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State Feedback Control for a Class of Fractional

Order Nonlinear Systems
Yige Zhao, Yuzhen Wang, and Haitao Li

Abstract—Using the Lyapunov function method, this paper
investigates the design of state feedback stabilization controllers
for fractional order nonlinear systems in triangular form, and
presents a number of new results. First, some new properties
of Caputo fractional derivative are presented, and a sufficient
condition of asymptotical stability for fractional order nonlinear
systems is obtained based on the new properties. Then, by intro-
ducing appropriate transformations of coordinates, the problem
of controller design is converted into the problem of finding
some parameters, which can be certainly obtained by solving
the Lyapunov equation and relevant matrix inequalities. Finally,
based on the Lyapunov function method, state feedback stabi-
lization controllers making the closed-loop system asymptotically
stable are explicitly constructed. A simulation example is given to
demonstrate the effectiveness of the proposed design procedure.

Index Terms—Fractional order system, triangular system,
asymptotical stabilization, state feedback, Lyapunov function
method.

I. INTRODUCTION

FRACTIONAL order systems have been of great interest
in the last two decades. It is caused both by the intensive

development of the theory of fractional calculus itself and by
the applications. Apart from diverse areas of mathematics,
fractional order systems play an important role in physics,
chemistry, engineering and so on[1−2].

As we all know, stability is an essential issue to control sys-
tems, certainly including fractional order systems. The earliest
study on the stability of fractional differential equations can be
traced back to 1960s[3], where it was shown that the stability
problem of fractional differential equations comes down to
the eigenvalue problem of system matrices. For fractional
order systems, there are many papers related to the stability
theory[4−10] such as root-locus, asymptotical stability, bounded
input bounded output stability, internal stability, external sta-
bility, robust stability, finite-time stability, etc.

Recently, the Lyapunov function method has also been
used to study the stability of fractional order systems[11−17].
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On one hand, some Lyapunov functions were constructed
in works related to fractional sliding mode control[13−14],
and the classic Lyapunov function method was presented to
stabilize fractional order systems. On the other hand, Li et
al. investigated the Mittag-Leffler stability and the asymptot-
ical stability of fractional order nonlinear systems by using
the fractional Lyapunov’s direct method[15−16]. It is usually
difficult to construct a positive definite function and calculate
its fractional derivative for a given fractional order system.
Recently, a new property for Caputo fractional derivative of
a quadratic function has been presented in [17]. The result
allows the use of classic quadratic Lyapunov functions in the
stability analysis of fractional order systems. In some cases,
those simple quadratic functions[17] cannot work, and more
general quadratic Lyapunov functions should be used instead.
These results are very important in the sense that they have
provided a basic tool for the stability analysis and controller
design of fractional order systems.

However, it should be pointed out that it is usually difficult
to construct a positive definite function and calculate its
fractional derivative for a given fractional order system. The
Leibniz rule for Caputo fractional derivative does not work
very well like that for classical derivative. To this end, this
work will present some new and useful properties for Caputo
fractional derivative which allow finding a simple Lyapunov
candidate function for many fractional order systems. Further-
more, to the authors’ best knowledge, fewer works have been
done to study the stabilization problems for fractional order
nonlinear systems in the triangular form. For fractional order
nonlinear systems in the triangular form, such as the ones
considered in this work, it is difficult or even impossible to
solve the feedback stabilizer design problem by the existing
approaches.

In this paper, using the Lyapunov function method, we
investigate the design of state feedback stabilization controllers
for fractional order nonlinear systems in the upper triangular
form. The main contributions of this paper are as follows:
1) Some new properties for Caputo fractional derivative are
presented, which allow finding a simple Lyapunov candidate
function for many fractional order systems. As an application,
a sufficient condition of asymptotical stability for fractional or-
der nonlinear systems is obtained based on the new properties.
2) By introducing appropriate transformations of coordinates,
the problems of controller design are converted into the
problems of finding some parameters, which can be certainly
obtained by solving the Lyapunov equation and relevant matrix
inequalities. By designing state feedback stabilization con-
trollers for fractional order nonlinear systems in the upper
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triangular form, asymptotical stability for closed-loop systems
is considered based on the Lyapunov function method.

