
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 4, NO. 1, JANUARY 2017 107

Artificial Bee Colony Algorithm-based Parameter
Estimation of Fractional-order Chaotic

System with Time Delay
Wenjuan Gu, Yongguang Yu, and Wei Hu

Abstract—It is an important issue to estimate parameters of
fractional-order chaotic systems in nonlinear science, which has
received increasing interest in recent years. In this paper, time
delay and fractional order as well as system’s parameters are
concerned by treating the time delay and fractional order as
additional parameters. The parameter estimation is converted
into a multi-dimensional optimization problem. A new scheme
based on artificial bee colony (ABC) algorithm is proposed
to solve the optimization problem. Numerical experiments are
performed on two typical time-delay fractional-order chaotic
systems to verify the effectiveness of the proposed method.

Index Terms—Artificial bee colony (ABC) algorithm,
fractional-order chaotic system, parameters estimation, time
delay.

I. INTRODUCTION

FRACTIONAL calculus is a branch of mathematics which
deals with differentiation and integration of arbitrary

orders and is as old as calculus [1]. Although the classical
calculus has been playing a dominant role in explaining and
modeling dynamical processes observed in real world, the
fractional calculus has gradually attracted the attention of
scientists during the last decades because of its capability
in describing important phenomena of non-local dynamics
and memory effects. It has been introduced into various
engineering and science domains, such as image processing
[2], robotics [3], diffusion [4], mechanics [5], and others [1].

Time delay is commonly encountered in real systems,
such as chemistry, climatology, biology, economy and crypto
systems [6]. Time-delay differential equation is a differential
equation in which the derivative of the function at any time
depends on the solution at previous time. Introduction of time
delay in the model can enrich its dynamics and provide a
precise description of real life phenomenon [7]. Particularly,
since Mackey and Glass [8] firstly detected chaos in time-delay
systems, control and synchronization of time-delay chaotic
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systems have obtained increasing attention [9], [10], which
can produce more complex and adequate dynamic behavior
than those free of time delays.

Recently, chaotic behavior has been found in time-delay
fractional-order systems, such as fractional-order financial sys-
tem [11], fractional-order Chen system [12], fractional-order
Liu system [13] and so on. Many control methods are valid for
the fractional-order chaotic systems with known parameters
and time-delays [14]−[16]. However, in some applications
such as secure communications and chaos synchronization,
the chaotic system is partially known. It means that the form
of differential equation is known, but some or all of the time
delays, fractional orders and system’s parameters are unknown.
Therefore, estimating the unknown parameters of time-delay
fractional-order chaotic system is of vital significance in
controlling and utilizing chaos.

Up to now, for the parameter estimation of chaotic systems,
considerable methods have been put forward, such as the least-
squares method [17], the symbolic time series analysis-based
method [18], the adaptive control method [19]. Besides, by
transforming the parameter estimation in dynamical systems as
a multi-dimensional optimization problem, many evolutionary
algorithms have been proposed to deal with the problem,
such as differential evolution (DE) [20], particle swarm opti-
mization (PSO) [21], cuckoo search (CS) [22], biogeography-
based optimization (BBO) [23]. However, most of the works
mentioned so far are involved mainly with integer-order
chaotic systems or fractional-order chaotic systems without
time delays. That is, very few have addressed the estimation
problem on fractional-order chaotic systems with time delay.

Artificial bee colony (ABC) algorithm is a relatively new
optimization technique which is developed by Karaboga in
2005 based on simulating the foraging behavior of honey-
bee swarm. It has been shown to be competitive to other
population-based algorithms for global numerical optimization
problem with the advantage of employing fewer control pa-
rameters [24]−[26]. For example, apart from the maximum
iteration number and population size, a standard GA has
three more control parameters (crossover rate, mutation rate,
generation gap) [27], a standard DE has at least two control
parameters (crossover rate, scaling factor) [28] and a basic
PSO has three control parameters (cognitive and social factors,
inertia weight) [29]. Besides, limit values for the velocities
vmax have a significant effect on the performance of PSO.
The ABC algorithm has only one control parameter (limit)
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apart from colony size and maximum cycle number. Although
it uses less control parameters, the performance of ABC
algorithm is better than or similar to that of these algorithms
and it can be efficiently used for solving multimodal and
multidimensional optimization problems.

