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The Exp-function Method for Some Time-fractional
Differential Equations
Ahmet Bekir, Ozkan Guner, and Adem Cevikel

Abstract—In this article, the fractional derivatives in the sense
of modified Riemann-Liouville derivative and the Exp-function
method are employed for constructing the exact solutions of
nonlinear time fractional partial differential equations in math-
ematical physics. As a result, some new exact solutions for them
are successfully established. It is indicated that the solutions
obtained by the Exp-function method are reliable, straightfor-
ward and effective method for strongly nonlinear fractional
partial equations with modified Riemann-Liouville derivative by
Jumarie’s. This approach can also be applied to other nonlinear
time and space fractional differential equations.

Index Terms—Exact solution, exp-function method, fractional
differential equation.

I. INTRODUCTION

FRACTIONAL partial differential equations (FPDEs) have
gained much attention as they are widely used to describe

various complex phenomena in various applications such
as the fluid flow, signal processing, control theory, systems
identification, finance and fractional dynamics, physics and
other areas. Oldman and Spanier first considered the partial
fractional differential equations arising in diffusion problems
[1]. The fractional partial differential equations have been
investigated by many researchers [2]−[4].

In recent decades, a large amount of literature has been
provided to construct the exact solutions of fractional ordi-
nary differential equations and fractional partial differential
equations of physical interest. Many powerful and efficient
methods have been proposed to obtain exact solutions of
fractional partial differential equations, such as the fractional
sub-equation method, the first integral method, the (G’/G)-
expansion method exp-function method and so on [5]−[19].

The exp-function method [20]−[27] can be used to con-
struct the exact solutions for some time and space fractional
differential equations. The present paper investigates for the
first time the applicability and effectiveness of the exp-function
method on fractional nonlinear partial differential equations.
The objective of this paper is to extend the application of the

Manuscript received April 19, 2005; accepted September 17, 2014. Rec-
ommended by Associate Editor Dingyü Xue.
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exp-function method to obtain exact solutions to some frac-
tional partial differential equations in mathematical physics.
These equations include Fitzhugh-Nagumo equation and KdV
equation.

This Letter is organized as follows: In Section II, some basic
properties of Jumarie’s modified Riemann-Liouville derivative
are given. The main steps of the exp-function method is given
in Section III. In Sections IV and V, we construct the exact
solutions of the time fractional Fitzhugh-Nagumo and KdV
equations via this method. Some conclusions and discussions
are shown in Section VI.

II. MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

In decades years, in order to improve the local behavior of
fractional types, a few local versions of fractional derivatives
have been proposed, i.e., the Caputo’s fractional derivative
[28], the Grünwald-Letnikov’s fractional derivative [29], the
Riemann-Liouville’s derivative [29], the Jumarie’s modified
Riemann-Liouville derivative [30], [31]. The Jumarie’s deriva-
tive is defined as

Dα
t f(t)=

1
Γ(1−α)

d

dt

∫ t

0
(t−ξ)−α

[
f(ξ)−f(0)

]
dξ, 0<α<1

(1)
where f : R → R, t → f(t) denotes a continuous (but not
necessarily first-order-differentiable) function. We list some
properties for the modified Riemann–Liouville derivative as
follows:

Property 1:

Dα
t tγ =

Γ(1 + γ)
Γ(1 + γ − α)

tγ−α, γ > 0. (2)

Property 2:

Dα
t (cf(t)) = cDα

t f(t), c = constant. (3)

Property 3:

Dα
t {af(t) + bg(t)} = aDα

t f(t) + bDα
t g(t) (4)

where a and b constants.
Property 4:

Dα
t c = 0, c = constant. (5)

III. THE EXP-FUNCTION METHOD

We consider the following general nonlinear FPDE of the
type

F (u,Dα
t u,Dβ

xu,Dψ
y u,Dα

t Dα
t u,Dα

t Dβ
xu,Dβ

xDβ
xu,Dβ

xDψ
y u,

Dψ
y Dψ

y u, . . . ) = 0, 0 < α, β, ψ < 1
(6)
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where u is an unknown function, and F is a polynomial of
u and its partial fractional derivatives, in which the highest
order derivatives and the nonlinear terms are involved. In the
following, we give the main steps of the exp-function method.