The rest of this paper is organized as follows: Section II
presents some necessary preliminaries. Section III gives new
properties on Caputo fractional derivative and presents a suf-
ficient condition of asymptotical stability for fractional order
nonlinear systems. Section IV investigates the design of state
feedback controller for the upper triangular fractional order
nonlinear systems. Section V gives an illustrative example to
illustrate our new results, which is followed by the conclusion
in Section VI.

Notation. R denotes the set of real numbers, Rn denotes
the n-dimensional Euclidean space, and Rn×n denotes the
set of n × n real matrices. For real symmetric matrices X
and Y , the notation X > Y (X ≥ Y ) means that matrix
X − Y is positive definite (positive semi-definite), and simi-
larly, X < Y (X ≤ Y ) means that matrix X − Y is negative
definite (negative semi-definite). I is the identity matrix with
appropriate dimension. XT and X−1 represent the transpose
and the inverse of matrix X , respectively. ‖ · ‖ denotes the
Euclidean norm for a vector, or the induced Euclidean norm
for a matrix.

II. PRELIMINARIES

In this section, we first give some definitions and properties
for Caputo fractional derivative, and then present a Lyapunov-
based stability theorem for fractional order systems. Through-
out this paper, we use Caputo fractional derivative as our main
tools, which is given in [2].

Definition1[2] . Caputo fractional derivative of order α > 0
of a continuous function f(t) is given by

C
0 Dα

t f(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α−n+1

ds,

where n is the smallest integer greater than or equal to α and
Γ(·) denotes the Gamma function, provided that the right side
is pointwise defined on (0,+∞).

The Leibniz rule for Caputo fractional derivative is the
following.

Lemma 1[2]. If ϕ and f along with all its derivatives
are continuous in (0,+∞), then the Leibniz rule for Caputo
fractional derivative takes the form

C
0 Dα

t (ϕ(t)f(t))

=
∞∑

k=0

Γ(1 + α)
Γ(1 + k)Γ(1− k + α)

ϕ(k)(t) C
0 Dα−k

t f(t),

where α ∈ (0, 1), Γ(·) denotes the Gamma function.
Remark 1. By Lemma 1, we can easily see that

C
0 Dα

t (ϕ(t)f(t)) 6=C
0 Dα

t ϕ(t)f(t) + ϕ(t)C
0 Dα

t f(t),

where α ∈ (0, 1). Obviously, the Leibniz rule for Caputo
fractional derivative does not have the form like that for
classical derivative.

The following lemma is the property for Caputo fractional
derivative of a matrix.

Lemma 2. Let A(t) = (ai,j(t))n×n be a time-varying
matrix and ai,j(t) be continuous and derivable functions, and
Q ∈ Rn×n. Then the following equalities:

C
0 Dα

t A(t) =
(
C
0 Dα

t ai,j(t)
)
n×n

,

C
0 Dα

t (QA(t)) = QC
0 Dα

t A(t)

hold, where C
0 Dα

t is Caputo fractional derivative, α ∈ (0, 1].
Proof. The proof is straightforward. ¤
The property for Caputo fractional derivative of a quadratic

function is the following.
Lemma 3[17]. Let x(t) ∈ R be a continuous and derivable

function. Then, for any time instant t ≥ 0,

1
2

C
0 Dα

t x2(t) ≤ x(t)C
0 Dα

t x(t), ∀ α ∈ (0, 1).

Remark 2[17]. In the case when x(t) ∈ Rn, Lemma 3 is
still valid. That is, for ∀ α ∈ (0, 1) and ∀ t ≥ 0,

1
2

C
0 Dα

t

(
xT(t)x(t)

) ≤ xT(t)C
0 Dα

t x(t).

Finally, we recall a useful result on the Lyapunov-based
stability theorem for fractional order systems[15−16].

Lemma 4. Let x̃ = 0 be an equilibrium point of fractional
order systems

C
0 Dα

t x(t) = f(t, x), x0 ∈ Rn, (1)

where C
0 Dα

t denotes Caputo fractional derivative, 0 < α < 1.
Assume that there exists a Lyapunov function V (t, x(t)) and
class-K functions βi (i = 1, 2, 3) satisfying

β1(‖x‖) ≤ V (t, x(t)) ≤ β2(‖x‖),
C
0 Dα

t V (t, x(t)) ≤ −β3(‖x‖).
Then the equilibrium point of the system (1) is asymptotically
stable.