Based on the above discussion, in this paper, a scheme based
on artificial bee colony algorithm is firstly proposed to estimate
the parameters of unknown time-delay fractional-order chaotic
system. Numerical simulations are performed to estimate two
well-known fractional-order chaotic systems with time delay.
The simulation results demonstrate the good performance of
the ABC algorithm, and thus the ABC algorithm proves to be
a promising candidate for parameter estimation of time-delay
fractional-order chaotic systems.

The rest of the paper is organized as follows. In Section
II, the Caputo fractional-order derivative is introduced. In
Section III, the problem of parameter estimation for time-delay
fractional-order chaotic system is formulated from the view of
optimization. In Section IV, a parameter estimation scheme
is proposed after briefly introducing the ABC algorithm.
Numerical simulations and conclusions are given in Sections
V and VI.

II. CAPUTO FRACTIONAL-ORDER DERIVATIVE

In general, three best-known definitions of fractional-order
derivatives are widely used: Grunwald-Letnikov, Riemann-
Liouville and Caputo definitions [1]. In particular, the main
advantage of Caputo fractional-order derivative is that it owns
same initial conditions with integer-order derivatives, which
have well-understood features of physical situations and more
applicable to real world problems. Thus, the Caputo fractional-
order derivative is employed in this paper.

Definition 1 (Caputo fractional-order derivative): The Ca-
puto fractional-order derivative of order α > 0 for a function
f(t) ∈ Cn+1([t0,+∞), R) is defined as

t0D
α
t f(t) =

1
Γ(n− α)

∫ t

t0

f (n)(τ)
(t− τ)α+1−n

dτ (1)

where Γ(·) denotes the gamma function and n is a positive
integer such that n− 1 < α ≤ n.

Property 1: When C is any constant, t0D
α
t C = 0 holds.

Property 2: For constants µ and ν, the linearity of Caputo
fractional-order derivative is described by

t0D
α
t (µf(t) + νg(t)) = µ t0D

α
t f(t) + ν t0D

α
t g(t).

III. PROBLEM FORMULATION

The problem formulation of parameter estimation for time-
delay fractional-order chaotic systems is presented in this
section.

Let us consider the following time-delay fractional-order
chaotic system described by delay differential equation

0D
α
t Y (t) = f(Y (t), Y (t− τ), Y0, θ) (2)

where Y (t) = (y1(t), y2(t), . . . , yn(t))T ∈ Rn denotes the
state vector of system (2), Y0 = Y (0) denotes the initial
value for t ≤ τ , θ = (θ1, θ2, . . . , θm)T denotes the set of

system’s parameters, α = (α1, α2, . . . , αn) (0 < αi < 1,
i = 1, 2, . . . , n) is the fractional derivative orders. f(Y (t),
Y (t− τ), Y0, θ) = (f1(Y (t), Y (t− τ), Y0, θ), f2(Y (t), Y (t −
τ), Y0, θ), . . ., fn(Y (t), Y (t− τ), Y0, θ))T . In this paper, the
delay time τ and fractional order α are treated as additional
parameters to be estimated.

Suppose the structure of system (2) is known, then the
corresponding estimated system can be written as

0D
α̃
t Ỹ (t) = f(Ỹ (t), Ỹ (t− τ̃), Y0, θ̃) (3)

where Ỹ (t) = (ỹ1(t), ỹ2(t), . . . , ỹn(t))T ∈ Rn is the state
vector of the estimated system (3), θ̃ = (θ̃1, θ̃2, . . ., θ̃m)T is a
set of estimated systematic parameters, α̃ = (α̃1, α̃2, . . . , α̃n)T

is the estimated fractional orders, and τ̃ is the estimated time
delay. Besides, systems (2) and (3) have the same initial
conditions Y0.

