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Numerical Solutions of Fractional Differential
Equations by Using Fractional Taylor Basis

Vidhya Saraswathy Krishnasamy, Somayeh Mashayekhi, and Mohsen Razzaghi

Abstract—In this paper, a new numerical method for solving
fractional differential equations (FDEs) is presented. The method
is based upon the fractional Taylor basis approximations. The
operational matrix of the fractional integration for the fractional
Taylor basis is introduced. This matrix is then utilized to reduce
the solution of the fractional differential equations to a system
of algebraic equations. Illustrative examples are included to
demonstrate the validity and applicability of this technique.

Index Terms—Caputo derivative, fractional differential equa-
tions (FEDs), fractional Taylor basis, operational matrix,
Riemann-Liouville fractional integral operator.

I. INTRODUCTION

THE fractional differential equations (FDEs) have drawn
increasing attention and interest due to their important

applications in science and engineering. A history of the
development of fractional differential operators can be found
in [1]−[3].

Many mathematical modelings contain FDEs. To mention a
few, fractional derivatives are used in visco-elastic systems [4],
economics [5], continuum and statistical mechanics [6], solid
mechanics [7], electrochemistry [8], biology [9] and acoustics
[10]. Generally speaking, most of the FDEs do not have exact
analytic solutions. Therefore, seeking numerical solutions of
these equations becomes more and more important. Recently,
several numerical methods to solve FDEs have been given,
such as Fourier transforms [11], Laplace transforms [12], Ado-
mian decomposition method [13], variational iteration method
[14], the power series method [15], truncated fractional power
series method [16], fractional differential transform method
(FDTM) [17], homotopy analysis method [18], fractional-
order Legendre functions method [19], modified homotopy
perturbation method (MHPM) [20] and enhanced homotopy
perturbation method (EHPM) [21].

Moreover, for solving FDEs in [22], the Bernstein polyno-
mials are used to solve the fractional Riccati type differen-
tial equations. In [22], the Bernstein polynomials were first
expanded into fractional Taylor polynomials. The operational
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matrix of fractional differentiation (OMFD) of fractional Tay-
lor polynomials were then used for calculating OMFD for
Bernstein polynomials. In addition, the Chebyshev, Legendre
and Bernoulli wavelets operational matrices of fractional in-
tegration (OMFI) were calculated in [23]−[25], respectively.
For obtaining OMFI in [23], [24], these wavelets were first
expanded into block-pulse functions. Then, OMFI of block-
pulse were used for calculating OMFI for Chebyshev and
Legendre wavelets in [23], [24], respectively. In [25], for
obtaining the OMFI for Bernoulli wavelets, these wavelets
were expanded into Bernoulli polynomials.

In this paper, a new numerical method for solving the initial
and boundary value problems for fractional differential equa-
tions is presented. The method is based upon the fractional
Taylor basis approximations. The OMFI for the fractional
Taylor basis is calculated. This matrix is then utilized to reduce
the solution of the FDEs to the solution of algebraic equations.
This method is applicable for linear equations or nonlinear
equations with square nonlinearities.

The outline of this paper is as follows: In Section II, we in-
troduce some necessary definitions and properties of fractional
calculus. Section III is devoted to the basic formulation of the
fractional Taylor basis. In Section IV, we derive the Fractional
Taylor OMFI. In Section V, the problem statement is given.
Section VI is devoted to the numerical method for solving the
initial and boundary value problems for FDEs and, in Section
VII we report our numerical findings and demonstrate the
accuracy of the proposed numerical scheme by considering
five numerical examples.

II. PRELIMINARIES

A. The Fractional Integral and Derivative

In this section, we present some notations, definitions, and
preliminary facts of the fractional calculus theory which will
be used further in this work.

Definition 1: The Riemann-Liouville fractional integral op-
erator of order α is defined as [12]

Iαy(t) =

{
1

Γ(α)

∫ t

0
(t− s)α−1y(s)ds, α > 0

y(t), α = 0.

The Riemann-Liouville fractional integral operator has the
following properties:

Iα tγ =
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α, α ≥ 0; γ > −1 (1)

IαIβy(t) = IβIαy(t) = Iα+βy(t), α, β > 0. (2)
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Also the fractional integral is a linear operator, that is for
constants λ1 and λ2, we have

Iα(λ1y1(t) + λ2y2(t)) = λ1I
αy1(t) + λ2I

αy2(t).
Definition 2: The Caputo fractional derivative of order α is

defined as [12]

Dαy(t) = In−α

(
dn

dtn
y(t)

)
, n−1 < α ≤ n; n ∈ N. (3)

The fractional integral operator and fractional derivative
operator do not commute in general, but we have the following
property

Iα(Dαy(t)) = y(t)−
n−1∑

k=0

y(k)(0)
tk

k!
. (4)

III. THE PROPERTIES OF FRACTIONAL TAYLOR BASIS

A. Fractional Taylor Basis Vector

In this paper, we define the fractional Taylor basis vector as

Tmγ(t) = [1, tγ , t2γ , . . . , tmγ ]T (5)

where m is a positive integer and γ > 0, is a real number.

