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Abstract—This paper introduces an electrical drives control
architecture combining a fractional-order controller and a set-
point pre-filter. The former is based on a fractional-order
proportional-integral (PI) unit, with a non-integer order integral
action, while the latter can be of integer or non-integer type. To
satisfy robustness and dynamic performance specifications, the
feedback controller is designed by a loop-shaping technique in
the frequency domain. In particular, optimality of the feedback
system is pursued to achieve input-output tracking. The set-
point pre-filter is designed by a dynamic inversion technique
minimizing the difference between the ideal synthesized com-
mand signal (i.e., a smooth monotonic response) and the pre-
filter step response. Experimental tests validate the methodology
and compare the performance of the proposed architecture with
well-established control schemes that employ the classical PI-
based symmetrical optimum method with a smoothing pre-filter.

Index Terms—Dynamic inversion, electrical drives, fractional-
order PI controller, loop-shaping, set-point pre-filter.

I. INTRODUCTION

IN the last two decades, the applications of fractional calcu-
lus spread across several engineering fields [1], [2], ranging

from control systems [3], [4] to electrical circuits [5], to signal
processing and communications [6]−[8], to antennas and
propagation [9], [10], etc. In particular, several efforts aimed
to take advantage of fractional differentiation/integration for
developing effective and easy-to-use control design methods
and tuning techniques [11]. Frequently, the innovations are
based on the idea of extending the proportional-integral-
derivative (PID) controllers by differential or integral operators
of non-integer order [12].
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These controllers are often named fractional-order con-
trollers (FOC), where the order of differentiation and inte-
gration can be any non-integer number, even complex [13].
However, to be successful in industrial applications, the FOC
must compete with the wide diffusion of PID controllers [14].
Namely, it is well-known that FOC may guarantee superior
robustness and dynamic performance indexes with respect to
PID, especially if the controlled plants are themselves modeled
as fractional-order systems [15]. However, affordable realiza-
tions are required for low-cost implementation. To this aim,
the irrational transfer functions of FOC must be approximated
by rational transfer functions. Then, efficient, easy-to-use, and
convenient realization techniques are necessary. Indeed a good
trade-off between accuracy and efficiency would be a great
benefit for many industrial control loops using PID [14].

Regarding robust control systems, the seminal Bode’s idea is
to approximate an ideal loop gain ωc/sν as much as possible.
This transfer function includes an integrator of non-integer
(fractional) order ν and the gain crossover angular frequency
ωc [11], [12], [16], [17]. The solutions based on integration
of non-integer order reduce the sensitivity of the control
loop to gain variations and to parametric uncertainties and
achieve a better disturbance rejection. However, to be more
accepted in industry, the FOC must easily achieve good time-
or frequency-domain performance specifications and improve
the robustness guaranteed by PID-based solutions. On the
other hand, to obtain the same robustness of FOC, often more
complex high integer-order controllers are necessary.

Hence this paper analyzes the benefits and limits of a
new scheme with fractional-order PI (FOPI) controllers and
fractional-order filters. The control scheme is tested on real
electrical drives, that are important constituent parts of many
industrial control systems. There are many approaches to
design and then realize FOC (e.g., see [11], [12], [17]−[20]).
In this paper, a new methodology is proposed to combine: 1) a
loop-shaping strategy to design a feedback FOPI controller and
2) an input-output inversion technique to design an integer or
non-integer order set-point pre-filter. The main contributions
are the following ones:

1) extending the symmetrical optimum tuning method for
classical PI to the FOPI counterparts, i.e., extending a well-
known and widely used method to FOPI to make easier the
acceptance from the industrial drives area;

2) extending, in this context, the standard combination of



LINO et al.: SYNTHESIS OF FRACTIONAL-ORDER PI CONTROLLERS AND FRACTIONAL-ORDER FILTERS FOR INDUSTRIAL ELECTRICAL DRIVES 59

the PI with a smoothing pre-filter to the combination of the
FOPI with an integer- or fractional-order pre-filter.

The proposed solution improves the control dynamic perfor-
mance and disturbance rejection. Then, it may help reducing
the issues depending on control efforts, energy consumption
to compensate disturbances. Moreover, the control architecture
implies a simple updating of the usually employed elements
(i.e., a FOPI replaces a PI controller and a fractional-order
filter replaces a smoothing filter). The limitations could be
determined by the practical implementation of the irrational
transfer functions. The orders of realization, however, are kept
low both in the controller and in the pre-filter.

The rest of the paper is organized as follows. Section II
provides background on the considered electrical drives. Sec-
tion III describes the approach to design the FOPI controller
and Section IV illustrates the design of set-point pre-filters.
Section V shows results of experimental tests. Finally, Section
VI draws the conclusions.

II. THE MODELED ELECTRICAL SYSTEMS

Many industrial loops employ permanent magnet DC-
motors or permanent magnet synchronous motor (PMSM)
drives. Hence, in this paper, these two systems are test beds for
measuring the performance obtained by the proposed control
architecture. This section briefly recalls the respective char-
acteristics, properties, and operation and presents sufficiently
accurate mathematical system models.

A. The DC-motor
The DC-motor armature voltage equations are given by:

va = Ra (1 + Ta p) ia + Kv Φ ωr (1)

where Ra, La, and Ta = La/Ra are the armature winding
resistance, inductance, and time constant, respectively; Φ
is the constant excitation flux due to permanent magnets
or independent field excitation winding; va, ia and ea are
the armature voltage, current, and back-electromotive force,
respectively; finally ωr is the rotor speed, Kv is the voltage
constant and p = d/dt. The mechanical equations are:

J p ωr = Ce −B ωr − CL and p θr = ωr (2)

where Ce = Kv Φ ia is the electromagnetic torque developed
by the motor, J is the inertia moment of the rotor and
connected load, B is the viscous friction coefficient, CL is
the external load torque, and θr is the rotor position. In the
Laplace-transform s-domain, the previous equations become:

Ia =
1

Ra

1 + Ta s
(Va −Kv ΦΩr)

Ωr =
1

J s + B
(Ce − CL) ⇒ Θr =

1
s(Js + B)

(Ce − CL).

(3)
Taking into account the static friction, the mechanical model

can be extended by including a pure time delay ϑ.

