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Pinning Synchronization Between Two General
Fractional Complex Dynamical Networks With

External Disturbances
Weiyuan Ma, Yujiang Wu, and Changpin Li

Abstract—In this paper, the pinning synchronization between
two fractional complex dynamical networks with nonlinear
coupling, time delays and external disturbances is investigated.
A Lyapunov-like theorem for the fractional system with time
delays is obtained. A class of novel controllers is designed
for the pinning synchronization of fractional complex networks
with disturbances. By using this technique, fractional calculus
theory and linear matrix inequalities, all nodes of the fractional
complex networks reach complete synchronization. In the above
framework, the coupling-configuration matrix and the inner-
coupling matrix are not necessarily symmetric. All involved
numerical simulations verify the effectiveness of the proposed
scheme.

Index Terms—External disturbance, fractional complex net-
work, nonlinear coupling, pinning control, time delay.

I. INTRODUCTION

FRACTIONAL calculus is as old as the conventional
calculus. However, fractional calculus has become a hot

topic in recent two decades due to its advantages in appli-
cations of physics and engineering. As a generalization of
ordinary differential equation, fractional differential equation
can capture non-local relations in space and time. Thus,
the fractional-order models are believed to be more accurate
than the integer-order models. Fractional models have been
proven to be excellent instrument to describe the memory
and hereditary properties of various materials and processes,
such as dielectric polarization, electrode-electrolyte polariza-
tion, electromagnetic waves, viscoelastic systems, quantitative
finance and waves [1]−[4].

It is demonstrated that fractional differential systems also
behave chaotically or hyperchaotically, such as the fractional
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Lorenz system [5], the fractional Chua system [6], and the
fractional Chen system [7]. Many complex networks usually
consist of a large number of highly interconnected fractional
dynamical units. Generally speaking, there are two main
advantages of the fractional complex dynamical networks: one
is infinite memory; the other is that the derivative order of
a parameter enriches the system performance by increasing
one degree of freedom. A fractional neural network is made
up of thousands of neurons and their interactions. On the
other hand, fractional differentiation provides neurons with
a fundamental and general computation ability which can
contribute to efficient information processing. Time delays are
ubiquitous in neural networks due to finite switching speed
of amplifiers. They usually occur in the signal transmission
among neurons [8]−[10]. Therefore, it is more valuable and
practical to investigate fractional complex networks with time
delays.

Following these findings, synchronization of fractional
chaotic systems becomes a challenging and interesting realm
due to its potential applications in secure communication and
control processing [11]−[16]. Many of complex networks
normally have a large number of nodes, therefore it is usually
expensive to control a complex network by designing the
controllers for all nodes. To reduce the number of controllers,
a pinning control method is proposed. Wang and Chen in-
vestigated a scale-free dynamical network by controlling a
fraction of network nodes [17]. Sorrentino et al. explored the
pinning controllability of the complex networks [18]. Liang
and Wang revealed the relationship between the coupling
matrix and the synchronizability of complex networks via
pinning control [19]. Yu et al. studied synchronization via
pinning control of general complex dynamical networks [20].
Nian and Wang investigated the optimal scheme of pinning
synchronization of directed networks [21]. In addition, Liang
and Wang proposed a method to quickly calculating pinning
nodes on pinning synchronization in complex networks [22].
In [23]−[25], the authors investigated the pinning control of
integer-order complex networks with time delays. However,
pinning synchronization of integer-order complex networks
was well-studied. Due to global dependent property of frac-
tional complex networks, as far as we know, the literature on
pinning synchronization of fractional complex networks is still
sparse. In [26], based on the eigenvalue analysis and fractional
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stability theory, local stability properties of pinned fractional
networks were derived. The pinning synchronization of new
uncertain fractional unified chaotic systems were discussed
in [27]. In [28], Chai et al. proposed a global pinning
synchronization for fractional complex dynamical networks.
Xiang et al. investigated the robust synchronization problem
for a class of systems with external disturbances [29]. Wang
et al. provided a method to achieve projective synchronization
of two fractional chaotic systems with external disturbances
[30]. However, the effects of both time delay and external
disturbance of the fractional complex network have seldom
been considered.