III. NEW PROPERTIES FOR CAPUTO FRACTIONAL
DERIVATIVE

In this section, we give some new properties for Caputo
fractional derivative. To this end, we need the following
lemma, which is about the decomposition of a positive definite
matrix.

Lemma 5. Let A ∈ Rn×n be a positive definite matrix.
Then there exists a positive definite matrix B ∈ Rn×n, such
that A = B2.

Proof. The proof is straightforward. ¤
According to this lemma, some new properties for Caputo

fractional derivative of a general quadratic function are given
in the following.

Theorem 1. Let x(t) = (x1(t), x2(t), . . . , xn(t))T ∈
Rn, xi(t) (i = 1, 2, . . . , n) be continuous and derivable
functions, and α ∈ (0, 1]. Then, for any time instant t ≥ 0,
there exists a positive definite matrix P ∈ Rn×n such that

1
2

C
0 Dα

t

(
xT(t)Px(t)

) ≤ xT(t)PC
0 Dα

t x(t). (2)

Proof. For convenience, we divide the proof into two cases.
Case 1. α = 1.
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This case corresponds to the chain rule for the integer order
derivatives, which states that

1
2

d
dt

(
xT(t)Px(t)

)
= xT(t)P

d
dt

x(t).

Case 2. 0 < α < 1.
By Lemma 5, there exists a positive definite matrix Q ∈

Rn×n such that P = Q2. Then we have

1
2

C
0 Dα

t

(
xT(t)Px(t)

)
=

1
2

C
0 Dα

t

(
xT(t)QTQx(t)

)
.

Let y(t) = Qx(t). From Lemma 2 and Remark 2, we obtain

1
2

C
0 Dα

t

(
xT(t)Px(t)

)
=

1
2

C
0 Dα

t

(
xT(t)QTQx(t)

)

=
1
2

C
0 Dα

t

(
yT(t)y(t)

)

≤ yT(t)C
0 Dα

t y(t)

= xT(t)QTC
0 Dα

t (Qx(t))

= xT(t)QTQC
0 Dα

t x(t)

= xT(t)PC
0 Dα

t x(t).

¤
Remark 3. In the case when P = I , the conclusion of

Theorem 1 turns to be the conclusion of Remark 2.
Remark 4. Inequality (2) is equivalent to any one of the

following inequalities:

1
2

C
0 Dα

t

(
xT(t)Px(t)

) ≤ (
C
0 Dα

t x(t)
)T

Px(t),

C
0 Dα

t

(
xT(t)Px(t)

)≤(
C
0 Dα

t x(t)
)T

Px(t)+xT(t)PC
0 Dα

t x(t).
(3)

As an application of Theorem 1 and inequality (3), we
present a sufficient condition of stability for fractional order
nonlinear system by Lyapunov function method.

Consider the fractional order nonlinear system with Caputo
fractional derivative

C
0 Dα

t x(t) = f(t, x(t)), (4)

where α ∈ (0, 1], x(t) ∈ Rn is the state, f : R×Rn → Rn,
fi (i = 1, 2, . . . , n) are continuous functions.

Theorem 2. The system (4) is asymptotically stable if there
exists a positive definite matrix P ∈ Rn×n and a class-K
function γ such that for ∀ x(t) ∈ Rn, xT (t)Pf(t, x(t)) <
−γ(‖x‖).

Proof. Let V (t) = xT(t)Px(t). Because P ∈ Rn×n is a
positive definite matrix, then V is positive definite. By using
(3), we have

C
0 Dα

t V (t)|4 = C
0 Dα

t xT(t)Px(t)

≤ (
C
0 Dα

t x(t)
)T

Px(t) + xT(t)PC
0 Dα

t x(t)

= fT(t, x(t))Px(t) + xT(t)Pf(t, x(t))

= 2xT(t)Pf(t, x(t)) < −2γ(‖x‖).
Thus, according to Lemma 4, the system (4) is asymptotically
stable. ¤

IV. STATE FEEDBACK STABILIZERS DESIGN

In this section, state feedback stabilizers are designed for
the upper triangular fractional order nonlinear system.

Consider the following fractional order nonlinear system in
the upper triangular form:





C
0 Dα

t x1(t) = x2(t) + φ1(t, x(t)),
C
0 Dα

t x2(t) = x3(t) + φ2(t, x(t)),
...