B. Function Approximation

Let H = L2[0, 1], and assume that Tmγ(t) ⊂ H , S = span
{1, tγ , t2γ , . . . , tmγ} and y be an arbitrary element in H . Since
S is a finite dimensional vector subspace of H , y has a unique
best approximation out of S such as y0 ∈ S, that is

∀ŷ ∈ S, ||y − y0|| ≤ ||y − ŷ||.
Since y0 ∈ S, there exist unique coefficients

c0, c1, c2, . . . , cm, such that

y ' y0 =
m∑

i=0

cit
iγ = CT Tmγ(t) (6)

where
CT = [c0, c1, c2, . . . , cm]. (7)

C. Error Bound for the Best Approximation

To obtain the error bound for the best approximation, we
use the following formula.

Generalized Taylor formula [15]: Suppose that Dkγy(t) ∈
C[0, 1] for k = 0, 1, . . . , m, where 0 < γ ≤ 1, then

y(t) =
m∑

i=0

(t)iγ

Γ(iγ + 1)
[Diγy(t)]t=0 + Rγ

m(t, 0) (8)

where Diγ = DγDγ · · ·Dγ︸ ︷︷ ︸
i times

, with Dγ defined similar to Dα

in (3), and

Rγ
m(t, 0) =

(t)(m+1)γ

Γ((m + 1)γ + 1)
[D(m+1)γy(t)]t=ξ

0 ≤ ξ ≤ t; ∀t ∈ [0, 1].

Theorem 1: Let y0 be the best approximation of y out of S
and suppose Dkγy(t) ∈ C[0, 1], k = 0, 1, . . . , then

||y(t)− y0(t)||L2[0,1] ≤
Mγ

Γ((m + 1)γ + 1)

√
1

2(m + 1)γ + 1

where
Mγ = sup

t∈[0,1]

|D(m+1)γy(t)|.

Proof: Similar to [19], since y0 is the best approximation
of y out of S, by using (8) we have

||y − y0||2L2[0,1]≤
M2

γ

(Γ((m + 1)γ + 1))2
∫ 1

0
(t)2(m+1)γdt

=
M2

γ

(Γ((m + 1)γ + 1))2
1

2(m + 1)γ + 1
. (9)

By using (9), the result can be obtained. ¥

D. Error Bound for Fractional Integration

In this section we obtain the error bound for Iαy(t).
Theorem 2: Suppose all the conditions in Theorem 1 are

true and α > 1, then
||Iαy(t)− Iαy0(t)||L2[0,1]

≤ Mγ

Γ((m + 1)γ + 1)Γ(α)

√
1

2(m + 1)γ + 1
.

Proof: By using Definition 1, we have

||Iαy(t)− Iαy0(t)||L2[0,1]

= ||Iα (y(t)− y0(t)) ||L2[0,1]

≤ 1
Γ(α)

∫ t

0

||(t− s)α−1(y(s)− y0(s))||L2[0,1] ds

≤ 1
Γ(α)

∫ 1

0

||(1− s)α−1(y(s)− y0(s))||L2[0,1] ds

≤ 1
Γ(α)

∫ 1

0

||(y(s)− y0(s))||L2[0,1] ds. (10)

By using (9) and (10), the result can be obtained. ¥

IV. THE OPERATIONAL MATRICES

A. Operational Matrix of the Fractional Integration

In this section we derive the fractional Taylor operational
matrix of the fractional integration.

By using (1) and (5), we have

Iα(Tmγ(t)) =
[

1
Γ(α + 1)

tα,
Γ(γ + 1)

Γ(γ + α + 1)
tγ+α,

Γ(2γ + 1)
Γ(2γ + α + 1)

t2γ+α, . . . ,
Γ(mγ + 1)

Γ(mγ + α + 1)
tmγ+α

]T

= tαFαTmγ(t) (11)

where

Fα = diag
[

1
Γ(α + 1)

,
Γ(γ + 1)

Γ(γ + α + 1)
,

Γ(2γ + 1)
Γ(2γ + α + 1)

,

. . . ,
Γ(mγ + 1)

Γ(mγ + α + 1)

]
.