B. The PMSM Drive
The PMSM drives voltage equations in the d-q rotor

reference frame are [21]:

vs,d = Rs is,d + Ls,d
dis,d

dt
− ωr Ls,q is,q

vs,q = Rs is,q + Ls,q
dis,q

dt
+ ωr (Ls,d is,d + ΨPM ) (4)

where vs,d, vs,q , is,d and is,q are the stator voltage and current
vector d-q components, Rs is the resistance of each stator
phase, Ls,d and Ls,q are the d- and q-axis stator inductances,
ΨPM is the permanent magnet flux linked to the stator
windings, and ωr is the electrical motor speed.

The electromagnetic torque developed by the motor is:

Ce = 1.5 np [ΨPM is,q + (Ls,d − Ls,q) is,q is,d] (5)

where np is the number of pole pairs. In case of superficial
PMSM, magnetic isotropy leads to Ls,d = Ls,q . Then Ce does
not contain the term due to saliency (reluctance torque):

Ce = 1.5 np ΨPM is,q = Kc is,q. (6)

Equations (4) show the dynamic coupling between the two
axes. Independent control requires the coupling terms to be
compensated by injecting feed-forward decoupling signals:

vs,dcomp = −ωr Ls,q is,q

vs,qcomp = ωr (Ls,d is,d + ΨPM ). (7)

Thus the control system will give the reference signals of
d-q voltages as follows:

v∗s,d = vs,d+ωrLs,qis,q = Rsis,d + Ls,d
dis,d

dt

v∗s,q = vs,q−ωr(Ls,dis,d+ΨPM ) = Rsis,q + Ls,q
dis,q

dt
. (8)

In the Laplace-transform s-domain, (8) becomes:

V ∗
s,d = (Rs + Ls,d s) Is,d = Rs (1 + Td s) Is,d

V ∗
s,q = (Rs + Ls,q s) Is,q = Rs (1 + Tq s) Is,q (9)

where Td = Tq for superficial PMSM.
The PMSM is controlled by two inner loops for the d-

and q-axis current components, and an outer loop for rotor
speed (Fig. 1). The d-axis current reference signal is set equal
to zero, by the maximum torque per ampere criterion for
a superficial PMSM. Moreover, time delays associated with
several necessary operations are represented as first-order
systems with small time constants. If Tc is the sampling period,
delays are due to: signal sampling (Tc/2) and holding (Tc/2),
inverter operation (Tc/2), computation of the control algorithm
(Tc), and speed (τsp) and current (τL) measurement. Note
that kinv is the converter static gain. Fig. 2 shows the block
diagram for both the d- and q- axis current control loops.

The open-loop transfer function of both the current control
loops is simplified by considering an equivalent unitary feed-
back loop and by summing up all the small time constants
in τΣi = 5Tc/2 + τL. The current PI controller GPIisq

(s) =
Kisq(1 + τisqs)/τisqs is designed by applying the zero-pole
cancelation to the plant pole and the absolute value optimum
criterion [22]. The controller parameters are given by

τisq = Td = Tq and Kisq =
Rs τisq

2 kinv τΣi
(10)

and the closed-loop transfer function of the inner loop is

G0,isq(s) =
1

1− τLs

1
1− Tc

2 s

1
1 + 2 τΣi s + 2 τ2

Σi s2
(11)
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Fig. 1. Scheme of the vector controlled PMSM drive.

Fig. 2. Scheme of the q-axis current control loop.

where the first two factors respectively approximate (1+ τLs)
and (1 + Tcs/2). Namely, these last terms are originated by
the equivalent representation with unitary feedback to include
the time delays τL and Tc/2, respectively, in the forward path.

The block diagram implementing the speed control loop
is shown in Fig. 3. The open-loop transfer function for speed
control is simplified by neglecting the very small term 2 τ2

Σi s2

and by summing up all the small time constants τΣω =
44 Tc/2 + 44 Tc − Tc/2 − τL + 2 τΣi + τsp. Note that the
coefficients in the previous formula are determined by a
sampling in the outer speed loop different from the inner
current loop. Then the process transfer function is

Gp,ωr(s) =
Kc np

J s (1 + τΣω s)
. (12)

The usual choice for speed control is to tune an integer-
order PI controller GPIωr

(s) = Kωr(1 + τωr s)/τωr s by the
symmetrical optimum criterion [23], [24]. The method is based
on tuning the controller parameters as:

τωr = 4 τΣω and Kωr =
J

2 τΣω Kc np
. (13)

The word “symmetrical” refers to the obtained symmetry
of the compensated Bode diagram with respect to the gain
crossover. The word “optimum” refers to the higher ability of
disturbance rejection. Moreover, a smoothing first order filter
with a time constant in (4 τΣω, 4.8 τΣω) lowers the overshoot.

III. FRACTIONAL-ORDER PI CONTROLLER DESIGN

A. The Design Approach

The initial assumption is that both DC-motors and PMSM
drives are modeled as first-order systems with an integrator

Gp(s) =
K

s (1 + T s)
(14)

which is common when controlling position of DC-motors (see
(3)) and speed of PMSM drives (see (12)), respectively, and is
suitable for many industrial applications. In case of DC-motor
speed control, the plant transfer function is

Gp(s) =
K

1 + T s
. (15)

All the elements in the control loop introduce delays that are
associated with an equivalent time constant, which is indicated
by T and is obtained in Section II.

A fractional-order PI controller, FOPI for short, also named
PIν controller, is used. The integrator is of non-integer order
ν. A FOPI controller is chosen because it is the closest one to
the standard integer-order PI controller that is applied in most
industrial control loops. The FOPI transfer function is

Gc(s) = KP +
KI

sν
=

KI (1 + TI sν)
sν

(16)

where KP and KI are the proportional and integral gain,
respectively, and TI = KP /KI . Moreover, the non-integer
order is 1 < ν < 2, such that 1/sν = (1/s) · (1/sµ), with
µ = ν − 1 and 0 < µ < 1. Then, the integer order integrator
1/s rejects common torque disturbances on the motor input,
and the residual non-integer order integrator is given by the
operator 1/sµ. For practical implementation, the irrational
transfer function is approximated as shown in Section III-B.