C
0 Dα

t xn−2(t) = xn−1(t) + φn−2(t, x(t)),
C
0 Dα

t xn−1(t) = xn(t),
C
0 Dα

t xn(t) = u(t),

(5)

where α ∈ (0, 1], x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn

is the state, u ∈ R is the control input. The arguments
of the functions will be omitted or simplified whenever no
confusion can arise from the context. In this paper, xi(t)
and zi(t) are always denoted by xi and zi. The functions
φi : R ×Rn → R, i = 1, 2, . . . , n − 2 are continuous, and
satisfy the following growth condition:

Assumption 1.

|φi(t, x)| ≤ c(|xi+2|+ |xi+3|+ · · ·+ |xn|),
i = 1, 2, . . . , n− 2, (6)

where c ≥ 0 is a constant.
Remark 5. It is noted that the condition (6) was widely

used in the synthesis of nonlinear triangular systems in the
literatures[18−20].

In the following, we consider the state feedback controller
design for system (5).

Theorem 3. Under the Assumption 1, constants ai (i =
1, 2, . . . , n) and r can be chosen, such that the system (5)
is globally asymptotically stable by a linear state feedback
controller of the form

u = −
n∑

i=1

( ai

rn−i+1
xi

)
.

Proof. For the convenience of readers, we divide the proof
into two parts.

Part 1. State transformation of nonlinear system.
Introduce a state transformation for (5):

zi =
xi

rn−i+1
, i = 1, 2, . . . , n, (7)

where r > 1 is a parameter to be determined later. System (5)
can be converted into the following system:

C
0 Dα

t z =
1
r
Ωz +

1
r
Gu + Φ, (8)
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where

z =




z1

z2

...
zn−1

zn




, Ω =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0




,

G =




0
0
...
0
1




, Φ =




φ1
rn

φ2
rn−1

...
φn−2

r3

0
0




.

Let aj > 0 (j = 1, 2, . . . , n) be coefficients of the Hurwitz
polynomial

q(s) = sn + ansn−1 + · · ·+ a2s + a1.

Next, choose r > 1 such that the closed-loop system (8) with

u = −(a1z1 + a2z2 + · · ·+ anzn) (9)

is globally asymptotically stable at the equilibrium z = 0.
The closed-loop system consisting of (8) and (9) is

C
0 Dα

t z =
1
r
Az + Φ, (10)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a1 − a2 − a3 · · · − an




.

Up to now, the problem of designing controller for (5) is
converted into that of finding an appropriate r, such that the
system (10) is asymptotically stable at z = 0.

Part 2. Stability analysis.
Since q(s) is a Hurwitz polynomial, it can be concluded that

A is a stable matrix. Therefore, there exists a positive definite
matrix P > 0 such that

PA + ATP = −I.

Choose Lyapunov function V = zTPz. Observing Assump-
tion 1, the change of coordinate (7) and r > 1, gives, for any
i(i = 1, 2, . . . , n− 2),

∣∣∣∣
φi

rn−i+1

∣∣∣∣ ≤
c

rn−i+1
(|xi+2|+ |xi+3|+ · · ·+ |xn|)

≤ c

r2

n∑

j=1

|xj |
rn−j+1

=
c

r2

n∑

i=1

|zj | ≤ c
√

n

r2
‖z‖.

Hence,

C
0 Dα

t V
∣∣
(10)

= C
0 Dα

t

(
zTPz

)

≤ (
C
0 Dα

t z
)T

Pz + zTPC
0 Dα

t z

= (
1
r
Az + Φ)TPz + zTP (

1
r
Az + Φ)

≤ −1
r
‖z‖2 + 2‖z‖ · ‖P‖ · ‖Φ‖

≤ −1
r
‖z‖2 + 2‖z‖ · ‖P‖(c

√
n

r2
‖z‖)

· ∥∥(1, 1, · · · , 1, 0, 0)T
∥∥

≤ −1
r
‖z‖2 +

2nc

r2
‖P‖ · ‖z‖2

= − 1
r2

(r − 2nc‖P‖) · ‖z‖2.

Choose

r > max{1, 2nc‖P‖+ η},

where η > 0. By Lemma 4, we can get C
0 Dα

t V
∣∣
(10)

<

− η
r2 ‖z‖2 which indicates that (10) is asymptotically stable

at z = 0. Therefore, the closed-loop system consisting of (8)
and (9) is asymptotically stable at z = 0.