Equation (11) can be rewritten as

Iα(Tmγ(t)) = tαGα ∗ Tmγ(t) (12)

where
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Gα =
[

1
Γ(α + 1)

,
Γ(γ + 1)

Γ(γ + α + 1)
,

Γ(2γ + 1)
Γ(2γ + α + 1)

,

. . . ,
Γ(mγ + 1)

Γ(mγ + α + 1)

]T

and * denotes term by term multiplication of two matrices of
the same dimensions.

B. Operational Matrix of Product

The following property of the product of two fractional
Taylor vectors will also be used.

Iα(Tmγ(t)TT
mγ(t)) = tαSα ∗ (Tmγ(t)TT

mγ(t)) (13)

where Sα is given by
Sα =



1
Γ(α+1)

Γ(γ+1)
Γ(γ+α+1) . . . Γ(mγ+1)

Γ(mγ+α+1)

Γ(γ+1)
Γ(γ+α+1)

Γ(2γ+1)
Γ(2γ+α+1) . . . Γ((m+1)γ+1)

Γ((m+1)γ+α+1)

Γ(2γ+1)
Γ(2γ+α+1)

Γ(3γ+1)
Γ(3γ+α+1) . . . Γ((m+2)γ+1)

Γ((m+2)γ+α+1)

...
...

. . .
...

Γ(mγ+1)
Γ(mγ+α+1)

Γ((m+1)γ+1)
Γ((m+1)γ+α+1) . . . Γ(2mγ+1)

Γ(2mγ+α+1)




.

(14)

To illustrate the calculation procedure, by using (5), we have

Tmγ(t)TT
mγ(t)

=




1 tγ t2γ · · · tmγ

tγ t2γ t3γ · · · t(m+1)γ

t2γ t3γ t4γ · · · t(m+2)γ

...
...

...
. . .

...
tmγ t(m+1)γ t(m+2)γ · · · t2mγ




. (15)

From (1) and (15), we get (16), shown at the bottom of the
page.

Therefore from (13) and (15), we get Sα in (14).

V. PROBLEM STATEMENT

In this paper we focus on the following FDE problems [24].

A. Problem a

Caputo fractional differential equation

Dαy(t) = f(t, y(t), Dβy(t))
0 ≤ t ≤ 1; 0 < α ≤ 2; 0 ≤ β ≤ α

(17)

with the initial conditions

y(0) = Y0, y′(0) = Y1. (18)

The existence and uniqueness results for solution of this
problem are given in [26].

B. Problem b

Caputo fractional differential equation in (17) with the
boundary conditions

y(0) = Y0, y(1) = Ȳ1. (19)

For this problem, we have the following Lemma 1.
Lemma 1: Assume that f : [0, 1]×R×R→ R is continuous.

Then y(t)∈C[0, 1] is a solution of the boundary value problem
in (17) and (19) if and only if y(t) is the solution of [24].

y(t) = Iαf(t, y(t), Dβy(t))−tIαf(1, y(1), Dβy(1))
+(Ȳ1 − Y0)t + Y0.

(20)
The existence and uniqueness results for solution of this

problem are given in [24].

VI. THE NUMERICAL METHOD

In this section, we use the fractional Taylor vector in (5)
for solving Problem a given in (17) and (18) and Problem b
given in (17) and (19).

A. Problem a

In this case, by using (4) and (17), we have

y(t)−
n−1∑

k=0

yk(0)
tk

k!
= Iαf(t, y(t), Dβy(t)). (21)

———————————————————————————————————————————————————–

Iα(Tmγ(t)TT
mγ(t)) =




1
Γ(α+1) t

α Γ(γ+1)
Γ(γ+α+1) t

γ+α . . . Γ(mγ+1)
Γ(mγ+α+1) t

mγ+α

Γ(γ+1)
Γ(γ+α+1) t

γ+α Γ(2γ+1)
Γ(2γ+α+1) t

2γ+α . . . Γ((m+1)γ+1)
Γ((m+1)γ+α+1) t

(m+1)γ+α

Γ(2γ+1)
Γ(2γ+α+1) t

2γ+α Γ(3γ+1)
Γ(3γ+α+1) t

3γ+α . . . Γ((m+2)γ+1)
Γ((m+2)γ+α+1) t

(m+2)γ+α

...
...

. . .
...