Step 1: Li and He [32] proposed a fractional complex trans-
form to convert fractional differential equations into ordinary
differential equations (ODE), so all analytical methods devoted
to the advanced calculus can be easily applied to the fractional
calculus. The traveling wave variable

u(x, y, t) = U(ξ)

ξ =
τxβ

Γ(1 + β)
+

δyψ

Γ(1 + ψ)
+

λtα

Γ(1 + α)
(7)

where τ, δ and λ are non zero arbitrary constants.
By using the chain rule

Dα
x u = σ

′
x

dU

dξ
Dα

x ξ

Dα
y u = σ

′
y

dU

dξ
Dα

y ξ

Dα
t u = σ

′
t

dU

dξ
Dα

t ξ (8)

where σ
′
x, σ

′
y and σ

′
t are called the sigma indexes see

[33], [34], without loss of generality we can take σ
′
x = σ

′
y =

σ
′
t = l, where l is a constant.
Substituting (7) with (2) and (8) into (6), we can rewrite (6)

in the following nonlinear ODE

Q(U,U
′
, U ′′, U ′′′, . . . ) = 0 (9)

where the prime denotes the derivation with respect to ξ. If
possible, we should integrate (9) term by term one or more
times.

Step 2: According to exp-function method, which was
developed by He and Wu [35], we assume that the wave
solution can be expressed in the following form

U(ξ) =

d∑
n=−c

an exp
[
nξ

]

q∑
m=−p

bm exp
[
mξ

] (10)

where p, q, c and d are positive integers which are known to
be further determined, an and bm are unknown constants. We
can rewrite (10) in the following equivalent form.

U(ξ) =
a−c exp

[− cξ
]
+ · · ·+ ad exp

[
dξ

]

b−p exp
[− pξ

]
+ · · ·+ bq exp

[
qξ

] . (11)

Step 3: This equivalent formulation plays an important and
fundamental part for finding the analytic solution of problems.
To determine the value of c and p, we balance the linear
term of lowest order of equation (9) with the lowest order
nonlinear term. Similarly, to determine the value of d and q,
we balance the linear term of highest order of (9) with highest
order nonlinear term [36]−[39].

In the remaining sections, we will show the exact solutions
to nonlinear time fractional differential equations using exp-
function method.

IV. THE TIME FRACTIONAL FITZHUGH-NAGUMO
EQUATION

We take into account the time fractional Fitzhugh-Nagumo
equation

∂αu

∂tα
=

∂2u

∂x2
+ u(1− u)(u− µ), t > 0; 0 < α ≤ 1;x ∈ R

(12)
subject to the initial condition

u(x, 0) =
1

(1 + e
− x√

2 )
(13)

which is an important nonlinear reaction-diffusion equation,
applied to model the transmission of nerve impulses [40], [41],
and also used in biology and the area of population genetics
in circuit theory [42]. When µ = −1, the Fitzhugh-Nagumo
equation reduces to the real Newell-Whitehead equation [43].

For our goal, we present the following transformation

u(x, t) = U(ξ), ξ = cx− λtα

Γ(1 + α)
(14)

where c and λ 6= 0 are constants.
Then by use of (14) with (2) and (8) into (12), (12) can be

turned into an ODE

λU ′ + c2U ′′ + U(1− U)(U − µ) = 0 (15)

where U ′ =
dU

dξ
.