Based on the measurable state vector Y (t) = (y1(t), y2(t),
. . . , yn(t))T ∈ Rn, we define the following objective function
or fitness function

J(α̃, θ̃, τ̃) = arg min
(α̃,θ̃,τ̃)∈Ω

F

= arg min
(α̃,θ̃,τ̃)∈Ω

N∑

k=1

‖Yk − Ỹk‖2 (4)

where k = 1, 2, . . . , N is the sampling time point and N
denotes the length of data used for parameter estimation. Yk

and Ỹk respectively denote the state vector of the original
system (2) and the estimated system (3) at time kh. h is the
step size employed in the predictor-corrector approach for the
numerical solutions of time-delay fractional-order differential
equations [7]. ‖ · ‖ is Euclid norm. Ω is the searching area
suited for parameters α̃, θ̃ and τ̃ .

Obviously, the parameter estimation for system (2) is multi-
dimensional continuous optimization problem, where the de-
cision vectors are α̃, θ̃ and τ̃ . The optimal solution can be
achieved by searching suitable α̃, θ̃ and τ̃ in the searching
space Ω such that the objective function (4) is minimized.
In this paper, a novel scheme based on artificial bee colony
algorithm is proposed to solve this problem.

The time-delay fractional-order chaotic systems are not easy
to estimate because of the unstable dynamics of the chaotic
system and the complexity of the fractional-order nonlinear
systems. Besides, due to multiple variables in the problem and
multiple local search optima in the objective functions, it is
easily trapped into local optimal solution and the computation
amount is great. So it is not easy to search the global optimal
solution effectively and accurately using the traditional general
methods. Therefore, we aim to solve this problem by the
effective artificial bee colony algorithm in this paper. The
general principle of parameter estimation by ABC algorithm
is shown in Fig. 1.

IV. A NOVEL PARAMETER ESTIMATION SCHEME

A. An Overview of the Original Artificial Bee Colony Algo-
rithm

In the natural bee swarm, there are three kinds of honey bees
to search foods generally, which include the employed bees,
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the onlookers and the scouts (both onlookers and the scouts
are also called unemployed bees). The employed bees search
the food around the food source in their memory. At the same
time, they pass their food information to the onlookers. The
onlookers tend to select good food sources from those found
by the employed bees, then further search the foods around the
selected food source. The scouts are transformed from a few
employed bees, which abandon their food sources and search
new ones. In short, the food search of bees is collectively
performed by the employed bees, the onlookers and the scouts.

Fig. 1. The general principle of parameter estimation by ABC
algorithm.

By simulating the foraging behaviors of honey bee swarm,
Karaboga proposed a competitive optimization technique
called artificial bee colony (ABC) algorithm [24]−[26]. In
the original ABC algorithm, each cycle of the search consists
of three steps: moving the employed and onlooker bees onto
the food sources and calculating their nectar amounts; and
determining the scout bees and directing them onto possible
food sources. A food source position represents a possible
solution to the problem to be optimized. The amount of
nectar of a food source corresponds to the quality of the
solution represented by that food source. Onlookers are placed
on the food sources by using a probability based selection
process. As the nectar amount of a food source increases, the
probability value with which the food source is preferred by
onlookers increases, too. Every bee colony has scouts that are
the colony’s explorers. The explorers do not have any guidance
while looking for food. They are primarily concerned with
finding any kind of food source. As a result of such behavior,
the scouts are characterized by low search costs and a low
average in food source quality. Occasionally, the scouts can
accidentally discover rich, entirely unknown food sources. In
the case of artificial bees, the artificial scouts could have the
fast discovery of the group of feasible solutions as a task. In
this work, one of the employed bees is selected and classified
as the scout bee. The selection is controlled by a control
parameter called limit. If a solution representing a food source
is not improved by a predetermined number of trials, then
the food source is abandoned by its employed bee and the
employed bee is converted to a scout. The number of trials for
releasing a food source is equal to the value of limit which
is an important control parameter of ABC. In a robust search
process, exploration and exploitation process must be carried
out together. In the ABC algorithm, while onlookers and
employed bees carry out the exploitation process in the search
space, the scouts control the exploration process. Besides, the

number of employed bees is equal to the number of onlooker
bees which is also equal to the number of food sources. The
detailed searching process is described as following:

At the first step, the ABC algorithm produces a randomly
distributed initial population with the following equation:

xi,j = xmin,j + rand(0, 1)(xmax,j − xmin,j) (5)

where i = 1, 2, . . . , SN , j = 1, 2, . . . , D. SN is the size
of the solutions (food sources), D is the dimension of the
optimization parameters. xmin,j and xmax,j are the lower and
upper bounds for the dimension j, respectively.