Γ(mγ+1)
Γ(mγ+α+1) t

mγ+α Γ((m+1)γ+1)
Γ((m+1)γ+α+1) t

(m+1)γ+α . . . Γ(2mγ+1)
Γ(2mγ+α+1) t

2mγ+α




(16)
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Substituting (6) and (18) in (21), we obtain

CT Tmγ(t)−Y0−Y1t = Iαf
(
t, CT Tmγ(t), Dβ(CT Tmγ(t)

)
.

(22)
Next, we use the operational matrices obtained in Section

4 as needed and collocate (22) at the following equidistant
nodes ti given by

ti =
i

m
, i = 0, 1, 2, . . .m. (23)

These equations give m+1 algebraic equations, which can
be solved for the unknown vector CT using Newton’s iterative
method. It is known that the initial guess for Newton’s iterative
method is very important. According to the conditions in (18)
the solution y(t) will pass through the point (0, Y0) and have
a slope Y1 at this point. We choose our initial guess y0(t) such
that y0(t) = Y1t + Y0.

B. Problem b

For Problem b, by substituting (6) in (20) we get (24),
shown at the bottom of the page.

By using the operational matrices obtained in Section IV
wherever needed and collocating (24) at the equidistant nodes
ti, given in (23), we get a system of algebraic equations, which
can be solved for the unknown vector CT using Newton’s
iterative method. In this case, the initial values required to
start Newton’s iterative method have been chosen by taking
y(t) as a linear function between the initial value y(0) = Y0

and the final value y(1) = Ȳ1.

VII. ILLUSTRATIVE EXAMPLES

In this section, five examples are given to demonstrate the
applicability and accuracy of our method. Examples 1−4 are
initial value problems and Example 5 is a boundary value
problem. Example 1 is an initial value FDE, which was first
considered in [19]. The exact solution of Example 1 is a
polynomial, and the exact solution can be obtained using the
proposed method. Examples 2 and 3 are FDEs describing
the fractional Riccati equation, which were first considered
in [20] by using modified homotopy perturbation method, it
was also studied in [21] by applying the enhanced homotopy
perturbation method, in [22] by using Bernstein polynomials
and in [25] by applying Bernoulli wavelets. For Examples 2
and 3, we compare our findings with the numerical results
in [20]−[22], [25]. Example 4 was first considered in [27]
by using a predictor corrector approach; it was also solved
in [28] by converting the FDE to a Volterra type integral
equation and in [24] by using Legendre wavelet method. For
Example 4 we compare our method with [24] which has been
shown to be comparable or superior to [27], [28]. Example 5

was solved in [24] by using Legendre wavelet. For Example
5, we compare our results with [24]. In Examples 2−5 the
package of Mathematica ver. 9.0 has been used to solve the
test problems. Here, we first give a method for selecting γ in
(5) for our examples. We select γ = 1 if α = 1 or α = 2.
Otherwise, we select γ = α. For Example 5, similar to [29]
we have also used γ = α−bαc, and we get better results than
α. Here bαc is the floor function which is the greatest integer
less than or equal to the α.

A. Example 1

Consider the following linear fractional differential equation
given in [19].

D2y(t) + D
3
2 y(t) + y(t) = 1 + t

0 < t ≤ 1; y(0) = 1; y′(0) = 1. (25)

The exact solution of this problem is

y(t) = 1 + t.

Here, we solve this problem by using the proposed method
with γ = 1 and m = 1.

Let

y(t) ∼= CT Tmγ(t) = [c0, c1]
[

1
t

]
. (26)

By using (1)−(4) and (25), we have

y(t)− 1− t + I
1
2

(
I

3
2 D

3
2 y(t)

)
+ I2y(t) =

t2

2
+

t3

6
. (27)

By substituting (26) in (27), we get

CT Tmγ(t)− 1− t + I
1
2

(
CT Tmγ(t)− y(0)− y′(0)t

)

+ I2CT Tmγ(t) =
t2

2
+

t3

6
.

From (12), we have (28), shown at the bottom of the page.
where

G 1
2

= [
1

Γ( 3
2 )

,
1

Γ( 5
2 )

]T , G2 = [
1
2
,
1
6
]T . (29)

Substituting (29) in (28) and collocating the resulting equa-
tion at t0 = 0 and t1 = 1, we get

c0 = 1, c1 = 1.

Then, by using (26), we get y(t) = 1+t, which is the exact
solution.

B. Example 2

Consider the fractional Riccati differential equation [22].