Balancing the order of U ′′ and U3 in (15), we have

U3 =
c1 exp

[
(3c + p)ξ

]
+ · · ·

c2 exp
[
4pξ

]
+ · · · (16)

and

U ′′ =
c3 exp

[
(3p + c)ξ

]
+ · · ·

c4 exp
[
4pξ

]
+ · · · (17)

where ci are determined coefficients only for simplicity. Bal-
ancing lowest order of exp-function in (16) and (17) we have

3p + c = 3c + p (18)

which leads to the result

p = c. (19)

Similarly to determine values of d and q, we balance the
linear term of highest order in (15)

U ′′ =
· · ·+ d1 exp

[− (3q + d)ξ
]

· · ·+ d2 exp
[− 4qξ

] (20)

and

U3 =
· · ·+ d3 exp

[− (3d + q)ξ
]

· · ·+ d4 exp
[− 4qξ

] (21)

where di are determined coefficients only for simplicity. From
(20) and (21), we obtain

−(3q + d) = −(3d + q) (22)

and this gives
q = d. (23)
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To simplify, we set p = c = 1 and q = d = 1, so (11)
degrades to

u(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)
b1 exp(ξ) + b0 + b−1 exp(−ξ)

. (24)

Substituting (24) into (15), and by the help of symbolic
computation, we have

1
A

[
R3 exp(3ξ) + R2 exp(2ξ) + R1 exp(ξ) + R0

+R−1 exp(−ξ) + R−2 exp(−2ξ) + R−3 exp(−3ξ)
]

= 0
(25)

where
A = (b−1 exp(−ξ) + b0 + b1 exp(ξ))3

R3 = a2
1b1 + a2

1kb1 − a1b
2
1k − a3

1

R2 = a2
1b0 − 3a2

1a0 + c2a0b
2
1 + 2a1b1a0 − λa0b

2
1 + ka2

1b0

−a0b
2
1k+2a1a0kb1−2a1b1kb0−c2a1b1b0+λa1b1b0

R1 = a2
1b−1 − 3a2

1a−1 − 3a1a
2
0 + a2

0b1 + c2a1b
2
0

− 2λa−1b
2
1 − a1b

2
0k + 4c2a−1b

2
1 + 2a1b1a−1

− a−1b
2
1k + λa1b

2
0 + a2

1b−1k + a2
0kb1 + 2a1b0a0

− c2a0b1b0 + 2a1b0a0k − 4c2a1b1b−1 − 2a1b1b−1k
− λa0b1b0 − 2a0b1b0k + 2λa1b1b−1 + 2a1b1a−1k

R0 = −a3
0 − a0b

2
0k + a2

0kb0 − 2a1b0kb−1

+ 2a1a0kb−1 − 2a−1b1kb0 + 2a1b0a−1 + 2a1b−1a0

+ a2
0b0 + 3λa1b0b−1 − 3λa−1b1b0 + 3c2a1b0b−1

+ 3c2a−1b0b1 − 6c2a0b1b−1 − 6a1a0a−1

+2a0b1a−1+2a1a−1kb0−2a0b1kb−1+2a0a−1kb1

R−1 = a2
0b−1 − 3a−1a

2
0 − 3a1a

2
−1 + b1a

2
−1 − 2λa−1b1b−1

+2a1a−1kb−1+λa0b−1b0+2a0a−1kb0−c2a0b0b−1

−2a−1b1kb−1−2a0b0kb−1−4c2a−1b1b−1+2λa1b
2
−1

−λa−1b
2
0+a2

−1kb1+2a1b−1a−1−a1b
2
−1k+4c2a1b

2
−1

+ a2
0kb−1 + 2a0b0a−1 + c2a−1b

2
0 − a−1b

2
0k

R−2 = −3a0a
2
−1 + b0a

2
−1 − 2a−1b0kb−1 + 2a0a−1kb−1

− c2a−1b0b−1 − λa−1b0b−1 + 2a0b−1a−1

− a0b
2
−1k + λa0b

2
−1 + a2

−1kb0 + c2a0b
2
−1

R−3 = a2
−1b−1 + a2

−1kb−1 − a−1b
2
−1k − a3

−1.