Noticing (9) and the change of coordinate (7), we can get
the state feedback controller of system (5):

u = − 1
rn

(
a1x1 + a2rx2 + a3r

2x3 + · · ·+ anrn−1xn

)
.

¤
Remark 5. The conclusion of Theorem 3 also holds for the

following fractional order nonlinear system:





C
0 Dα

t x1(t) = d1x2(t) + φ1(t, x(t)),
C
0 Dα

t x2(t) = d2x3(t) + φ2(t, x(t)),
...

C
0 Dα

t xn−2(t) = dn−2xn−1(t) + φn−2(t, x(t)),
C
0 Dα

t xn−1(t) = dn−1xn(t),
C
0 Dα

t xn(t) = dnu(t),

(11)

where di, i = 1, 2, . . . , n are known nonzero real constants.
In fact, by introducing an appropriate state transformation,
system (11) can be converted into another system having the
same form as system (5).

Remark 6. It should be pointed out that the recent novel
work presented in [21] investigated the state feedback H∞
control problem for commensurate fractional order linear time-
invariant systems. When w = 0, the system (3) in [21] is
reduced to the general fractional order linear system. The
advantage of [21] was dealing with exogenous disturbance
input w for commensurate linear fractional order systems by
introducing a new flexible matrix variable. Compared with
[21], the main feature of this paper is to deal with the nonlinear
terms in fractional order nonlinear systems by the Lyapunov
function method (also see Remark 8).
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V. EXAMPLE

In this section, we present an example to illustrate the main
results.

Example 1. Consider the following fractional order nonlin-
ear system:





C
0 Dα

t x1 = x2 + sin x1
7+7e−t x3,

C
0 Dα

t x2 = x3,
C
0 Dα

t x3 = u,
(12)

where α ∈ (0, 1].
It is easy to see that Assumption 1 is satisfied with c = 1/7.
Let aj > 0, j = 1, 2, 3 be the coefficients of the Hurwitz

polynomial

q(s) = s3 + a3s
2 + a2s + a1.

Choose a1 = 6, a2 = 11, a3 = 6. Then

A =




0 1 0
0 0 1
−6 − 11 − 6


 .

Solving the Lyapunov equation

ATP + PA = −I

leads to

P =




23/15 − 1/2 − 7/10
−1/2 7/10 − 1/2
−7/10 − 1/2 17/10


 > 0.

Choose r = 2 > 6c‖P‖ = 1.9911, we can get the linear
state feedback controller for the system (12),

u = − 6
r3

x1 − 11
r2

x2 − 6
r
x3. (13)

Figure 1 shows the state response of the closed-loop system
consisting of (12) and (13) with α = 0.8 for the initial
condition (x1(0), x2(0), x3(0)) = (1, 4, 3), which clearly
demonstrates the asymptotic stability of the closed-loop sys-
tem.

Fig. 1 The state of the closed-loop system consisting of (12) and
(13) with α = 0.8.

Remark 7. In Example 1, the nonlinear terms
∣∣ sin x1
7+7e−t x3

∣∣ <
1
7 |x3|, which implies that the condition (6) is satisfied with
c = 1/7.

Remark 8. In Example 1, we can easily deal with the
nonlinear terms “ sin x1

7+7e−t x3” by the method presented in this
paper. However, it is clear that one cannot deal with these
nonlinear terms by the method presented in [21].

VI. CONCLUSION

In this paper, we have investigated the design of state
feedback stabilization controllers for fractional order nonlinear
systems in upper triangular form by the Lyapunov function
method. We have presented some new properties for Caputo
fractional derivative to allow finding a simple Lyapunov can-
didate function for many fractional order systems. As an ap-
plication, we have given a sufficient condition of asymptotical
stability for fractional order nonlinear systems based on the
new properties. By introducing appropriate transformations
of coordinates, we have converted the problem of controller
design into the problem of finding some parameters, which
could be certainly obtained by solving the Lyapunov equation
and relevant matrix inequalities. In addition, based on the
Lyapunov function method, asymptotical stability for closed-
loop systems has been considered by designing state feedback
stabilization controllers for fractional order nonlinear systems
in upper triangular form. The study of an illustrative example
has shown that the new results presented in this paper are very
effective.
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