The open-loop transfer function G(s) = Gc(s)Gp(s) is

G(s) =





a :
K KI (1 + TIs

ν)
sν+1 (1 + Ts)

with plant (14)

b :
K KI (1 + TIs

ν)
sν (1 + Ts)

with plant (15). (17)
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Fig. 3. Scheme of the speed control loop: the reference is given by the employed pre-filter, which is a smoothing one with an integer-order
PI, an integer- or fractional-order pre-filter with a FOPI.

The controller is designed to obtain superior robustness to
parametric variations and to achieve a nearly optimal feedback
system [25]. Let us first consider the robustness requirement.
To this aim, the non-integer integrator must lead to the fractal
robustness. In other words, the open-loop frequency response
(OLFR) must be characterized by a nearly flat phase diagram
and a constant slope of the magnitude diagram in a sufficiently
wide interval around the gain crossover frequency. To this
aim, the fractional integrator provides a constant phase plot of
−νπ/2 and a magnitude plot with slope of −20ν dB/decade.
Then replacing s = jω yields the OLFR G(jω) and the
phase function ∠G(jω) which must guarantee the robustness
specification by imposing the desired phase margin at the
crossover frequency, say ωc. This ensures a stable performance
despite parameter variations.

Regarding the optimality, consider the closed-loop fre-
quency response Gcl(jω) = 1/(1 + G−1(jω)). It is well-
known that a feedback system is optimal if and only if
the magnitude of the return difference |1 + G−1(jω)| is
unitary for all frequencies [26]. In this condition, indeed, a
perfect input/output tracking is achieved, whichever is the
input signal. Unfortunately, this condition cannot be satisfied
by real systems. Moreover, since |G(jω)| À 1 may lead to
instability, the OLFR is shaped around ωc so that the gain is
high at low frequency and rolls off at high frequency. Then,
the optimal requirement is only approximated in a specified
bandwidth, say ωB , in which it is desired to achieve a good
tracking performance.

To start with, consider the OLFR given by

G(jω) =





a :
K KI [1 + TI ων (C + j S)]
ων+1(−S + j C) (1 + jωT )

b :
K KI [1 + TI ων (C + j S)]
ων (C + j S) (1 + j ω T )

(18)

with C = cos(πν/2) and S = sin(πν/2), which can be ex-
pressed in terms of a normalized angular frequency ω = ω T :

G(jω) =





a :
K KI

[
1 + TI

(
ω
T

)ν
(C + j S)

]

(
ω
T

)ν+1
(−S + j C) (1 + j ω)

b :
K KI

[
1 + TI

(
ω
T

)ν
(C + j S)

]

(
ω
T

)ν
(C + j S) (1 + j ω)

. (19)

Then the magnitude of the OLFR is given by

|G(jω)| =





a :
K KI(
ω
T

)ν+1

√
1 + 2 TI

(
ω
T

)ν
C + T 2

I

(
ω
T

)2ν

1 + ω2

b :
K KI(

ω
T

)ν

√
1 + 2 TI

(
ω
T

)ν
C + T 2

I

(
ω
T

)2ν

1 + ω2

(20)
and the phase of the OLFR is given by

∠G(jω)=





a : ϕ1(ω)− ϕ2(ω)− π(ν + 1)
2

b : ϕ1(ω)− ϕ2(ω)− πν

2
(21)

where ϕ1(ω) = tan−1
(
TIS

(
ω
T

)ν
/(1 + TIC

(
ω
T

)ν
)
)

and
ϕ2(ω) = tan−1(ω).

Now, the design procedure begins with choosing the band-
width ωB = ωB T where input/output tracking is desired.
The value ωB is chosen higher than the plant bandwidth.
Moreover, as it will be shown below, the integral time constant
TI depends on ωB . So, TI > 0 must hold true for a stable
controller. More in details, ωB was maximized after a trial-
and-error procedure. It is also remarked that maximizing ωB

reduces the rise time of the closed-loop response, but it also
increases the crossover ωc, which could be shifted too much
with respect to a centered position in the range where the phase
diagram is flat or slowly changing. Then, a tradeoff must be
reached between performance and robustness, as it is usual.

Next, the crossover ωc is determined by a relation that is
commonly used for estimation: ωc ∈ [ωB/1.7, ωB/1.3] [27],
e.g., ωc = ωB/1.5, but this interval allows changing the value
of ωc. Obviously, other methods can be used to set ωc.

Hence, the phase margin specification is enforced as a
robustness measure. Since PM = π + ∠G(jωc), it holds

PM =





a : ϕ1(ωc)− ϕ2(ωc) +
π(1− ν)

2

b : ϕ1(ωc)− ϕ2(ωc) +
π(2− ν)

2
. (22)

Now, ϕ1(ωc)−ϕ2(ωc) = π/2 is set in case a or ϕ1(ωc)−
ϕ2(ωc) = 0 is set in case b. These settings introduce a
constraint on TI but give the advantage of a strict, closed-form,
and simple relation between the specified phase margin and the
required fractional order. Namely, in both cases a and b, the
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previous settings yield PM =π(2− ν)/2. If the specification
PMs is given, then the following relation is established

PMs =(2− ν)π/2 ⇔ ν =2− 2PMs/π. (23)

The introduced constraint yields a closed-form expression
that is used as tuning rule for the integral time constant:

TI =





a :
−1(

ωc

T

)ν

(S ωc + C)

b :
ωc(

ωc

T

)ν

(S − ωc C)
.

(24)

To set the remaining parameter KI , the condition
|G−1(jωc)|2 = 1 uses the gain crossover normalized angular
frequency ωc and leads to another closed-form expression that
is exploited as a rule for the integral gain:

KI =





a :
1
K

(
ωc

T

)ν+1
√√√√ 1 + ω2

c

1 + 2 TI

(
ωc

T

)ν
C + T 2

I

(
ωc

T

)2ν

b :
1
K

(
ωc

T

)ν
√√√√ 1 + ω2

c

1 + 2 TI

(
ωc

T

)ν
C + T 2

I

(
ωc

T

)2ν

(25)
in which TI is the value given by (24). The proportional gain
is KP = KI TI .