Solving this system of algebraic equations by using Maple,
we obtain the following results

Case 1:

a0 = 0, b−1 =
1
5
a−1, b0 = 0, b1 = a1

µ = 5, λ = 6, c = ±√2 (26)

where a−1 and a1 are free parameters. Substituting these
results into (24), we obtain the exact solution (27), shown
at the bottom of the page.

The evolution of exact solution for (27) with α = 0.5 and
α = 1.0 is shown in Fig. 1.

Fig. 1. The exact solution for (27) with (a) α = 0.5 and (b) α = 1,
respectively, when a1 = 1, a−1 = −1.

Case 2 :

a0 = 0, b−1 = a−1, b0 = 0, b1 =
1
5
a1

µ = 5, λ = −6, c = ±√2
(28)

where a−1 and a1 are free parameters. Substituting these
results into (24), we obtain the exact solution (29), shown
at the bottom of the page.

Case 3:

a0 = 0, b−1 = b−1, b0 = 0, b1 = a1

µ =
a−1

b−1
, λ =

a2
−1 − b2

−1

4b2
−1

, c = ±
√

2
4b−1

(a−1 − b−1)

(30)
where a−1 and b−1 are free parameters which exist provided
that b−1 6= 0 and a2

−1 6= b2
−1. Substituting these results into

(24), we obtain the exact solution (31), shown at the bottom
of the page.

———————————————————————————————————————————————————–

u(x, t) =
a1 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
a1
5 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
(27)

u(x, t) =
a1 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
a1
5 exp(±√2x + 6tα

Γ(1+α) ) + a−1 exp(−(±√2x + 6tα

Γ(1+α) ))
(29)

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

a1 exp(cx− λtα

Γ(1+α) ) + b−1 exp(−(cx− λtα

Γ(1+α) ))
(31)



318 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 2, APRIL 2017

Case 4 :
a0 = 0, b−1 = a−1, b0 = 0, b1 = b1

µ =
a1

b1
, λ = −a2

1 − b2
1

4b2
1

, c = ±
√

2
4b1

(a1 − b1)

(32)
where a1 and b1 are free parameters which exist provided that
b1 6= 0 and a2

1 6= b2
1. Substituting these results into (24), we

obtain the exact solution (33), shown at the bottom of the page.
Case 5 :
a0 = 0, b−1 = 2a−1, b0 =

√−a1a−1, b1 = a1

µ =
1
2
, λ = −3

8
, c = ±

√
2

4
(27)

where a1 and a−1 are free parameters. Substituting these
results into (24), we obtain the exact solution (35), shown
at the bottom of the page.

Obtained exact solution is described in Fig. 2.

Fig. 2. The exact solution for (35) with (a) α = 0.5 and (b) α = 1,
respectively, when a1 = 1, a−1 = −1.

Case 6 :

a0 = 0, λ =
a2
−1 − b2

−1

2b2
−1

b−1 = b−1, b0 = ±
√
− a1

a−1
(a−1 − b−1) , b1 = a1

µ =
a−1

b−1
, c = ±

√
2

2b−1
(a−1 − b−1)

(36)

where a1 and a−1 are free parameters which exist provided
that b−1 6= 0 and a2

−1 6= b2
−1. Substituting these results into

(24), we obtain the exact solution (37), shown at the bottom
of the page.

Case 7 :
a0 = 0, b−1 = a−1, b0 =

√−a1a−1

2
, b1 =

a1

2

µ = 2, λ = −3
2
, c = ±

√
2

2
(38)

where a1 and a−1 are free parameters. Substituting these
results into (24), we obtain the exact solution (39), shown
at the bottom of the page.

Case 8 :

a0 = 0, λ =
a2
1 − b2

1

2b2
1

b−1 = a−1, b0 = ±
√
−a−1

a1
(a1 − b1) , b1 = b1

µ =
a1

b1
, c = ±

√
2

2b1
(a1 − b1)

(40)

where a1 and a−1 are free parameters which exist provided
that b1 6= 0 and a2

1 6= b2
1. Substituting these results into (24),

we obtain the exact solution (41), shown at the bottom of the
page.