Lyapunov direct method is important for synchronization
analysis of complex networks with integer-order, but this
method is difficult to be directly extended to fractional case
[28], [31], [32]. Thus, to find out new ways to cope with
these problems is still challenging. Motivated by the above dis-
cussions, pinning synchronization between the drive-response
fractional complex networks with nonlinear coupling and time
delays is studied. A novel modified Lyapunov method is used
to analyze the global asymptotical synchronization criteria of
fractional systems with time delays. These criteria rely on
the coupling strength and the number of nodes pinned to the
networks, there is no extra constraint on the two coupling
matrices, such as symmetric or irreducible case.

The rest of this paper is arranged as follows. In Section II,
the general drive and response fractional complex dynamical
network models are introduced and some necessary preliminar-
ies are given. A Lyapunov-like criteria for delayed fractional
system is obtained. In Section III, based on the Lyapunov
stability theorem, pinning controllers are designed to ensure
the drive and response systems with external disturbances
achieve synchronization. The illustrative numerical simula-
tions are displayed in Section IV. Section V concludes this
paper.

Throughout this paper, let ‖ · ‖ the Euclidean norm, In the
identity matrix. If A is a vector or matrix, its transpose is
denoted by AT . Let λmin(A) and λmax(A) be the smallest
and largest eigenvalue of symmetric matrix A, respectively.

II. PRELIMINARIES AND MATHEMATICAL MODELS

A. Fractional Complex Dynamical Networks With Nonlinear
Coupling and Time Delays

In this section, we introduce some notations, definitions and
preliminaries which will be used later on.

At present, there are several definitions of fractional dif-
ferential operators [4], such as Grünwald-Letnikov definition,
Riemann-Liouville definition, Caputo definition. Among them,
the initial conditions for Caputo derivatives have the same
form as those for integer-order ones. And Caputo derivative not
only has a clearly interpretable physical meaning, but can also
be properly measured to initializing in the simulation. So it
may be the most appropriate choice for practical applications.
Now we give the definition of Caputo fractional derivative
CDα

0,tf(t), of order α with respect to time t as follows

CDα
0,tf(t) =

1
Γ(m− α)

∫ t

0

(t− τ)m−α−1f (m)(τ)dτ (1)

where m− 1 < α < m ∈ Z+.
Consider a general fractional delayed dynamical system

consisting of N nodes, which can be described as follows:

CDα
0,txi(t) = Axi(t) + f(xi(t)) + c

N∑

j=1

bijHxj(t)

+ c̄
N∑

j=1

b̄ijH̄g(xj(t− τ)) + ξi(t) (2)

where i = 1, 2, . . . , N , 0 < α < 1 is the fractional order,
xi(t) = (xi1(t), . . . , xin(t))T ∈ Rn is the state variable of
the ith node. A ∈ Rn×n is a given linear matrix, and f(xi) =
[f1(xi), f2(xi), . . . , fn(xi)]T : Rn → Rn is a smooth function
describing the nonlinear dynamics of the node. c and c̄ are
two parameters of the non-delay and delay coupling strengths,
respectively. H ∈ Rn×n and H̄ ∈ Rn×n are inner coupling
matrices. B = (bij)N×N and B̄ = (bij)N×N denote the
coupling configuration matrices of the network. If there is
a connection from node i to node j (i 6= j), then bij > 0
(or b̄ij > 0); otherwise, bij = 0 (or b̄ij = 0). The diagonal
elements of matrix B and B̄ are given by bii = −∑N

j=1,j 6=i bij

and b̄ii = −∑N
j=1,j 6=i b̄ij , respectively. g(xi(t − τ)) =

[g1(xi(t− τ)), g2(xi(t− τ)), . . . , gn(xi(t− τ))]T : Rn → Rn

is the nonlinear coupling function. ξi(t) ∈ Rn are external
disturbance vectors.

If model (2) is referred as the drive system, the response
complex network can be chosen as

CDα
0,tyi(t) = Ayi(t) + f(yi(t)) + c

N∑

j=1

bijHyj(t)

+ c̄

N∑

j=1

b̄ijH̄g(yj(t− τ)) + ηi(t) + ui(t) (3)

where yi(t) = (yi1(t), yi2(t), . . . , yin(t))T ∈ Rn is the
response state vector of the ith node; ηi(t) ∈ Rn are external
disturbance vectors. ui(t) ∈ Rn (i = 1, 2, . . . , N) are the
controllers to be designed; the other parameters have the same
meanings as those in (2).