Dαy(t) + y2(t) = 1, y(0) = 0; 0 < α ≤ 1. (30)

———————————————————————————————————————————————————–

CT Tmγ(t)− Iαf(t, CT Tmγ(t), DβCT Tmγ(t)) + tIα ( f(1, CT Tmγ(t), DβCT Tmγ(t))|t=1

)− (Ȳ1 − Y0)t− Y0 = 0 (24)

CT Tmγ(t)− 1− t + t
1
2 CT

(
G 1

2
∗ Tmγ(t)− t

1
2

Γ( 3
2 )

− t
3
2

Γ( 5
2 )

)
+ t2CT (G2 ∗ Tmγ(t)) =

t2

2
+

t3

6
(28)
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TABLE I
COMPARISON OF NUMBERICAL RESULTS FOR α = 0.75

ti BPM [22], N = 8 Proposed method, m = 8 BPM [22], N = 11 Proposed method, m = 11 IABMM [21] EHPM [21] MHPM [20]

0 0 0 0 0 0 0 0

0.2 0.30996891 0.30997496 0.30997552 0.30997528 0.3117 0.3214 0.3138

0.4 0.48162749 0.48163161 0.48163184 0.48163169 0.4855 0.5077 0.4929

0.6 0.59777979 0.59778262 0.59778277 0.59778267 0.6045 0.6259 0.5974

0.8 0.67884745 0.67884945 0.67884957 0.67884949 0.6880 0.7028 0.6604

1 0.73684181 0.73683663 0.73683686 0.73683667 0.7478 0.7542 0.7183

TABLE II
COMPARISON OF NUMBERICAL RESULTS FOR α = 0.9

ti BPM [22], N = 8 Proposed method, m = 8 BPM [22], N = 11 Proposed method, m = 11 IABMM [21] EHPM [21] MHPM [20]

0 0 0 0 0 0 0 0

0.2 0.23878798 0.23878894 0.23878915 0.23878913 0.2393 0.2647 0.2391

0.4 0.42258214 0.42258305 0.42258309 0.42258308 0.4234 0.4591 0.4229

0.6 0.56617082 0.56617156 0.56617157 0.56617156 0.5679 0.6031 0.5653

0.8 0.67462642 0.67462706 0.67462700 0.67462699 0.6774 0.7068 0.6740

1 0.75460256 0.75458885 0.75458901 0.75458880 0.7584 0.7806 0.7569

TABLE III
COMPARISON OF ABSOLUTE ERROR FOR α = 1

ti BPM [22], N = 5 Proposed method, m = 5 BPM [22], N = 11 Proposed method, m = 11 Proposed method, m = 20 MHPM [20]

0 0 0 0 0 0 0

0.2 5.1734E−05 1.1440E−06 2.6847E−10 4.3055E−11 5.5511E−17 3.2022E−7

0.4 2.5969E−05 8.4839E−08 2.5057E−10 1.2536E−11 1.1102E−16 4.9622E−6

0.6 4.0657E−05 1.0711E−06 2.1577E−10 1.4442E−11 0 0.0001925

0.8 1.2390E−05 1.0920E−06 2.9392E−10 5.7991E−11 1.1102E−16 0.0023307

1 7.5141E−04 5.8350E−06 6.8444E−08 1.8625E−10 1.1102E−16 0.0155622

The exact solution of this problem for α = 1 is

y(t) =
e2t − 1
e2t + 1

.

To compare the proposed method with [20]−[22], we solve
(30) for α = 0.75, α = 0.9, and α = 1. Now, we solve (30),
with m = 3 and γ = α = 0.75.

Let
y(t) ∼= CT Tmγ(t) (31)

where
CT = [c0, c1, c2, c3]

and
Tmγ(t) = [1, t0.75, t1.5, t2.25]T .

By using (22), (30), and (31), we get

CT Tmγ(t)+ tα CT (Sα ∗ (Tmγ(t)TT
mγ(t))C− tα

Γ(α + 1)
= 0

(32)
where

Tmγ(t).TT
mγ(t) =




1 t0.75 t1.5 t2.25

t0.75 t1.5 t2.25 t3

t1.5 t2.25 t3 t3.75

t2.25 t3 t3.75 t4.5




and

Sα(t) =




1.08807 0.691367 0.521462 0.424876
0.691367 0.521462 0.424876 0.361746
0.521462 0.424876 0.361746 0.316877
0.424876 0.361746 0.316877 0.283147


 .

By collocating (32) at the nodes given in (23), and solving
the resulting equations we get,

c0 = 0, c1 = 1.03094, c2 = −0.165321, and c3 = −0.1044.

Then, by using (31), we have

y(t) = 1.03094 t0.75 − 0.165321 t1.5 − 0.1044 t2.25.