After initialization, the population of the food sources
(solutions) is subjected to repeated cycles. An employed bee
makes a modification on the position in her memory depending
on the local information as

vi,j = xi,j + φi,j(xi,j − xk,j) (6)

where k = 1, 2, . . . , SN and j = 1, 2, . . . , D. k and j are
randomly generated, and k must be different from i. φi,j is a
random number in [−1, 1]. Then, the employed bee tests the
nectar amount of the new source. If the nectar amount of the
new one is higher than that of the previous one in her memory,
the bee memorizes the new position and forgets the old one.
Otherwise, she keeps the position of the previous one in her
memory.

Then, an onlooker bee evaluates the nectar information
taken from all employed bees and chooses a food source with
a probability related to its nectar amount and calculated as

pi =
fiti

SN∑
j=1

fitj

(7)

where fiti denotes the fitness value of solution Xi. As in the
case of the employed bee, she produces a modification on the
position in her memory and checks the nectar amount of the
candidate source. Besides, the fitness value fiti is defined as
follows:

fiti =





1
1 + f(Xi)

, if f(Xi) ≥ 0

1 + |f(Xi)|, if f(Xi) < 0
(8)

where f(Xi) represents the objective function value of the
decision vector Xi.

In ABC, if a position cannot be improved further through
a predetermined number of cycles (called limit), then that
food source is assumed to be abandoned. The corresponding
employed bee becomes a scout bee and a new food source is
generated with (5).

Some more details can be found from [24]−[26] and the
main steps of the original ABC algorithm are described in
Algorithm 1 (see the top of next page).

B. A Novel Parameter Estimation Scheme

As far as we are concerned, little research has been done
for the parameter estimation of time-delay fractional-order
chaotic systems. Thus, in this paper, the parameter estimation
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Algorithm 1 The main procedure of the original artificial bee colony algorithm

Step 0: Predefine some parameters: SN (population size number), D (searching dimension), LOWER (lower bound), UPPER (upper bound),
limit (control parameter), MCN (maximum cycle number)
Step 1: The population initialization phase:

Step 1.1: Randomly generate 0.5× SN points in the search space to form an initial population via (5).
Step 1.2: Evaluate the objective function values of population.
Step 1.3: cycle=1.

Step 2: The employed bees phase:
For i = 1 to 0.5× SN do

Step 2.1:
Step 2.1.1: Generate a candidate solution Vi by (6).
Step 2.1.2: Evaluate f(Vi).

Step 2.2: If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.
End For

Step 3: Calculating the probability values pi by (7), set t = 0, i = 1.
Step 4: The onlooker bees phase:

While t ≤ 0.5 × SN, do
Step 4.1:

If rand(0, 1) < pi

Step 4.1.1: Generate a candidate solution Vi by (6).
Step 4.1.2: Evaluate f(Vi).
Step 4.1.3: If f(Vi) < f(Xi), set Xi = Vi, otherwise, set triali = triali + 1.
Step 4.1.4: Set t = t + 1.

End If
Step 4.2: Set i = i + 1, if i = 0.5× SN , set i = 1.

End While
Step 5: The scout bees phase:

If max(triali) > limit, replace Xi with a new candidate solution generated via (5).
Step 6: Set cycle = cycle + 1, and if cycle > MCN , then stop and output the best solution achieved so far, otherwise, go to Step 2.

for time-delay fractional-order chaotic systems is studied. It
is converted into a nonlinear optimization problem via a
functional extreme model in Section III. In Section IV-A,
the artificial bee colony algorithm is described in details. In
this subsection, a method based on ABC algorithm is firstly
proposed and applied to estimate the unknown parameters of
the time-delay fractional-order chaotic systems. The procedure
of the new method for parameter estimation of time-delay
fractional-order chaotic systems is outlined in Algorithm 2
(see the top of next page).