It is not necessary to assume that the inner coupling
matrix H (or H̄) and coupling configuration matrix B (or B̄)
are symmetric and irreducible. Meanwhile, the corresponding
topological graph can be directed or undirected. Throughout
the paper, we always assume that nonlinear functions f(x)
and g(x) satisfy the uniform Lipschitz conditions,

‖f(x)− f(y)‖ ≤ L‖x− y‖ (4)

‖g(x)− g(y)‖ ≤ L̄‖x− y‖. (5)

We also assume the time-varying disturbances ξi(t) and
ηi(t) are bounded and satisfy the following condition

‖ξi(t)− ηi(t)‖ ≤ L̃i (6)

where L̃i > 0.
According to systems (2) and (3), the error system is

described by

CDα
0,tei(t) = Aei(t) + f(yi(t))− f(xi(t))
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+ c
N∑

j=1

bijHej(t) + [ηi(t)− ξi(t)] + ui(t)

+ c̄
N∑

j=1

b̄ijH̄[g(yj(t− τ))− g(xj(t− τ))] (7)

where ei(t) = yi(t) − xi(t), i = 1, 2, . . . , N . Thus, our
objective is to design a suitable controller ui(t) such that error
dynamical system (7) is asymptotically stable, i.e.,

lim
t→∞

‖yi(t; t0, x0)− xi(t; t′0, x
′
0)‖ = 0, i = 1, 2, . . . , N

which implies the drive system (2) and the response system
(3) are synchronized.

B. Some Lemmas

Now we present some lemmas for later use.
Lemma 1 [33]: Let x(0) = y(0) and CDα

0,tx(t) ≥
CDα

0,ty(t), where α ∈ (0, 1). Then x(t) ≥ y(t).
Lemma 2 [9], [10]: Consider the following linear fractional

system with time delays:

CDα
0,tX(t) = AX(t) + X(tτ ), α ∈ (0, 1) (8)

where A = (aij)n×n, X(t) = (x1(t), x2(t), . . . , xn(t))T ,
X(tτ ) = (

∑n
j=1 k1jxj(t − τ1j),

∑n
j=1 k2jxk(t− τ2j), . . . ,∑n

j=1 knjxj(t − τnj))T . Let M = (kij + aij)n×n and B =
(kij exp(−sτij)+aij)n×n. If all the eigenvalues of M satisfy
| arg(λ)| > π/2 and the characteristic equation det(∆(s)) =
|sαIn − B| = 0 has no purely imaginary roots for any τij >
0, i, j = 1, 2, . . . , n, then the zero solution of system (8) is
Lyapunov asymptotically stable.

Lemma 3 [34]: Let x(t) = (x1(t), . . . , xn(t))T ∈ Rn be a
real continuous and differentiable vector function. Then

CDα
0,t[x

T (t)Px(t)] ≤ 2xT (t)P CDα
0,tx(t)

where 0 < α < 1, P is a symmetric and positive definite
matrix.

Lemma 4 [35]: Let X and Y be arbitrary n-dimensional
real vectors, K a positive definite matrix, and H ∈ Rn×n.
Then, the following matrix inequality holds:

2XT HY ≤ XT HK−1X + Y T KY.

Lemma 5 [36]: Assume that Q = (qij)N×N is symmetric.
Let M∗ = diag{m∗

1,m
∗
2, . . . , m

∗
l , 0, . . . , 0︸ ︷︷ ︸

N−l

}, 1 ≤ l ≤ N , m∗
i

> 0 (i = 1, 2, . . . , l), Q − M∗ =
(

E − M̃∗ S
ST Ql

)
, M̃∗

= diag{m∗
1, . . . , m

∗
l }, m∗ = min1≤i≤l{m∗

i }, Ql is the minor
matrix of Q by removing its first l (1 ≤ l ≤ N) row-column
pairs, E and S are matrices with appropriate dimensions.
When m∗ > λmax(E − SQ−1

l ST ), then Q − M∗ < 0 is
equivalent to Ql < 0.