In Tables I and II, we compare our results with the
solutions of the modified homotopy perturbation method
(MHPM) in [20], the improved Adams-Bashforth-Moulton
method (IABMM) in [21], the enhanced homotopy perturba-
tion method (EHPM) in [21] and with the Bernstein polynomi-
als method (BPM) in [22] for γ = α = 0.75 and γ = α = 0.9
for different values of m. In Table III, we compare the absolute
error of our method for γ = α = 1 with MHPM [20] and BPM
[22], for different values of m. In Tables I−III, N represents
the degree of the Bernstein polynomial used in [22]. Also,
Fig. 1 shows the approximate solutions obtained for different
values of α using the proposed method with m = 5. From
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these results, it is seen that the approximate solutions converge
to the exact solution for α=1. In addition, the absolute diff-
erence between the exact and approximate solutions for α = 1
with m = 5 is plotted in Fig. 2. The absolute difference be-
tween the exact and approximate solutions for k = 1 and
M = 5 or m̂ = 2k−1M = 5 and α = 1 by Bernoulli wavelets
method is plotted in [25]. Here, k and M are the order of
wavelets and Bernoulli polynomials respectively. From our
figures and those in [25], we can conclude that the result
obtained by the proposed method has less error compared to
Bernoulli wavelets method.

Fig. 1. Comparison of the computed solutions for different values
of α with exact solution for γ = α = 1 for Example 2 with m = 5.

Fig. 2. The absolute error for γ = α = 1 for Example 2 with
m = 5.

C. Example 3

Consider the following Riccati fractional differential equa-
tion given in [22].

Dαy(t) = 2 y(t) −y2(t)+1, y(0) = 0; 0 < α ≤ 1. (33)

To solve this problem by using the proposed method, we
let

y(t) ∼= CT Tmγ(t) (34)

where CT and Tmγ(t) are given in (5) and (7) respectively.
Using (22), (33), and (34), we have

CT Tmγ(t)− 2tαCT (Gα ∗ Tmγ(t))
+ tαCT (Sα ∗ (Tmγ(t)TT

mγ(t)))C − tα

Γ(α+1) = 0. (35)

Now, by collocating (35) at the nodes given in (23), we
get m + 1 nonlinear algebraic equations which can be solved
for the unknown vector CT using Newton’s iterative method.
It is well known that the initial guesses for Newton’s itera-
tive method are very important. For this problem, by using
y(0) = 0, and (34), we choose the initial guesses such that
CT Tmγ(0) = 0. The exact solution of this problem for α = 1
is

y(t) = 1 +
√

2 tanh
(√

2t +
1
2

ln(
√

2− 1√
2 + 1

)
)

.

Table IV shows the comparison of our numerical results
with [20]−[22] for γ = α = 0.9. In Table V, we compare the
absolute error of our numerical method with [20] and [22] for
α=1. Also, Fig. 3 shows the approximate solutions obtained for
different values of α using the proposed method with m = 5.
From these results, it is seen that the approximate solutions
converge to the exact solution for α = 1. From Table V it
is seen that our results with m=18 has less error than the
results in the table given in [25], with k = 2 and M = 10 or
m̂ = 2k−1M = 20 using Bernoulli wavelets method.

Fig. 3. Comparison of the computed solutions for different values
of α with exact solution for α = 1 for Example 3 with m = 5.

D. Example 4

Consider the FDE [24]

Dαy(t) + y(t) = 0, 0 < α ≤ 2 (36)

with y(0) = 1 and y′(0) = 0. The condition y′(0) = 0 is for
1 < α ≤ 2 only.

The exact solution of this problem is y(t) = Ea(−tα) [24],
where

Ea(z) =
∞∑

k=0

zk

Γ(αk + 1)

is the Mittag-Leffler function with order α. To solve this
problem by using the proposed method, similar to (34) in
Example 3 we let

y(t) ∼= CT Tmγ(t). (37)

Using (22), (36), and (37), we have

CT Tmγ(t)− 1 + tαCT (Gα ∗ Tmγ(t)) = 0.
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TABLE IV
COMPARISON OF NUMBERICAL RESULTS FOR α = 0.9

ti BPM [22], N = 8 Proposed method, m = 8 BPM [22], N = 11 Proposed method, m = 11 IABMM [21] EHPM [21] MHPM [20]

