dα

ax

=
∫ b

a

[
y1

(
∂L

∂y
− p

∂ϕ

∂y
− p(α)

a

)
+ v1

(
∂L

∂v
− p

∂ϕ

∂v

)

+p1(y(α)
a − ϕ)

]
dα

ax.

By the arbitrariness of the the variation functions, we obtain
the following system, called the Euler–Lagrange equations for
the conformable fractional optimal control problem:




y
(α)
a (x) = ϕ(x, y(x), v(x))

p
(α)
a (x) =

∂L

∂y
(x, y(x), v(x))− p(x)

∂ϕ

∂y
(x, y(x), v(x))

∂L

∂v
(x, y(x), v(x))− p(x)

∂ϕ

∂v
(x, y(x), v(x)) = 0.

(46)
These equations give necessary conditions for finding the
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optimal solutions of problem (43) and (44). We remark that
they are similar to the standard ones, in case of integer order
derivatives, but in this case they contain conformable fractional
derivatives, as expected. The solution can be stated using the
Hamiltonian formalism. Consider the Hamiltonian function

H(x, y, v, p) = −L(x, y, v) + p(x)ϕ(x, y, v). (47)

Then (46) gives:

1) The fractional Hamiltonian system




y(α)
a (x) =

∂H

∂p
(x, y, v, p)

p(α)
a (x) = −∂H

∂y
(x, y, v, p).

(48)

2) The stationary condition

∂H

∂v
(x, y, v, p) = 0. (49)

Definition 6: Any triplet (y, v, p) satisfying system (48) and
(49) is called a conformable fractional Pontryagin extremal.

Remark 9: In the particular case ϕ ≡ v, i.e., when the
conformable fractional optimal control problem is reduced
to the fundamental conformable fractional problem of the
calculus of variations, we obtain

H = −L(x, y, v) + pv , y(α)
a = v

and the equations

p(α)
a = −∂H

∂y
=

∂L

∂y
, p =

∂L

∂v
.

Therefore, we obtain the conformable fractional Euler–
Lagrange equation (16):

∂L

∂y
=

dα
a

dxα
a

(
∂L

∂y
(α)
a

)
.

Let us now considerer the augmented fractional variational
functional (45) written in the Hamiltonian form:

I(y, v, p) =
∫ 1

0

(−H(x, y(x), v(x), p(x))+ p(x)y(α)
a (x)) dα

ax

(50)
where H is given by expression (47). For a parameter ε, with
|ε| ¿ 1, consider the family of transformations





x = x + ετ(x, y(x), v(x), p(x))
y = y + εξ(x, y(x), v(x), p(x))
v = v + εσ(x, y(x), v(x), p(x))
p = p + επ(x, y(x), v(x), p(x)). (51)

We now define the notion of invariance of (43)−(44) in
terms of the Hamiltonian H and the augmented conformable
fractional variational functional (50).

Definition 7: The conformable fractional optimal control
problem (43) and (44) is invariant under the transformations
(51) up to the Gauge term Λ, if a function Λ = Λ(x, y)
exists such that for any functions y, v and p, and for any real

x ∈ [0, 1], the following equality holds:
[
−H (x, y, v, p) + p

dα
ay

dxα
a

]
dα

ax

dα
ax

= −H(x, y, v, p) + py(α)
a + ε

dα
aΛ

dxα
a

(x, y) + o(ε) (52)

for all ε in some neighborhood of zero, where as in Definition 4
dα

a x
dα

a x stands for (31).
Theorem 11 (Fractional Noether’s theorem for the fractional

optimal control problem (43)−(44)): If (43) and (44) is invari-
ant under (51) in the sense of Definition 7, and if (y, v, p) is
a conformable fractional Pontryagin extremal, then

dα
a

dxα
a

(pξ)− τ

(
∂H

∂x
+ (α− 1)

py
(α)
a

x− a

)

−H
τ

(α)
a

(x− a)1−α
=

dα
aΛ

dxα
a

. (53)

Proof : Differentiating (52) with respect to ε, then choosing
ε = 0, we get

− ∂H

∂x
τ − ∂H

∂y
ξ − ∂H

∂v
σ − ∂H

∂p
π + πy(α)

a

+ p

[
ξ(α)
a − y(α)

a

(
(α− 1)

τ

x− a
+

τ
(α)
a

(x− a)1−α

)]

+
[
−H + py(α)

a

] τ
(α)
a

(x− a)1−α
=

dα
aΛ

dxα
a

.