C. Lyapunov-like Method for Fractional Nonlinear System
With Time Delays

Consider the Caputo fractional non-autonomous system
with time delays

CDα
0,tx(t) = f(t, x(t), x(t− τ)) (9)

with initial condition x(t) = x0(t), t ∈ [−τ, 0], where
α ∈ (0, 1), f : [0,∞) × Ω → Rn is piecewise continuous
on t and locally Lipschitz with respect to x. Ω ∈ Rn is a
domain that contains the origin x = 0. We always assume
that (9) has an equilibrium x = 0.

It is well known, by using the Lyapunov direct method,
we can get the asymptotic stability of the non-delays systems.
Next, we extend the Lyapunov direct method to the time delays
case, which leads to the Lyapunov asymptotic stability. Based
on [9], [10], [33], we could obtain the following theorem.

Theorem 1: Let x = 0 be an equilibrium point of system
(9). If there exists a Lyapunov-like function V (t, x(t)) : [−τ,
∞] × Ω → R which is continuously differentiable and locally
Lipschitz with respect to x such that

α1‖x(t)‖a ≤ V (t, x(t)) ≤ α2‖x(t)‖ab (10)

CDα
0,tV (t, x(t)) ≤ −α3‖x(t)‖ab

+ α4‖x(t− τ)‖a (11)

ν < µ sin
(απ

2

)
(12)

where a, b, α1, α2, α3 are positive constants, µ = α3/α2

and ν = α4/α1. Then x = 0 of system (9) is Lyapunov
asymptotically stable.

Proof: It follows from (10) and (11) that

CDα
0,tV (t, x(t))

≤ −α3

α2
V (t, x(t)) +

α4

α1
V (t− τ, x(t− τ)) (13)

where t ≥ 0.
Consider the following system:

CDα
0,tW (t, x(t))

= −µW (t, x(t)) + νW (t− τ, x(t− τ)) (14)

where W (t, x(t)) has the same initial conditions with
V (t, x(t)), µ = α3/α2 and ν = α4/α1. Using Lemma 1,
we have

0 ≤ V (t, x(t)) ≤ W (t, x(t)). (15)

By Lemma 2, the characteristic equation of (14) is
det(∆(s)) = sα + µ− ν exp(−sτ) = 0. Suppose that s = ωi
= |ω|(cos(π/2)+ i sin(±π/2)). Substituting s into det(∆(s))
gives

|ω|α
(
cos

(απ

2

)
+ i sin

(
±απ

2

))
+ µ

− ν (cos(τω)− i sin(τω)) = 0.

Separating real and imaginary parts gives

|ω|α cos
(απ

2

)
+ µ = ν cos (τω) (16)

|ω|α sin
(
±απ

2

)
= −ν sin (τω) . (17)
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According to (16) and (17), one has

|ω|2α + 2µ cos
(απ

2

)
|ω|α + µ2 − ν2 = 0. (18)

Obviously, when ν < µ sin(απ/2), no real number ω
satisfies (18). Furthermore, the eigenvalue of M in equation
is ν − µ. When ν < µ sin(απ/2), that is ν < µ, implying
| arg(λ(M))| > π/2. So, W (t, x(t)) → 0, as t → +∞.

From (15), V (t, x(t)) → 0, as t → +∞, which means all
the solutions of system (9) converge to x = 0. ¥

III. PINNING SYNCHRONIZATION OF FRACTIONAL
COMPLEX NETWORKS WITH NONLINEAR COUPLING AND

EXTERNAL DISTURBANCES

In this section, some global asymptotically stable criteria
are presented below.

To realize synchronization between (2) and (3), assume that
first l (1 ≤ l ≤ N) nodes are pinned, the pinning controllers
are chosen as




ui(t) = −piei(t)− q
sgn(ei(t))
n∑

j=1

|eij(t)|
, 1 ≤ i ≤ l

ui(t) = 0, l + 1 ≤ i ≤ N

(19)

where pi > 0 are feedback gains, sgn(ei(t)) = (sgn(ei1(t)),
sgn(ei2(t)), . . . , sgn(ein(t)))T are signum vectors, and q =
1
2l

∑N
i=1 L̃2

i .
Theorem 2: Suppose that the dynamical function f and

nonlinear coupling function g satisfy Lipschitz conditions (4)
and (5), respectively. If there exists a matrix P satisfying the
following conditions