0 0 0 0 0 0 0 0

0.2 0.31488815 0.31485423 0.31486902 0.31486367 - - -

0.4 0.69756771 0.69751826 0.69754441 0.69753816 - - -

0.5 0.90369502 0.90364539 0.90367312 0.90366680 0.8621 1.4614 0.9010

0.6 1.10789047 1.10783899 1.10786695 1.10786083 - - -

0.8 1.47772823 1.47768008 1.47770748 1.47770236 - - -

1 1.76452008 1.76525852 1.76529044 1.76527469 1.7356 2.0697 1.8720

TABLE V
COMPARISON OF ABSOLUTE ERROR FOR α = 1

ti BPM [22], N = 5 Proposed method, m = 5 BPM [22], N = 11 Proposed method, m = 11 Proposed method, m = 18 MHPM [20]

0 0 0 0 0 0 0

0.2 6.9332E−04 1.7402E−04 2.3521E−07 5.7111E−08 5.2301E−12 0.00001

0.4 6.2509E−04 1.9080E−04 3.0542E−07 6.3894E−08 6.7869E−12 0.00030

0.6 9.1370E−04 2.1689E−04 3.3836E−07 7.0059E−08 7.4832E−12 0.00469

0.8 3.9346E−04 2.0848E−04 3.4201E−07 7.1896E−08 7.0779E−12 0.01887

1 7.1367E−03 1.3840E−04 1.1799E−05 3.1903E−08 5.9701E−12 0.03431

TABLE VI
COMPARISON OF ABSOLUTE ERROR WITH [24] FOR α = 1.5

ti LWM [24], M̂ = 384 Proposed method, m = 3 Proposed method, m = 4 Proposed method, m = 5 Proposed method, m = 10

0.1 4.207E−7 3.06933E−6 3.60303E−8 2.8731E−10 2.5259E−17

0.2 1.944E−7 4.52543E−6 2.57570E−8 1.17022E−11 2.3353E−16

0.3 5.705E−8 1.45914E−6 3.43268E−8 3.89751E−10 7.0728E−17

0.4 4.605E−8 4.53425E−6 6.35744E−8 3.84075E−12 3.6902E−18

0.5 1.282E−7 8.96162E−6 1.91067E−10 6.05008E−10 7.2132E−17

0.6 1.944E−7 6.66709E−6 1.10701E−7 2.24834E−11 2.6174E−16

0.7 2.471E−7 5.03679E−6 1.02038E−7 1.58912E−9 6.2367E−17

0.8 2.878E−7 2.24058E−5 1.90389E−7 2.93859E−11 3.0854E−16

0.9 3.176E−7 3.05511E−5 5.93256E−7 7.70141E−9 2.8515E−16

TABLE VII
ABSOLUTE ERROR OF OUR METHOD FOR DIFFERENT VALUES OF α WITH m = 10

ti α = 1.1 α = 1.3 α = 1.5 α = 1.6 α = 1.8 α = 2

0.1 1.95877E−16 4.86487E−17 2.52589E−17 6.61786E−17 8.17143E−18 5.5437E−17

0.2 1.48822E−16 2.00823E−16 2.33527E−16 2.28488E−16 1.70503E−16 1.02528E−18

0.3 2.9433E−16 1.60699E−17 7.07283E−17 1.87274E−17 1.90848E−17 2.66293E−17

0.4 4.38831E−17 3.31082E−17 3.69019E−18 1.86397E−17 9.881E−17 7.59506E−17

0.5 2.29268E−16 1.72008E−16 7.21322E−17 6.88831E−17 1.32945E−16 4.27994E−17

0.6 4.46312E−16 1.77538E−18 2.61743E−16 3.10642E−17 1.78043E−17 3.43499E−17

0.7 4.04245E−16 1.85026E−16 6.23670E−17 9.06418E−17 1.30585E−16 1.05295E−16

0.8 4.16117E−16 1.31649E−16 3.08539E−16 2.75084E−16 7.1246E−17 1.84848E−17

0.9 5.21935E−16 1.84856E−17 2.85145E−16 1.22344E−16 2.10206E−17 6.86984E−17

1 9.45424E−17 1.87242E−16 1.70220E−17 8.38901E−18 1.07569E−16 5.90071E−17

By collocating at the points given in (23) we get m + 1
algebraic equations, which can be solved for the unknown
vector CT . Table VI shows the absolute error obtained for
different values of t and for α=1.5 by using the proposed
method with different values of m and the Legendre wavelets

method (LWM) in [24], with k = 8 and M1 = 3 or M̂ =
2k−1M1 = 384. Here, M1 shows the order of Legendre
polynomials. In Table VII, the absolute error obtained using
the proposed method for different values of α with m = 10
is given.
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TABLE IX
ABSOLUTE ERROR FOR DIFFERENT α WITH M = 3