V. THE TIME FRACTIONAL KDV EQUATION

We consider the time fractional KdV equation

∂α

∂tα
u + 6u

∂u

∂x
+

∂3u

∂x3
= 0, t > 0; 0 < α ≤ 1;x ∈ R (42)

subject to the initial condition:

u(x, 0) =
1
2
sech2

(1
2
x
)

(43)

———————————————————————————————————————————————————–

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

b1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))
(33)

u(x, t) =
a1 exp(±

√
2

4 x + 3tα

8Γ(1+α) ) + a−1 exp(−(±
√

2
4 x + 3tα

8Γ(1+α) ))

a1 exp(±
√

2
4 x + 3tα

8Γ(1+α) ) +
√−a1a−1 + 2a−1 exp(−(±

√
2

4 x + 3tα

8Γ(1+α) ))
(35)

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

a1 exp(cx− λtα

Γ(1+α) ) +
√−a1a−1 + 2a−1 exp(−(cx− λtα

Γ(1+α) ))
(37)

u(x, t) =
a1 exp(±

√
2

2 x + 3tα

2Γ(1+α) ) + a−1 exp(−(±
√

2
2 x + 3tα

2Γ(1+α) ))
a1
2 exp(±

√
2

2 x + 3tα

2Γ(1+α) ) +
√−a1a−1

2 + a−1 exp(−(±
√

2
2 x + 3tα

2Γ(1+α) ))
(39)

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + a−1 exp(−(cx− λtα

Γ(1+α) ))

b1 exp(cx− λtα

Γ(1+α) )±
√
−a−1

a1
(a1 − b1) + a−1 exp(−(cx− λtα

Γ(1+α) ))
(41)
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where α is a parameter describing the order of the fractional
time-derivative. The function u(x, t) is assumed to be a causal
function of time.

For our purpose, we introduce the following transforma-
tions;

u(x, t) = U(ξ), ξ = cx− λtα

Γ(1 + α)
(44)

where c and λ are non-zero constants.
Substituting (44) with (2) and (8) into (42), we can show

that (42) reduced into following ODE

−λU ′ + 6cUU ′ + c3U ′′′ = 0 (45)

where U ′ =
dU

dξ
.

Integrating (45) with respect to ξ yields

−λU + 3cU2 + c3U ′′ + ξ0 = 0 (46)

where ξ0 is a constant of integration.
By the same procedure as illustrated in Section III, we can

determine values of c and p by balancing terms U2 and U ′′

in (46). By symbolic computation, we have

U ′′ =
c1 exp

[
(3p + c)ξ

]
+ · · ·

c2 exp
[
4pξ

]
+ · · · (47)

and

U2 =
· · ·+ c3 exp

[
2cξ

]

· · ·+ c4 exp
[
2pξ

] (48)

where ci are determined coefficients only for simplicity. Ac-
cording to exp-function method, balancing lowest order of (47)
and (48), we have

3p + c = 2c + 2p (49)

that gives
p = c. (50)

In the same way, we balance the linear term of highest order
in (46)

U ′′ =
· · ·+ d1 exp

[− (3q + d)ξ
]

· · ·+ d2 exp[−4qξ]
(51)

and

U2 =
d3 exp

[− 2dξ
]
+ · · ·

d4 exp
[− 2qξ

]
+ · · · (52)

where di are determined coefficients only for simplicity. From

(51) and (52), we get

−(3q + d) = −(2d + 2q) (53)

and this gives
q = d. (54)

For simplicity, we set p = c = 1 and q = d = 1, so (11)
reduces to

U(ξ) =
a1 exp(ξ) + a0 + a−1 exp(−ξ)
b1 exp(ξ) + b0 + b−1 exp(−ξ)

. (55)