1) µ̄ =− λmax

[(
a + L +

1
2

+
c̄β2h̄(1 + L̄)

2

)
IN

+ chB̂ − P

]
> 0 (20)

2) ν̄ < µ̄ sin
(απ

2

)
(21)

where a = ‖A‖, h = ‖H‖, h̄ = ‖H̄‖, β1 = max{b̄ij , j 6= i},
β2 = max{|b̄ii|} and ν̄ = c̄L̄

2 (Nβ1L̄ + h̄β2), then the

fractional response network (3) asymptotically synchronizes
to the drive network (2).

Proof: Construct the following Lyapunov-like function:

V (t, e(t)) =
1
2

N∑

i=1

eT
i (t)ei(t). (22)

Using (7) and Lemma 3, the fractional derivative of
V (t, e(t)) yields

CDα
0,tV (t, e(t)) ≤

N∑

i=1

eT
i (t) CDα

0,tei(t)

=
N∑

i=1

eT
i (t)Aei(t) +

N∑

i=1

eT
i (t)[f(yi(t))− f(xi(t))]

+ c
N∑

i=1

N∑

j=1

bije
T
i (t)Hej(t) +

N∑

i=1

eT
i (t)[ηi(t)− ξi(t)]

+ c̄
N∑

i=1

N∑

j=1

b̄ije
T
i (t)H̄[g(yj(t− τ))− g(xj(t− τ))]

−
l∑

i=1

pie
T
i (t)ei(t)−

l∑

i=1

q
eT
i (t)sgn(ei(t))

n∑
j=1

|eij(t)|

≤ (a + L)
N∑

i=1

eT
i (t)ei(t) + c

N∑

i=1

N∑

j=1

bije
T
i (t)Hej(t)

−
l∑

i=1

pie
T
i (t)ei(t)− lq

+ c̄

N∑

i=1

N∑

j=1

b̄ije
T
i (t)H̄[g(yj(t− τ))− g(xj(t− τ))]

+
N∑

i=1

eT
i (t)[ηi(t)− ξi(t)]. (23)

From Lemma 4, we have (24), shown at the bottom of this
page, and

N∑

i=1

N∑

j=1

b̄ije
T
i (t)H̄

[
g(yj(t− τ))− g(xj(t− τ))

]

≤
N∑

i=1

N∑

j=1,j 6=i

b̄ij

[
(g(yj(t− τ))− g(xj(t− τ)))T (g(yj(t− τ))− g(xj(t− τ)))

+ eT
i (t)H̄ei(t)

]
+ 2h̄L̄

N∑

i=1

|b̄ii| · ‖ei(t)‖ · ‖ei(t− τ)‖

≤
N∑

i=1

N∑

j=1,j 6=i

b̄ij

[
L̄2eT

j (t− τ)ej(t− τ) + h̄eT
i (t)ei(t)

]

+ h̄L̄
N∑

i=1

|b̄ii|
[
eT
i (t)ei(t) + eT

i (t− τ)ei(t− τ)
]

≤ β2h̄(1 + L̄)
N∑

i=1

eT
i (t)ei(t) + L̄(Nβ1L̄ + β2h̄)

N∑

i=1

eT
i (t− τ)ei(t− τ) (24)
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N∑

i=1

N∑

j=1

bije
T
i (t)Hej(t)

=
N∑

i=1

N∑

j=1,j 6=i

bije
T
i (t)Hej(t)

+
N∑

i=1

biie
T
i (t)

(
H + HT

2

)
ei(t)

≤ h
N∑

i=1

N∑

j=1,j 6=i

bij‖ei(t)‖ · ‖ej(t)‖

+ ρmin

N∑

i=1

biie
T
i (t)ei(t) (25)

where ρmin is the minimum eigenvalue of the matrix (H +
HT )/2. Using Lemma 4 and (6), we get

N∑

i=1

eT
i (t)[ηi(t)− ξi(t)]− lq

≤ 1
2

N∑

i=1

eT
i (t)ei(t)

+
1
2

N∑

i=1

[ηi(t)− ξi(t)]T [ηi(t)− ξi(t)]− lq

≤ 1
2

N∑

i=1

eT
i (t)ei(t) +

1
2

N∑

i=1

L̃2
i − lq

=
1
2

N∑

i=1

eT
i (t)ei(t). (26)