V. SIMULATIONS

To test the effectiveness of ABC algorithm, two typical
time-delay fractional-order chaotic systems are selected to
show the performance. The simulations were done using
MATLAB 7.1 on Intel (R ) Core (TM) i5-3470 CPU, 3.2 GHz
with 4 GB RAM. The predictor-corrector approach for the
numerical solutions of time-delay fractional-order differential
equations is used, which can be found in [7]. It is obvious that
if the population and the maximum cycle number are larger,
the corresponding probability of finding the global optimum
is larger as well. However, a larger population and maximum
cycle number need a larger number of function evaluations.
In the following simulations, for the ABC algorithm, the
population size (SN ) and maximum cycle number (MCN )
are set as: SN = 100, MCN = 300. Besides, the control
parameter limit is chosen as 15. The ABC algorithm is run
for 15 independent times for each example, and all runs are
terminated after the predefined maximum number of iterations
is reached.

Example 1: Fractional-order financial system with time-
delay [11] is described as:





0D
α1
t x(t) = z(t) + (y(t− τ)− a)x(t)

0D
α2
t y(t) = 1− by(t)− x2(t− τ)

0D
α3
t z(t) = −x(t− τ)− cz(t)

(9)

when (α1, α2, α3) = (0.76, 1, 1), (a, b, c) = (3, 0.1, 1), τ =
0.08 and initial point is (0.1, 4, 0.5), system (9) is chaotic.
In order to demonstrate the performance of ABC algorithm
clearly, the true values of fractional order α1, system’s param-
eter c and time delay τ are assumed as unknown parameters
which need to be estimated. The searching spaces of the
unknown parameters are set as (α1, c, τ) ∈ [0.4, 1.4] × [0.5,
1.5]× [0.01, 0.1]. The No. of samples is set as N = 250 and
the step size h = 0.01.

The corresponding objective function can be written as

F (α̃1, c̃, τ̃) =
N∑

k=1

‖Yk − Ỹk‖2 (10)

therefore, the parameter estimation of system (9) is converted
into a nonlinear function optimization problem as (10). In par-
ticular, the smaller F is, the better combination of parameters
(α1, c, τ) is. The distribution of the objective function value for
the time-delay fractional-order financial system (9) is shown
in Fig. 2. As viewed in different colors in Fig. 2, it can be
found that the objective function values are smaller in the
neighborhood of the point (α1, c, τ) = (0.76, 1, 0.08) than
those in other places.

To show the performance of ABC algorithm, the statistical
results in terms of the best, the mean, and the worst estimated
parameters over 15 independent runs are listed in Table I, it
can be easily seen that the estimated value obtained via the
ABC algorithm is close to the true parameter value, implying
that it can estimate the unknown parameters of the time-delay
fractional-order chaotic system accurately. The evolutionary
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Algorithm 2 A novel parameter estimation method based on ABC algorithm

Step 1: The initialization phase:
Step 1.1: Initialize the parameters for ABC algorithm and time-delay fractional-order chaotic system (2).
Step 1.2: Generate the initial population in the feasible domain Ω referred to in Section III.

Step 2: The optimization phase:
Repeat

Optimize the function (4) by ABC algorithm (Algorithm 1).
Until Termination condition is satisfied.

curves of the parameters and fitness values estimated by ABC
algorithm are shown in Figs. 3 and 4 in a single run, which
can also illustrate the effectiveness of the proposed method.

Fig. 2. The distribution of the objective function values for system
(9).