Substituting (55) into (46), and by the help of Maple, we
have

1
A

[
R3 exp(3ξ) + R2 exp(2ξ) + R1 exp(ξ) + R0

+R−1 exp(−ξ) + R−2 exp(−2ξ) + R−3 exp(−3ξ)
]

= 0
(56)

where

A = (b−1 exp(−ξ) + b0 + b1 exp(ξ))3

R3 = −λa1b
2
1 + kb3

1 + 3ca2
1b1

R2 = c3a0b
2
1 + 3kb2

1b0 − λa0b
2
1 + 3ca2

1b0 − 2λa1b1b0

+ 6ca1a0b1 − c3a1b1b0

R1 = −2λa0b1b0 + 6ca1b0a0 − c3a0b1b0 + 3kb1b
2
0 − λa1b

2
0

+ 3ca2
0b1 + c3a1b

2
0 + 4c3a−1b

2
1 + 3kb2

1b−1 + 3ca2
1b−1

− λa−1b
2
1 − 2λa1b1b−1 + 6ca1a−1b1 − 4c3a1b1b−1

R0 = 3ca2
0b0 + 6ca0a−1b1 + kb3

0 − λa0b
2
0 + 6kb−1b1b0

+3c3a1b0b−1+3c3a−1b1b0−6c3a0b1b−1−2λa1b0b−1

− 2λa0b1b−1 − 2λa−1b1b0 + 6ca1a0b−1 + 6ca1a−1b0

R−1 = −2λa0b−1b0 + 6ca0a−1b0 − c3a0b0b−1 + 3kb2
0b−1

−λa−1b
2
0+3ca2

0b−1+c3a−1b
2
0+3ca2

−1b1+4c3a1b
2
−1

+ 3kb1b
2
−1 − λa1b

2
−1 − 2λa−1b1b−1 + 6ca1a−1b−1

− 4c3a−1b1b−1

R−2 = c3a0b
2
−1+3kb0b

2
−1−λa0b

2
−1+3cb0a

2
−1−2λa2b0b−1

+ 6ca0a−1b−1 − c3a−1b0b−1

R−3 = −λa−1b
2
−1 + 3ca2

−1b−1 + kb3
−1.

(57)
Solving this system of algebraic equations by using Maple,

we obtain the following results

a1 = a1, a0 =
b0

b1
(c2b1 + a1), a−1 =

a1b
2
0

4b2
1

b1 = b1, b0 = b0, b−1 =
b2
0

4b1

ξ0 =
a1c(c2b1 + 3a1)

b2
1

, λ =
c(c2b1 + 6a1)

b1

(58)

where a1 , b0 and b1 are free parameters which exist provided
that b1 6= 0 and c2b1 +6a1 6= 0. Substituting these results into
(56), we obtain the exact solution (59), shown at the bottom
of the page.

Also, u(x, t) in (59) is represented in Fig. 3.

———————————————————————————————————————————————————–

u(x, t) =
a1 exp(cx− λtα

Γ(1+α) ) + b0
b1

(c2b1 + a1) + a1b20
4b21

exp(−(cx− λtα

Γ(1+α) ))

b1 exp(cx− λtα

Γ(1+α) ) + b0 + b20
4b1

exp(−(cx− λtα

Γ(1+α) ))
(59)
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Fig. 3. The exact solution for (59) with (a) α = 0.5 and (b) α = 1

respectively, when c = 1, a1 = 0, b1 = 1, b0 = 2.

Comparing our results with the results [45], it can be seen
that our results are new.

VI. CONCLUSION

exp-function method known as very powerful and an ef-
fective method for solving nonlinear problems and ordinary,
partial, difference, fractional equations and so many other
equations. The basic idea described in this paper is expected to
be further employed to solve other similar nonlinear equations
in fractional calculus. To our knowledge, these new solutions
have not been reported in former literature, they may be of
significant importance for the explanation of some special
physical phenomena. As a result, many new and more rational
solitary wave solutions are obtained, from which hyperbolic
function and trigonometric function solutions.
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