If the plant includes a pure time delay ϑ, i.e., Gp(s) of (14)
and (15) is replaced by Gp(s) e−ϑs, or if the control loop
is affected by a significant dead-time ϑ, the OLFR becomes
G(jω) e−jωϑ/T . For example, as already mentioned in Section
II-A, it is necessary to model the static friction effect of
the DC-motor. In this case, the design procedure is easily
extended. Namely, the magnitude does not change, whereas
the argument is modified as

∠G(jω) =





a : ϕ1(ω)− ϕ2(ω)− π (ν + 1)
2

− ω ϑ

T

b : ϕ1(ω)− ϕ2(ω)− π ν

2
− ω ϑ

T
(26)

then the phase margin becomes

PM =





a : ϕ1(ωc)− ϕ2(ωc) +
π (1− ν)

2
− ωc ϑ

T

b : ϕ1(ωc)− ϕ2(ωc) +
π (2− ν)

2
− ωc ϑ

T
. (27)

In this case, the settings are ϕ1(ωc)− ϕ2(ωc)− ωcϑ/T =
π/2 in case a and ϕ1(ωc)−ϕ2(ωc)− ωcϑ/T = 0 in case b.
The formulas for TI are updated as follows:

TI =





a :
ωcγ − 1(

ωc

T

)ν

[(γ + ωc)S + (1− γωc)C]

b :
ωc + γ(

ωc

T

)ν

[(1− γωc)S − (ωc + γ)C]
(28)

where γ = tan (ωcϑ/T ). Note that (28) coincides with (24)
when ϑ → 0. Since the magnitude keeps unchanged, the

crossover specification sets the integral gain by the same rule
(25).

B. Realization of the FOPI Controller
The final step in the synthesis procedure is to realize the

FOPI transfer function. Namely, in (16) the irrational operator
sν requires an approximation as rational transfer function. Lit-
erature discloses several methods [11], [13], [28]−[30]. Here,
a methodology is employed to a priori guarantee that zeros and
poles of the rational transfer function are interlaced with each
other in the negative real half-axis of the s-plane [31], [32].
This method warrants stability and minimum-phase properties,
that are important for control purpose. Finally, it is based on
closed-form formulas that can be easily applied to obtain the
coefficients of the rational transfer function, depending on ν
and the number N of zero-pole pairs in the approximation. The
greater is N , the better is the approximation of sν , but also the
more complex and memory-demanding is the implementation.
More precisely, a continued fractions expansion is truncated
and converted to a rational transfer function

sλ ≈ αN,0(λ) sN + αN,1(λ) sN−1 + · · ·+ αN,N (λ)
βN,0(λ) sN + βN,1(λ) sN−1 + · · ·+ βN,N (λ)

(29)

where 0 < λ < 1, N ≥ 1 is the number of zero-pole
interlaced pairs and the coefficients αN,j(λ) = βN,N−j(λ),
for j = 0, . . . , N , depend on λ. The coefficients can be
computed very easily and rapidly by a closed-form formula:

αN,j(λ) = (−1)j

(
N

j

)
(λ + j + 1)(N−j)(λ−N)(j) (30)

in which (λ+ j +1)(N−j) =(λ+ j +1)(λ+ j +2) · · · (λ+N)
and (λ − N)(j) = (λ − N)(λ − N + 1) · · · (λ − N + j − 1),
with (λ + N + 1)(0) = (λ − N)(0) = 1. Simple algebraic
manipulations lead to [33], [34]:

αN,j = C(N, j) (j + 1 + λ)(N−j) (N − λ)(j)∗ (31)

βN,j = C(N, j) (N − j + 1 + λ)(j) (N − λ)(N−j)∗ (32)

where (N −λ)(j)∗ := (N −λ)(N −λ−1) · · · (N −λ− j +1)
and (N − λ)(N−j)∗ := (N − λ)(N − λ − 1) · · · (j − λ + 1)
are falling factorials, with (N − λ)(0)∗ = 1. Similar methods
and considerations can be applied for digital realizations
[35]−[38].

IV. SET-POINT PRE-FILTER DESIGN

To improve the set-point following performance, the design
is completed by adding a suitable set-point pre-filter. The filter
F (s) is designed by the method recently proposed in [39],
which is briefly revisited here for the reader’s convenience and
suitably adapted for the considered problem, where a feedback
filter has to be taken into account.

The control loop includes the designed fractional-order PI
controller, Gc(s), a linear time-invariant commensurate strictly
proper minimum-phase system, that can be of integer or non-
integer order (a fractional system), and a possible feedback
filter R(s). The set-point pre-filter F (s) aims at obtaining,
independently from Gc(s), an output transition as close as
possible to a desired output function, that is a smooth and
monotonic transition from an initial steady-state value to a new
one in a finite time interval τ . The first step is to employ the
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technique in [40] to synthesize a suitable command signal r(t)
that provides a perfect tracking of the desired output function.
The second step is to find an integer or non-integer (fractional)
pre-filter F (s) that is able to provide a step response as close
as possible, in terms of 2-norm, to the synthesized r(t).

The synthesis of r(t) is as follows [40]. The desired output
signal ȳ(t; τ) was proposed in [41]. It can be represented,
together with its fractional differintegral, as in (33)

Dαȳ(t; τ)

=





0, t < 0

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ r(2n− r)! t2n−r+1−α

r!(n− r)!Γ(2n− r + 2− α)
t ≤ τ

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ r(2n− r)!
r!(n− r)!

×

 t2n−r+1−α

Γ(2n− r + 2− α)
−

n−r∑

j=0

τ jt2n−r+1−j−α

j!Γ(2n− r + 2− j − α)




t > τ
(33)

where −∞ < α ≤ n+1. The previous τ -parameterized signal
exhibits a smooth monotonic transition from 0 to 1 in a finite
time interval τ and its degree of regularity is Cn.

To compute a command signal r(t) such that a perfect
tracking of the τ -parameterized output function ȳ(t; τ) is
obtained, the open-loop transfer function G(s)=Gc(s)Gp(s)
is first considered. The input-output technique in [40] is
straightforwardly applied to G(s) (or to the delay-free part
Ḡ of G(s) = Ḡ(s)e−ϑs if there is a pure time delay ϑ in the
loop), yielding the signal

rol(t; τ) = γn−mDρȳ(t; τ)+γn−m−1D
ρ−νȳ(t; τ)

+· · ·+γ1D
νȳ(t; τ)+γ0ȳ(t; τ)

+
∫ t

0

η0(t− ξ)ȳ(ξ; τ)dξ (34)

where ρ is the relative order of the open-loop transfer function
and η0(t) is its zero order dynamics. Then, a correction term
rc(t; τ) = L−1[R(s)Ȳ (s; τ)e−ϑs] must be considered, so that
the ideal command signal is

r(t; τ) = rol(t; τ) + rc(t; τ). (35)

Details on the computation of (35), together with the proof
of existence of the command signal, can be found in [40].