Equation (53) follows because (y, v, p) is a conformable
fractional Pontryagin extremal. ¥

Remark 10: When α = 1 and Λ = 0, equation (53) becomes

d

dx
(pξ)− τ

∂H

∂x
−Hτ ′ = 0.

Using relations (48) and (49) with α = 1, we deduce that

−Hτ + pξ ≡ constant

which is the optimal control version of Noether’s theorem
[35]−[37]. For α ∈ (0, 1), Theorem 11 extends the main result
of [28].

X. THE MULTI-DIMENSIONAL CASE

In this section, we show a necessary condition of invariance,
when the Lagrangian depends on two independent variables
x1 and x2 and on m functions y1, . . . , ym. First, we define
conformable fractional partial derivatives and conformable
multiple fractional integrals in a natural way, similarly as
done in the integer case. In addition, we are going to use
the following properties.

Theorem 12 (Conformable Green’s theorem for a rectangle):
Let f and g be two continuous and α-differentiable functions
whose domains contain R = [a, b]× [c, d] ⊂ R2. Then,
∫ b

a

(f(x1, c)−f(x1, d)) dα
ax1+

∫ d

c

(g(b, x2)−g(a, x2)) dα
c x2

=
∫

R

(
∂α

a

∂x1
α
a

g(x1, x2)− ∂α
c

∂x2
α
c

f(x1, x2)
)

dα
ax1d

α
c x2.

(54)
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Proof : By Theorem 2, we have

f(x1, d)− f(x1, c) =
∫ d

c

∂α
c

∂x2
α
c

f(x1, x2)dα
c x2

and

g(b, x2)− g(a, x2) =
∫ b

a

∂α
a

∂x1
α
a

g(x1, x2)dα
ax1.

Therefore,
∫ b

a

(f(x1, c)−f(x1, d)) dα
ax1+

∫ d

c

(g(b, x2)−g(a, x2)) dα
c x2

= −
∫ b

a

∫ d

c

∂α
c

∂x2
α
c

f(x1, x2)dα
c x2d

α
ax1

+
∫ d

c

∫ b

a

∂α
a

∂x1
α
a

g(x1, x2)dα
ax1d

α
c x2

=
∫

R

(
∂α

a

∂x1
α
a

g(x1, x2)− ∂α
c

∂x2
α
c

f(x1, x2)
)

dα
ax1d

α
c x2.

¥
Remark 11: From Definition 2 and Remark 1, it is easy

to verify that for C1 functions our fractional Green’s theo-
rem over a rectangular domain (Theorem 12) reduces to the
conventional Green’s identity for

f̃(x1, x2) = f(x1, x2)(x1 − a)α−1

and
g̃(x1, x2) = g(x1, x2)(x2 − a)α−1.

Lemma 2: Let F , G and h be α-differentiable continuous
functions whose domains contain R = [a, b]× [c, d]. If h = 0
on the boundary ∂R of R, then

∫

R

(
G(x1, x2)

∂α
a

∂x1
α
a

h(x1, x2)

−F (x1, x2)
∂α

c

∂x2
α
c

h(x1, x2)
)

dα
ax1d

α
c x2

= −
∫

R

(
∂α

a

∂x1
α
a

G(x1, x2)− ∂α
c

∂x2
α
c

F (x1, x2)
)

× h(x1, x2)dα
ax1d

α
c x2. (55)

Proof : By choosing f = Fh and g = Gh in Green’s for-
mula (54), we obtain that

∫ b

a

(F (x1, c)h(x1, c)− F (x1, d)h(x1, d)) dα
ax1

+
∫ d

c

(G(b, x2)g(b, x2)−G(a, x2)h(a, x2)) dα
c x2

=
∫

R

(
∂α

a

∂x1
α
a

G(x1, x2)

− ∂α
c

∂x2
α
c

F (x1, x2)
)

h(x1, x2)dα
ax1d

α
c x2

+
∫

R

(
G(x1, x2)

∂α
a

∂x1
α
a

h(x1, x2)

−F (x1, x2)
∂α

c

∂x2
α
c

h(x1, x2)
)

dα
ax1d

α
c x2.