Substituting (24)−(26) into (23), and from Lemma 3, we
obtain that

CDα
0,tV (t, e(t))

≤ ‖e(t)‖T

[(
a + L +

1
2

+
c̄β2h̄(1 + L̄)

2

)
IN

+ chB̂ − P

]
‖e(t)‖

+
c̄L̄

2
(Nβ1L̄ + h̄β2)‖e(t− τ)‖T · ‖e(t− τ)‖

≤ − µ̄
N∑

i=1

eT
i ei(t) + ν̄

N∑

i=1

ei(t− τ)T ei(t− τ) (27)

where ‖e(t)‖ = (‖e1(t)‖, ‖e2(t)‖, . . . , ‖eN (t)‖)T , P =
diag(p1, p2, . . . , pl︸ ︷︷ ︸

l

, 0, 0, . . . , 0︸ ︷︷ ︸
N−l

), B̂ = (B̃T + B̃)/2 and B̃ is

a modifying matrix of B via replacing the diagonal elements
bii by (ρmin/h)bii.

According to Theorem 1, we have ‖ei(t)‖ → 0, that is
‖yi(t) − xi(t)‖ → 0 as t → ∞, which means that the
asymptotical synchronization between drive system (2) and
response system (3) is realized. ¥

Furthermore, from (27), let Q = (a + L + 1/2 + c̄β2h̄(1 +

L̄)/2)IN + chB̂, and Q − P =
(

E − P ∗ S
ST Ql

)
, where 1

≤ l ≤ N , P ∗ = diag{p1, p2, . . . , pl}, Ql is the part matrix

of Q by removing its first l row-column pairs, E and S are
matrices with appropriate dimensions. Based on Lemma 5, and
supposing that pi (i = 1, . . . , l) are suitably large, Q−P < 0
is equivalent to Ql = [(a+L+1/2+c̄β2h̄(1+L̄)/2)IN +chB̂]l
< 0. One has λmax[(a+L+1/2+ c̄β2h̄(1+ L̄)/2)IN +chB̂]l
= (a+L+1/2+ c̄β2h̄(1+ L̄)/2)+ chλmax(B̂l) < 0. So, the
following corollary can be immediately obtained.

Corollary 1: Under assumptions (4) and (5), the fractional
response network (3) asymptotically synchronizes to the drive
one (2) under the controller (28), where pi (i = 1, . . . , l) are
sufficiently large, and the following conditions satisfied :

µ̄ = −
[(

a + L +
1
2

+
c̄β2h̄(1 + L̄)

2

)

+ chλmax(B̂l)
]

> 0

ν̄ < µ̄ sin
(απ

2

)

in which ν̄ = c̄L̄
2 (Nβ1L̄ + h̄β2).

Corollary 2: If g(xj(t−τ)) = xj(t−τ) and g(yj(t−τ)) =
yj(t− τ), the synchronous conditions between (2) and (3) are
reduced to:

µ̄ = − λmax

[(
a + L +

1
2

+ c̄β2h̄

)
IN

+ chB̂ − P

]
> 0

ν̄ < µ̄ sin
(απ

2

)

where ν = c̄
2 (Nβ1 + h̄β2).

Corollary 3: Assume ξi(t) = ηi(t) = 0, the fractional
complex networks (2) and (3) do not contain the disturbances.
Under the assumptions (4) and (5), fractional systems (2) and
(3) can be asymptotically synchronized under the controllers





ui(t) = −piei(t), 1 ≤ i ≤ l

ui(t) = 0, l + 1 ≤ i ≤ N
(28)

and the following control conditions:

µ̄ = − λmax

[(
a + L +

c̄β2h̄(1 + L̄)
2

)
IN

+ chB̂ − P

]
> 0

ν̄ < µ̄ sin
(απ

2

)

where ν̄ = c̄L̄
2 (Nβ1L̄ + h̄β2).