A. Transition Polynomial-Based Filter

The first method proposed for designing the set-point pre-
filter F (s) relies on the design of a transfer function whose
step response is as close as possible (in terms of 2-norm)
to the transition polynomial. The following transfer function
structure is employed

F̃ (s) =
1

o∑
i=1

aisi + 1
(36)

where o = n + 1, so that the pre-filter step response exhibits
the same degree of regularity of the transition polynomial. By
sampling at each ∆t the transition polynomial and its deriva-
tives obtained via (33), the following matrices are created

A =




Doȳ(0; τ) · · · D1ȳ(0; τ)
...

...
Doȳ(t−∆t; τ) · · · D1ȳ(t−∆t; τ)
Doȳ(t; τ) · · · D1ȳ(t; τ)
Doȳ(t + ∆t; τ) · · · D1ȳ(t + ∆t; τ)

...
. . .

...
Doȳ(3τ ; τ) · · · D1ȳ(3τ ; τ)




(37)

B =




1(0)− ȳ(0; τ)
...

1(t−∆t)− ȳ(t−∆t; τ)
1(t)− ȳ(t; τ)
1(t + ∆t)− ȳ(t + ∆t; τ)

...
1(3τ)− ȳ(3τ ; τ)




. (38)

Finally, the coefficients vector Θ = [ao · · · a1]T is obtained
as Θ = AT (AAT )−1B. Now, using (36) and the process
dynamics, the set-point pre-filter is designed as

F (s) = F̃ (s)(R(s)e−ϑs + Ḡ−1(s)) (39)

where Ḡ−1(s) is obtained straightforwardly by considering
that Ḡ(s) is the delay free-part of the process. Moreover,
it is worth stressing that, given the properness of F̃ (s), the
overall filter F (s) is always proper. Note that, in this case, the
obtained filter is fractional. If a unitary-feedback loop is con-
sidered with no time delay, then F (s) = F̃ (s)(1 + Ḡ−1(s)).

B. Command Signal Filter

The second methodology for designing the set-point pre-
filter F (s) is based on the direct design of an integer order pre-
filter whose step response is the closest, in terms of 2-norm,
to the command signal (35). The proposed filter structure is

F (s) =

o−p∑
j=1

bjs
j + 1

o∑
i=1

aisi + µ
(40)

where µ is the closed-loop dc-gain, p = n− [ρG], with ρG the
relative order of the open-loop transfer function, and o ∈ R
is a design parameter. In this case, the identification would
require o−p differentiation of the step signal. To overcome this
problem, both the step and the command signals are integrated
o − p times yielding (41) – (42), shown at the bottom of the
next page.

Finally, the coefficients vector is defined as Θ =
[ao · · · a1 bo−p · · · b1]T and is obtained by the same formula
Θ = AT (AAT )−1B.
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V. EXPERIMENTAL VALIDATION

In this section, the proposed control scheme combining a
feedback FOPI controller and a set-point pre-filter is tested.
It is also compared with an industrial solution, combining
a PI controller, which is tuned by the classical symmetrical
optimum method, and a smoothing pre-filter. The tests are
done by simulation of identified input/output models and by
experiments performed on real equipment. Two different test
beds are considered.

The first one is a 370 W brushed DC-servomotor (AMIRA
DR300), that is driven by a device equipped with a power
supply, a servo amplifier, a signal adaption unit, and a mod-
ule for measuring outputs. PC-commands to the device are
processed and sent by an interface board (a floating point
250 Mhz Motorola PPC dSPACE board DS1104). Then, all
control functions can be generated directly by the PC which
integrates the board. A 1024 pulses digital incremental encoder
is mounted at the motor free drive-shaft to measure rotor
position or speed. Feedback from the encoder arrives the
board processor, that computes and sends the control action
to the power unit. The board uses 16 bit A/D-D/A converters
to process signals and commands, generates the position and
speed references, applies the Euler’s discretization rule and
runs the controllers in discrete time. The PI or FOPI controllers
and the set-point pre-filters are part of a Simulink block
diagram the board uses to directly control the real plant or
its I/O model. The board compiles the Simulink scheme,

generates a real-time executable code, and downloads it to
the board memory. Fig. 4 shows all the experimental set-up.
The plant parameters are identified by a frequency-domain
technique as: K = 0.9843, T = 0.0651 s, ϑ = 0.02 s. Then,
formulas (28) and (25) are used to design the FOPI controller.

Fig. 4. Experimental set-up for controlling the DC-servomotor.

The second test bed system is a PMSM drive (SIEMENS
series 1FK7 CT) with the characteristics and parameters shown
in Table I. This system is tested by the experimental set-
up in Fig. 5. The diagram in Fig. 1 accurately represents
the controlled system. If Tc = 0.1 ms, τsp = 6 · 10−6 ms,
and τL = 0.7 ms, then τΣi = 0.95 ms and the Absolute
Value Optimum Criterion settings provide τisq =0.0114 s and
Kisq =6.5253 for the current PI controller. Moreover, for the

A =




Dpr(0; τ) · · · D−o+p+1r(0; τ) · · · −1(0) · · · − 1
(o− p + 1)!

0(o−p+1)

...
. . .

...
. . .

...
. . .

...

Dpr(t−∆t; τ) · · · D−o+p+1r(t−∆t; τ) · · · −1(t−∆t) · · · − 1
(o− p + 1)!

(t−∆t)(o−p+1)

Dpr(t; τ) · · · D−o+p+1r(t; τ) · · · −1(t) · · · − 1
(o− p + 1)!

t(o−p+1)

Dpr(t + ∆t; τ) · · · D−o+p+1r(t + ∆t; τ) · · · −1(t + ∆t) · · · − 1
(o− p + 1)!

(t + ∆t)(o−p+1)

...
. . .

...
. . .

...
. . .

...

Dpr(3τ ; τ) · · · D−o+p+1r(3τ ; τ) · · · −1(3τ) · · · − 1
(o− p + 1)!

(3τ)(o−p+1)




(41)

B =




1
(o− p)!