TABLE I
SIMULATION RESULTS FOR SYSTEM (9) OVER

15 INDEPENDENT RUNS

Best Mean Worst

α1 0.7599999995 0.7600001772 0.7600028911
|α1 − 0.76|

0.76
5.06E−10 1.77E−07 2.89E−06

c 0.9999999791 0.9999994842 0.9999723488
|c− 1|

1
2.09E−08 5.16E−07 2.77E−05

τ 0.0794338076 0.0796012039 0.0844809056
|τ − 0.08|

0.08
5.66E−04 3.99E−04 4.48E−03

F 1.57E−07 2.39E−05 1.41E−04

Example 2: Fractional-order Chen system with time-delay
[12] is described as:




0D
α1
t x(t) = a(y(t)− x(t− τ))

0D
α2
t y(t) = (c− a)x(t− τ)− x(t)z(t) + cy(t)

0D
α3
t z(t) = x(t)y(t)− bz(t− τ)

(11)

when α1 = α2 = α3 = 0.94 = α, (a, b, c) = (35, 3, 27), τ =
0.009 and initial point is (0.2, 0, 0.5), system (11) is chaotic.
In this example, the fractional order α, system parameter b
and time delay τ are treated as unknown parameters to be
estimated. The searching spaces of the unknown parameters
are set as (α, b, τ) ∈ [0.4, 1.4]× [2.5, 3.5]× [0.001, 0.015].

The No. of samples is set as N = 250 and the step size h
= 0.001. Similarly, the corresponding objective function can
be written as

Fig. 3. Evolutionary curve in terms of estimated error values with
the ABC algorithms on system (9) in a single run.

Fig. 4. Evolutionary curve in terms of fitness values with the ABC
algorithms on system (9) in a single run.

F (α̃, b̃, τ̃) =
N∑

k=1

‖Yk − Ỹk‖2 (12)

therefore, the parameter estimation of system (11) is converted
into a nonlinear function optimization problem as (12). Fig. 5
shows the distribution of the objective function value for the
time-delay fractional-order Chen system (11).

The statistical results of the best, the mean and the worst
estimated parameters with their corresponding relative error
values over 15 independent runs are displayed in Table II.
From Table II, it can be seen that the ABC algorithm can
efficiently estimate the parameters of system (11). Figs. 6 and
7 depict the convergence profile of the evolutionary processes
of the estimated parameters and the fitness values. From the
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figures, it can be seen that ABC algorithm can converge to the
optimal solution rapidly.

Fig. 5. The distribution of the objective function values for system
(11).

TABLE II
SIMULATION RESULTS FOR SYSTEM (11)

OVER 15 INDEPENDENT RUNS

Best Mean Worst

α 0.9400000256 0.9400899098 0.9415600675
|α− 0.94|

0.94
2.56E−08 8.99E−05 1.56E−03

b 2.9999503453 2.9925101632 3.2099938577
|b− 3|

3
4.97E−05 7.49E−03 2.10E−01

τ 0.0089214355 0.0089894034 0.0099489787
|τ − 0.009|

0.009
7.86E−05 1.06E−05 9.49E−04

F 1.48E−04 1.21E−01 1.11E+00

Fig. 6. Evolutionary curve in terms of estimated error values with
the ABC algorithms on system (11) in a single run.

VI. CONCLUSIONS

In this paper, the parameter estimation of time-delay
fractional-order chaotic systems is concerned by converting
it into an optimization problem. A method based on artificial

bee colony algorithm is proposed to deal with the optimization
problem via functional extreme model. In simulations, the
proposed method is applied to identify two typical time-delay
fractional-order chaotic systems. And the simulation results
show that the fractional order, the time delay and the system’s
parameter of chaotic system can be successfully estimated with
the proposed scheme.

Fig. 7. Evolutionary curve in terms of fitness values with the ABC
algorithms on system (11) in a single run.

The aim of this paper is to design a scheme based on ABC
algorithm to estimate the unknown fractional orders, system’s
parameters and time delays. The proposed method can avoid
the design of parameter update law in synchronization anal-
ysis of the time-delay fractional-order chaotic systems with
unknown parameters. Though it is not good enough, we hope
this method will contribute to the application of chaos control
and synchronization for the time-delay fractional-order chaotic
systems.
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