ti α = 1.1 α = 1.3 α = 1.5 α = 1.6 α = 1.8 α = 2

0.1 1.33357E−17 5.01444E−18 2.71728E−18 7.76899E−18 5.36765E−18 8.84514E−19

0.2 1.04083E−17 6.07153E−18 1.22515E−17 1.85399E−17 1.55041E−17 2.19551E−18

0.3 6.93889E−18 0 3.1225E−17 2.38524E−17 2.32019E−17 2.1684E−19

0.4 2.77556E−17 1.04083E−17 5.89806E−17 1.9082E−17 2.34188E−17 1.04083E−17

0.5 5.55112E−17 1.38778E−17 9.71445E−17 0 1.04083E−17 3.1225E−17

0.6 5.55112E−17 0 1.38778E−16 2.77556E−17 1.38778E−17 6.93889E−17

0.7 5.55112E−17 0 1.38778E−16 5.55112E−17 2.77556E−17 9.71445E−17

0.8 0 5.55112E−17 1.66533E−16 5.55112E−17 5.55112E−17 1.66533E−16

0.9 1.11022E−16 1.11022E−16 1.11022E−16 0 1.11022E−16 1.11022E−16

1 3.33067E−16 3.33067E−16 0 0 3.33067E−16 0

E. Example 5

Consider the following FDE with boundary value conditions
[24]

Dαy(t) + ayn(t) = g(t), y(0) = 0; y(1) = 1 (38)

where 1 < α ≤ 2, a = exp(−2π) and n = 2. For α = 1.5
and g(t) = 105

√
πt2/32 + exp(−2π)t7, the exact solution is

given by
y(t) = t

7
2 .

Using (20) and (38), we have

y(t) = Iαg(t)− aIαy2(t)− t(Iαg(t))|t=1

− a t(Iαy2(t))|t=1 + t. (39)

Similar to (34) in Example 3, we let

y(t) ∼= CT Tmγ(t). (40)

Using (39) and (40), we get

CT Tmγ(t)− 105
√

πΓ(3)
32Γ(3 + α)

t2+α − exp(−2π)Γ(8)
Γ(8 + α)

t7+α

+ exp(−2π)tαCT (Sα ∗ Tmγ(t) TT
mγ(t))C

+ t
105
√

πΓ(3)
32Γ(3 + α)

+ t
exp(−2π)Γ(8)

Γ(8 + α)
+ exp(−2π)tCT (Sα ∗ Tmγ(1) TT

mγ(1))C − t = 0.

By collocating at the points given in (23) we get m + 1
algebraic equations, which can be solved for the unknown
vector CT . Table VIII shows the absolute error obtained for
different values of t and for m = 10 by using the proposed
method for α = 1.5 with γ = α and γ = α−bαc, together with
the absolute error obtained by the Legendre wavelets method
in [24], with k = 3 and M1 = 3 or M̂ = 2k−1M1 = 12.
Here, M1 shows the order of Legendre polynomials.

More generally, the exact solution for (38) with

g(t) =
Γ(3α + 1)
Γ(2α + 1)

t2α + exp(−2π)t6α

and keeping the other coefficients the same is

y(t) = t3α.

In Table IX, we show the absolute error of our numerical
results for different values of α with m = 3.

TABLE VIII
COMPARISON OF ABSOLUT ERROR FOR α = 1.5

ti
LWM[24]

M̂ = 12

Proposed method

m = 10

γ = α

Proposed method

m = 10

γ = α− bαc
0.1 9.6996E−5 1.34431E−9 1.06794E−17

0.2 9.3927E−4 2.68845E−9 1.38778E−17

0.3 1.5087E−3 4.03315E−9 8.67362E−18

0.4 3.3989E−4 5.37645E−9 4.16334E−17

0.5 2.4163E−3 6.72324E−9 2.77556E−17

0.6 3.1023E−4 8.05974E−9 2.77556E−17

0.7 1.4799E−3 9.43278E−9 0

0.8 6.3407E−4 1.06306E−8 1.66533E−16

0.9 4.6701E−3 1.30547E−8 2.22045E−16

VIII. CONCLUSION

In the present work the fractional Taylor basis is used
to solve FDEs. The integral operational matrix Fα and Sα

have been derived. The error bounds are also included. The
problem has been reduced to a problem of solving a system of
algebraic equations. Illustrative examples are solved by using
the proposed method to show that this approach can solve the
problem effectively.
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