0(o−p) − µD−o+pr(0; τ)

...
1

(o− p)!
(t−∆t)(o−p) − µD−o+pr(t−∆t; τ)

1
(o− p)!

t(o−p) − µD−o+pr(t; τ)

1
(o− p)!

(t + ∆t)(o−p) − µD−o+pr(t + ∆t; τ)

...
1

(o− p)!
(3τ)(o−p) − µD−o+pr(3τ ; τ)




(42)
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speed loop, the I/O plant model parameters in (12) are
K = Kcnp/J = 728.5343 and T = τΣω = 0.0078 s. Then,
for the PI designed with the Symmetrical Optimum Criterion,
τωr = 0.0310 s and Kωr = 0.0886. Whereas, formulas (24)
and (25) (case a) are used to design the FOPI controller.

Fig. 5. Experimental set-up for controlling the PMSM drive.

A. First Case: Control of DC-motor

The control approach is applied both to the position and
speed of the DC-motor. The tests are performed both in
simulation and by experiments. Simulation employs the mod-
els Gp(s) = K e−ϑ s/(s (1 + T s)) for position control and
Gp(s) = K e−ϑ s/(1 + T s) for speed control. Experiments
are made by directly applying the controllers to the real system
through the dSpace board.

As basis for comparison, a PI controller, that is tuned by
the symmetrical optimum method (for position control) or
by the absolute value optimum criterion (for speed control)
with a smoothing pre-filter, is applied. On the other side, the
FOPI controller is designed by (28) and (25). For robustness
specifications, the fractional orders ν = 1.4, 1.5, 1.6 are used

as good trade-off values respectively providing the phase
margins 54◦, 45◦, 36◦ by (23). Moreover, the performance
specifications are ωc = 0.5, for position control, and ωc = 1.8,
for speed control. The designed values of the controller gains
are shown in Table II. All the FOPI controllers are realized by
rational transfer functions with N = 5 zero-pole pairs. Finally,
the integer-order and fractional-order pre-filters are designed
by the method in Section IV.

TABLE I
PMSM NAME PLATE DATA AND PARAMETERS

Description Value (Measure unit)
Nominal power 2.14 (KW)
Nominal current 4.40 (A)
Nominal torque 6.80 (Nm)

Power factor (cos(ϕ)) 0.80
Frequency 200 (Hz)

Nominal speed 3000 (rpm)
No. of pole pairs 4

Stator resistance: Rs 1.09 (Ω)
d- & q- axis inductances: Lsd, Lsq 12.4, 12.4 (mH)

Inertia moment: J 0.006 (Kg m2)
Viscous friction coefficient: B 0 (0.05) (Nms)

Permanent magnets flux: ΨPM 0.1821 (Wb)
Torque constant: Kc 1.0928 (Nm/A)

Fig. 6 shows the reference step responses both for position
control (above) and for speed control (below), corresponding
to the selected values of ν. Moreover, the response to speed
reversal and to load application is shown in the same figure.
The responses obtained with PI control are green, the ones
obtained with FOPI control and an integer-order pre-filter are
blue, and the ones with FOPI control and a fractional-order

Fig. 6. PI and FOPI control of DC-motor position and speed: PI with smoothing filter (green), FOPI with integer-order (blue) or fractional-
order filters (red).
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Fig. 7. Control of the speed of a PMSM by FOPI controllers and integer filters. (a) General view. (b) Zoom in the no-load start period. (c)
Zoom in the full load operational period. (d) Zoom in the period after full load speed reversal.

pre-filter are red. Only experimental results are shown, namely
simulation matches the experiments to a large extent.

TABLE II
FOPI CONTROLLER GAINS FOR DC-MOTOR AND PMSM DRIVES

DC position control DC speed control PMSM Speed control
ν KP KI KP KI KP KI

1.4 8.7936 2.0706 2.5831 148.3770 0.1314 5.9296
1.5 10.0609 43.9481 2.9554 289.8783 0.2004 29.7201
1.6 12.1033 123.7699 3.5553 563.3830 0.3616 119.5887

It is remarkable that the fractional pre-filters almost cancel
the oscillations. The improvement is even more relevant in
the case of speed control. The overshoot is greatly reduced
and the settling and rise times are also reduced with respect
to the PI-controlled system. Disturbance is better rejected by
the FOPI with fractional filters that show a fast settling. The
performance obtained by PI or FOPI when speed is reverted
is comparable. This last result is due to the opposite action of
the brushes when the sense of rotation is not the preferred one.
Regarding the effect of changes in ν, the oscillations increase
with ν (the phase margin decreases according to (23)).

B. Second Case: Control of PMSM Drive

Now the PMSM speed is controlled. The model is given by
(14). Then, (24) and (25) are used for design purpose. Again,
the orders ν =1.4, 1.5, 1.6 are chosen. Moreover, the desired
performance is specified by the maximum bandwidth ωB that

allows TI > 0: by ωc = ωB/1.7, the necessary values are
ωc = 0.6 (ωB = 1.02) for ν = 1.4, ωc = 0.8 (ωB = 1.36) for
ν = 1.5, and ωc = 1.2 (ωB = 2.04) for ν = 1.6. The values
of the controllers’ gains are shown in Table II and realization
is by N =5 zero-pole pairs.

To execute a suitable and intense test to verify performance
and robustness, a reference step input of−150 rad/s (half of the
rated speed) is first applied at t=0.225 s. Then, an operation
period follows in which a load disturbance of 2.2 Nm is
superposed at t=1.253 s. The motion is reverted at t=2.268 s.
Finally, the load is removed at t=3.361s. The control scheme
combining a FOPI controller and an integer/fractional pre-
filter is compared with the traditional scheme that combines a
smoothing pre-filter and a PI controller tuned by the symmet-
rical optimum method [23], [24]. Note that, in both schemes,
the internal current loop includes the PI controller tuned by
the absolute value optimum criterion. Figs. 7(a) and 8(a) show
a general view of the entire test duration with integer filters
and fractional filters, respectively.

First of all, the performance analysis of the reference step
response without load applied, at the start of the operational
test (see zoom in Figs. 7(b) and 8(b), is considered. The
FOPI controllers provide a reasonable fast response and small
overshoot with respect to the PI controller, especially with
ν =1.6 and with fractional filters on the set-point (Fig. 8(b)).