Since h = 0 on the boundary ∂R of R, we have
∫

R

(
G(x1, x2)

∂α
a

∂x1
α
a

h(x1, x2)

−F (x1, x2)
∂α

c

∂x2
α
c

h(x1, x2)
)

dα
ax1d

α
c x2

=−
∫

R

(
∂α

a

∂x1
α
a

G(x1, x2)− ∂α
c

∂x2
α
c

F (x1, x2)
)

× h(x1, x2)dα
ax1d

α
c x2.

¥

Remark 12: In the very recent and general paper [40], a
vector calculus with deformed derivatives (as the conformable
derivative) is formally introduced. We refer the reader to [40]
for a detailed discussion of a vector calculus with deformed
derivatives and more properties on the multi-dimensional
conformable calculus.

Let us now consider the fractional variational integral

J (y) =
∫

R

L

(
x, y,

∂α
a y

∂xα
a

)
dα

ax (56)

where for simplicity we choose R = [a, b]× [a, b], and where
x = (x1, x2), y = (y1, . . . , ym), dα

ax = dα
ax1d

α
ax2, and

∂α
a y

∂xα
a

=
(

∂α
a y1

∂x1
α
a

,
∂α

a y1

∂x2
α
a

, . . . ,
∂α

a ym

∂x1
α
a

,
∂α

a ym

∂x2
α
a

)
.

We are assuming that the Lagrangian

L = L(x1, x2, y1, . . . , ym, v1,1, v1,2, . . . , vm,1, vm,2)

is at least of class C1, that the domains of yk, k ∈ {1, . . . , m},
contain R, and that all these partial conformable fractional
derivatives exist.

Theorem 13 (The multi-dimensional fractional Euler-Lagr-
ange equation): Let y be an extremizer of (56) with

y|∂R = ψ(x1, x2)

for some given function ψ = (ψ1, . . . , ψm). Then, the follow-
ing equation holds:

∂L

∂yk
− ∂α

a

∂x1
α
a

(
∂L

∂vk,1

)
− ∂α

a

∂x2
α
a

(
∂L

∂vk,2

)
= 0 (57)

for all k ∈ {1, . . . , m}.

Proof : Let y∗ = (y∗1 , . . . , y∗m) give an extremum to (56).
We define m families of functions

yk(x1, x2) = y∗k(x1, x2) + εηk(x1, x2) (58)

where k ∈ {1, . . . , m}, ε is a constant, and ηk is an arbitrary
α-differentiable function satisfying the boundary conditions
ηk|∂R = 0 (weak variations). From (58), the boundary condi-
tions ηk|∂R = 0 and yk|∂R = ψk(x1, x2), it follows that func-
tion yk is admissible. Let the Lagrangian L be C1. Because
y∗ is an extremizer of functional J , the Gateaux derivative
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δJ (y∗) needs to be identically null. For the functional (56),

δJ (y∗) = lim
ε→0

1
ε

(∫

R

L

(
x, y,

∂α
a y

∂xα
a

)
dα

ax

−
∫

R

L

(
x, y∗,

∂α
a y∗

∂xα
a

)
dα

ax

)

=
m∑

k=1

∫

R


ηk(x1, x2)

∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂y∗k

+
∂α

a

∂x1
α
a

ηk(x1, x2)
∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,1

+
∂α

a

∂x2
α
a

ηk(x1, x2)
∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,2


 dα

ax

= 0.