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented. Consider
a complex network with 10 nodes, the fractional dynamical
equation of each node is described by the following fractional
chaotic Lorenz system





CDα
0,txi1 = aL(xi2 − xi1)

CDα
0,txi2 = bLxi1 − xi1xi3 − xi2

CDα
0,txi3 = xi1xi2 − cLxi3

(29)
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where i = 1, 2, . . . , 10. The parameters are chosen as aL = 10,
bL = 28, cL = 8/3 and α = 0.995. From (2) and (3), we know

that A =



−a a 0
b −1 0
0 0 −c


, f(xi(t)) =




0
−xi1xi3

xi1xi2


,

and that system (29) is chaotic, see Fig. 1.

Fig. 1. Chaotic attractor of fractional Lorenz system with order α = 0.995.

For convenience, let H = H̄ = I , the coupling configura-
tion matrices B and B̄ are given as follows,



−2 1 0 1 0 0 0 0 0 0
0 −2 1 0 1 0 0 0 0 0
1 0 −3 0 0 1 1 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 0 1 −3 0 0 0 1 0
0 0 1 0 1 −2 0 0 0 0
0 0 0 0 0 1 −3 1 0 1
0 1 0 1 0 0 0 −3 1 0
1 0 1 0 0 0 1 0 −4 1
0 0 1 1 0 0 0 0 0 −2




.

The nonlinear coupling function is chosen as

g(xj(t− τ)) = (xj1(t− τ) + sin(xj1(t− τ)),
xj2(t− τ) + sin(xj2(t− τ)),

xj3(t− τ) + sin(xj3(t− τ)))T .

It is known that the Lorenz system is bounded. Actually,
‖xi1‖ ≤ 25, ‖xi2‖ ≤ 30, ‖xi3‖ ≤ 60, ‖yi1‖ ≤ 25,
‖yi2‖ ≤ 30, ‖yi3‖ ≤ 60, i = 1, 2, . . . , 10, and

‖f(xi)− f(yi)‖
≤

√
(−xi1xi3 + yi1yi3)2 + (xi1xi2 − yi1yi2)2

≤ 75.83‖ei‖
that is L = 75.83. Obviously, L̄ = 2. According to the method
proposed in [15], whose out-degrees are bigger than their in-
degrees, it should be selected as pinned candidates. The out-
degrees of nodes 2, 3 and 4 are bigger than their in-degrees, so
we choose them as the pinned nodes. Rearrange the network
nodes and the new order will be 4, 3, 2, 1, 6, 10, 5, 7, 8, 9.

Under the no disturbance case, that is ξi(t) = ηi(t) = (0,
0, 0)T , let pi = 910, i = 1, 2, 3, when α = 0.9, c = 100,
c̄ = 0.01, one has µ̄ sin(απ/2) = 0.2808 and ν̄ = 0.2400.
From Corollary 3, it is clear that pinning conditions hold.
The simulation results are shown in Fig. 2, which shows
the time waveforms of errors ei1, ei2, ei3, i = 1, 2, . . . , 10.

From the figures, fractional complex networks (2) and (3)
are synchronized, which demonstrate the effectiveness of the
proposed method.

Now, we come to the disturbance case. Let pi = 930,
i = 1, 2, 3, ξi(t) = (0, 0, 0)T , ηi(t) = (0.3 sin t cos t, 0.1 sin t,
0.5 cos t)T , α = 0.9, c = 100, c̄ = 0.01, one has q = 0.5833,
µ̄ sin(απ/2) = 0.2489 and ν̄ = 0.2400. From Theorem 2,
it is clear that pinning conditions hold. Fig. 3 illustrates the
synchronization phenomenon in noisy environment. It shows
the error trajectories of drive and response networks, from
which we can see that the synchronization between the driving
and response networks is achieved successfully.

Fig. 2. Time evolution of the error states e1i, e2i and e3i with no distur-
bance.

V. CONCLUSION

In this paper, we proposed a fractional pinning controller
and presented a synchronization law for the delayed fractional
complex networks with nonlinear couplings and disturbances.
Some new synchronization criteria are proposed based on the
Lyapunov-like stability theory. This method can be applied
to many types of fractional complex networks. Furthermore,
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the coupling configuration matrices and the inner-coupling
matrices are not assumed to be symmetric or irreducible. It
means that this method is more general. The numerical results
showed the effectiveness of the proposed controllers.

Fig. 3. Time evolution of the error states e1i, e2i and e3i with disturbances.
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