In all the cases employing integer or fractional filters,
improvements are obtained. Namely, the responses provided
by the PI controller with a smoothing filter show lower rise
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Fig. 8. Control of the speed of a PMSM by FOPI controllers and fractional filters. (a) General view. (b) Zoom in the no-load start period.
(c) Zoom in the full load operational period. (d) Zoom in the period after full load speed reversal.

Fig. 9. Control variable when applying FOPI controllers and fractional filters. (a) General view. (b) Zoom in the no-load start period. (c)
Zoom in the full load operational period. (d) Zoom in the period after full load speed reversal.
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times, but they have much more oscillations (see
Figs. 7(b)−7(c) and 8(b)−8(c)) and settle after slower
transients.

In particular, using FOPI and integer filters reduces over-
shoots and undershoots with respect to using a standard PI
with a smoothing pre-filter (see zoom in Fig. 7(b)), especially
if ν is increased (the best response is with ν = 1.6). The
settling time is also reduced. Similar considerations hold true
if fractional filters are employed (see zoom in Fig. 8(b)). The
oscillations are much reduced with respect to the PI controller
and a slightly faster response is obtained also with respect to
integer filters.

Now, consider the ability to reject disturbances, then see the
intermediate test period, which is better shown by Figs. 7(c)
and 8(c). The zoom highlights that FOPI controllers achieve
a better rejection of the applied load, especially if ν = 1.6.
Namely, the amplitude of the undershoot is much lower and the
response settles in almost the same time as with a PI controller.
To synthesize, the FOPI controller is beneficial for disturbance
rejection which is very important in industrial applications.

Finally, Figs. 7(d) and 8(d) exhibit the last period in which
the motion is reverted. Also in this condition, a FOPI controller
with ν = 1.6 reduces oscillations and obtains a fast settlement.

To complete the performance analysis, the control variable
can be examined as well, for ν = 1.4, 1.5, 1.6. Figs. 9(a) –
9(d) show the results with fractional filters. An improvement
is obtained with respect to the PI with a smoothing filter.
Namely, see the reduction in oscillations and a faster response,
which occurs especially after the reference input is applied (see
Fig. 9(b)) and after the motion is reverted (see Fig. 9(d)). In any
case, the speed response obtained by the PI with a smoothing
filter is more rough, not completely clean and sensitive to
disturbances (see Figs. 7 – 8).

VI. CONCLUSIONS

This paper proposes a new control scheme of DC-motor or
PMSM drives, which are modeled as first-order systems plus a
time delay. The scheme employs a fractional-order PI feedback
controller and a set-point pre-filter, that can be of integer
or fractional order. The feedback controller design is based
on systematic closed-form expressions. The formulas allow
easy and fast computation both of the controller parameters
satisfying dynamic performance and robustness specifications
(see (24) and (25) or (28)) and of the rational transfer function
realization (see (29), (31), (32)). The pre-filter is designed by
a dynamic inversion method that allows reducing overshoot
to a large extent. The proposed scheme is compared with
a classical one based on a standard PI controller combined
with a smoothing pre-filter. The PI controller is tuned by the
symmetrical optimum method, which is frequently employed
in industrial cases. An extensive experimental (and simulation)
analysis has shown the superior performance of the novel
scheme and its potential impact.
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[14] K. J. Åström and T. Hägglund, PID Controllers: Theory, Design, and
Tuning, 2nd ed. Research Triangle Park, NC: Instrument Society of
America, 1995.

[15] Y. Q. Chen, “Ubiquitous fractional order controls?,” in Proc. 2nd IFAC
Symp. Fractional Derivatives and Applications FDA’06, Porto, Portugal,
2006, pp. 168−173.

[16] H. W. Bode, Network Analysis and Feedback Amplifier Design. New
York: Van Nostrand, 1945.

[17] C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Q. Chen, “Tuning and auto-
tuning of fractional order controllers for industry applications,” Control
Eng. Pract., vol. 16, no. 7, pp. 798−812, Jul. 2008.

[18] R. S. Barbosa, J. A. Tenreiro Machado, and I. M. Ferreira, “Tuning
of PID controllers based on Bode’s ideal transfer function,” Nonlinear
Dyn., vol. 38, no. 1−4, pp. 305−321, Dec. 2004.

[19] H. S. Li, Y. Luo, and Y. Q. Chen, “A fractional order proportional
and derivative (FOPD) motion controller: Tuning rule and experi-
ments,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2, pp. 516−520,
Mar. 2010.

[20] F. Padula, R. Vilanova, and A. Visioli, “H∞ optimization-based
fractional-order PID controllers design,” Int. J. Robust Nonlinear
Control, vol. 24, no. 17, pp. 3009−3026, Nov. 2014.

[21] S. Stasi, L. Salvatore, and F. Cupertino, “Speed sensorless control
of PMSM via linear Kalman filtering,” J. Electr. Eng., vol. 6, no. 4,
pp. 1−8, 2006.

[22] R. C. Oldenbourg and H. Sartorius, “A uniform approach to the optimum
adjustments of control loops,” in Frequency Response, R. Oldenburger,
Ed. New York: The Macmillan Co., 1956.

[23] C. Kessler, “Das symmetrische optimum,” Regelungstechnik, vol. 6,
pp. 395−400, 432−436, 1958.



LINO et al.: SYNTHESIS OF FRACTIONAL-ORDER PI CONTROLLERS AND FRACTIONAL-ORDER FILTERS FOR INDUSTRIAL ELECTRICAL DRIVES 69

[24] A. A. Voda and I. D. Landau, “A method for the auto-calibration of PID
controllers,” Automatica, vol. 31, no. 1, pp. 41−53, Jan. 1995.

[25] P. Lino and G. Maione, “Loop-shaping and easy tuning of fractional-
order proportional integral controllers for position servo systems,” Asian
J. Control, vol. 15, no. 3, pp. 796−805, May 2013.

[26] R. E. Kalman, “When is a linear control system optimal?,” Trans. ASME
Ser. D: J. Basic Eng., vol. 86, no. 1, pp. 51−60, Mar. 1964.

[27] J. M. Maciejowski, Multivariable Feedback Design. Wokingham, UK:
Addison-Wesley, 1989.

[28] B. M. Vinagre, I. Podlubny, A. Hernández, and V. Feliu, “Some
approximations of fractional order operators used in control theory and
applications,” Fract. Calc. Appl. Anal., vol. 3, no. 3, pp. 231−248, 2000.