Using (55), we get that

m∑

k=1

∫

R

ηk(x1, x2)




∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂y∗k

− ∂α
a

∂x1
α
a

∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,1

− ∂α
a

∂x2
α
a

∂L

(
x, y∗,

∂α
a y∗

∂xα
a

)

∂vk,2


 dα

ax = 0 (59)

since ηk|∂R = 0. The fractional Euler–Lagrange equation (57)
follows from (59) by using the fundamental lemma of the
conformable fractional calculus of variations (Lemma 1). ¥

Let ε be a real, and consider the following family of
transformations:{

xi = xi + ετi(x, y(x)), i ∈ {1, 2},
yk = yk + εξk(x, y(x)), k ∈ {1, . . . , m} (60)

where τi and ξk are such that there exist ∂α
a τi

∂xj
α
a

and ∂α
a ξk

∂xj
α
a

for

all i, j ∈ {1, 2} and all k ∈ {1, . . . , m}. Denote by
[

∂α
a x

∂α
a x

]
the

matrix




∂α
a x1

∂x1
α
a

∂α
a x1

∂x1
α
a

∂α
a x1

∂x2
α
a

∂α
a x2

∂x2
α
a

∂α
a x2

∂x1
α
a

∂α
a x1

∂x1
α
a

∂α
a x2

∂x2
α
a

∂α
a x2

∂x2
α
a




=




1 +
ε

(x1 − a)1−α

∂α
a τ1

∂x1
α
a

ε

(x2 − a)1−α

∂α
a τ1

∂x2
α
a

ε

(x1 − a)1−α

∂α
a τ2

∂x1
α
a

1 +
ε

(x2 − a)1−α

∂α
a τ2

∂x2
α
a


 .

Definition 8: Functional J as in (56) is invariant under the
family of transformation (60) if for all yk and for all xi ∈ [0, 1]
we have

L

(
x, y,

∂α
a y

∂xα
a

)
det

[
∂α

a x

∂α
a x

]

= L

(
x, y,

∂α
a y

∂xα
a

)
+ ε

dα
aΛ

dxα
a

(x, y) + o(ε)

for all ε in some neighborhood of zero.
Using the same techniques as in the proof of Theorem 8,

we obtain a necessary condition of invariance for the fractional
variational problem (56).

Theorem 14: If J given by (56) is invariant under transfor-
mations (60), then

2∑

i=1

∂L

∂xi
τi +

m∑

k=1

∂L

∂yk
ξk +

m∑

k=1

2∑

i=1

∂L

∂vk,i

[
∂α

a ξk

∂xi
α
a

−∂α
a yk

∂xi
α
a

(
(α− 1)

τi

xi − a
+

1
(xi − a)1−α

∂α
a τi

∂xi
α
a

)]

+ L

(
1

(x1 − a)1−α

∂α
a τ1

∂x1
α
a

+
1

(x2 − a)1−α

∂α
a τ2

∂x2
α
a

)
=

dαΛ
dxα

.

(61)

Proof : Using relations

∂α
a yk

∂xi
α
a

=

∂α
a yk

∂xi
α
a

+ ε
∂α

a ξk

∂xi
α
a

(xi + ετi − a)α−1

[
(xi − a)1−α + ε

∂α
a τi

∂xi
α
a

]

and
d

dε
det

[
∂αx

∂αx

]∣∣∣∣
ε=0

=
1

(x1 − a)1−α

∂α
a τ1

∂x1
α
a

+
1

(x2 − a)1−α

∂α
a τ2

∂x2
α
a

we conclude that (61) holds. ¥
Remark 13: When α = 1 and Λ ≡ 0, Theorem 14 reduces

to the standard one [24]: equality (61) simplifies to
2∑

i=1

∂L

∂xi
τi +

m∑

k=1

∂L

∂yk
ξk +

m∑

k=1

2∑

i=1

∂L

∂vk,i

[
∂ξk

∂xi
− ∂yk

∂xi

∂τi

∂xi

]

+ L

(
∂τ1

∂x1
+

∂τ2

∂x2

)
= 0.

Corollary 5: If J given by (56) is invariant under (60),
τ1 ≡ 0 ≡ τ2, and no Gauge term is involved (i.e., Λ ≡ 0),
then

m∑

k=1

∂L

∂yk
ξk +

m∑

k=1

2∑

i=1

∂L

∂vk,i

∂α
a ξk

∂xi
α
a

= 0.

It remains an open question how to obtain a Noether
constant of motion for the conformable fractional multi-
dimensional case.
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