[29] Y. Q. Chen, B. M. Vinagre, and I. Podlubny, “Continued fraction
expansion approaches to discretizing fractional order derivatives-an
expository review,” Nonlinear Dyn., vol. 38, no. 1−4, pp. 155−170,
Dec. 2004.

[30] R. S. Barbosa, J. A. Tenreiro Machado, and M. F. Silva, “Time
domain design of fractional differintegrators using least-squares,” Signal
Process., vol. 86 no. 10, pp. 2567−2581, Oct. 2006.

[31] G. Maione, “Continued fractions approximation of the impulse response
of fractional-order dynamic systems,” IET Control Theory Appl., vol. 2,
no. 7, pp. 564−572, Jul. 2008.

[32] G. Maione, “Conditions for a class of rational approximants of fractional
differentiators/integrators to enjoy the interlacing property,” in Proc. of
the 18th IFAC World Congr., S. Bittanti, A. Cenedese, S. Zampieri, Eds.
Milan, Italy: IFAC, 2011, pp. 13984−13989.

[33] G. Maione, “Closed-form rational approximations of fractional, analog
and digital differentiators/integrators,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 3, no. 3, pp. 322−329, Sep. 2013.

[34] G. Maione, “Correction to “Closed-form rational approximations of
fractional, analog and digital differentiators/integrators,” IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 3, no. 4, pp. 654, Dec. 2013.

[35] G. Maione, “A rational discrete approximation to the operator s0.5,”
IEEE Signal Process. Lett., vol. 13, no. 3, pp. 141−144, Mar. 2006.

[36] G. Maione, “Concerning continued fractions representation of noninteger
order digital differentiators,” IEEE Signal Process. Lett., vol. 13, no. 12,
pp. 725−728, Dec. 2006.

[37] G. Maione, “High-speed digital realizations of fractional operators in the
delta domain,” IEEE Trans. Autom. Control, vol. 56, no. 3, pp. 697−702,
Mar. 2011.

[38] G. Maione, “On the Laguerre rational approximation to fractional
discrete derivative and integral operators,” IEEE Trans. Autom. Control,
vol. 58, no. 6, pp. 1579−1585, Jun. 2013.

[39] F. Padula and A. Visioli, “Inversion-based set-point filter design for
fractional control systems,” in Proc. 2014 Int. Conf. on Fractional
Differentiation and Its Applications, Catania, Italy: IEEE, 2014, pp. 1−6.

[40] F. Padula and A. Visioli, “Inversion-based feedforward and reference
signal design for fractional constrained control systems,” Automatica,
vol. 50, no. 8, pp. 2169−2178, Aug. 2014.

[41] A. Piazzi and A. Visioli, “Optimal noncausal set-point regulation of
scalar systems,” Automatica, vol. 37, no. 1, pp. 121−127, Jan. 2001.

Paolo Lino received the Laurea degree in electrical
engineering from Politecnico di Bari, Italy, in 2000
and the Ph.D. degree in electronics and automation
from the University of Catania, Italy, in 2004. In
2003 he has been a visiting researcher at the Uni-
versity of New Mexico, Albuquerque, NM, USA.
Currently he is an assistant professor in automatic
control at Politecnico di Bari. His main research
interests are in intelligent control, predictive control
and modeling and control of electro-mechanical and
automotive systems. He is co-author of more than 60

peer reviewed papers in journals, book chapters, and conference proceedings.
Dr. Lino is member of IEEE and IEEE Control Systems Society.

Guido Maione received the Laurea degree with
honors in electronic engineering in 1992 and the
Ph.D. degree in electrical engineering in 1997, both
from Politecnico di Bari. In 1996 he joined the
University of Lecce, Italy, where he was assistant
professor in automatic control. In 2002 he moved
to Politecnico di Bari. He visited the Rensselaer
Polytechnic Institute of Troy, NY, USA, in 1997 and
1998, and the Queen’s University of Belfast (UK) in
2007, 2009, and 2013. His research interests include
fractional-order systems and controllers, automotive

systems, discrete event systems, multi-agent systems, Petri nets and digraph
models. He is the author or co-author of more than 120 peer reviewed papers
in journals, book chapters and conference proceedings. Dr. Maione is senior
member of IEEE, IEEE Control Systems Society, and he is an IFAC affiliate.
In 1996 he founded the IEEE Student Branch at Politecnico di Bari and served
as first ad interim president. Corresponding author of this paper.

Silvio Stasi received the M.Sc. degree in electrical
engineering from the University of Bari, Italy, in
1989, and the Ph.D. degree in electrical engineering
from Politecnico di Bari, in 1993. From 1990 to
1993, he was with the Electric Drives and Machines
Group, Politecnico di Bari, where he carried out
research on control and state and parameter es-
timation of electrical drives and, since November
2002, he has been an associate professor of electrical
machines and drives in the Department of Electrical
and Information Engineering. His research interests

include control of electric drives, fuzzy logic, neural networks, power elec-
tronics, and motor parameter estimation.

Fabrizio Padula received the M.Sc. degree in indus-
trial automation engineering in 2009 and the Ph.D.
degree in computer science and automatic control in
2013, both form the University of Brescia. Currently,
he is research fellow at the Department of Mathe-
matics and Statistics of the Faculty of Science and
Engineering at Curtin University, Perth, Australia.
His research activity deals with fractional control,
inversion-based control and tracking control. He is
also interested in robotics and mechatronics.

Antonio Visioli received the Laurea degree in elec-
tronic engineering from the University of Parma in
1995 and the Ph.D. degree in applied mechanics
from the University of Brescia in 1999. Currently
he holds a professor position in automatic control
at the Department of Mechanical and Industrial
Engineering of the University of Brescia. He is a
senior member of IEEE and a member of the TC on
Education of IFAC, of the IEEE Control Systems
Society TC on Control Education and of the IEEE
Industrial Electronics Society TC on Factory Au-

tomation Subcommittees on Event-Based Control & Signal and on Industrial
Automated Systems and Control, and of the National Board of Anipla (Italian
Association for Automation). His research interests include industrial robot
control and trajectory planning, dynamic inversion based control, industrial
control, and fractional control. He is the author or co-author or editor of four
international books, one textbook and more than 200 papers in international
journals and conference proceedings.


