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The Fractional Landau Model
Bruce J. West and Malgorzata Turalska

Abstract—Herein the Landau model of the transition from
laminar to turbulent fluid flow is generalized to include the
effect of memory. The original Landau model is quadratically
nonlinear and memoryless, with turbulent fluctuations decaying
exponentially. However, recent experiments show a dependence of
the decay of fluctuations on memory, with the exponential being
replaced by an inverse power law. This transition is explained
herein as being due to critical slowing down. The fractional
calculus is used to model this memory and to relate the index of
the inverse power law decay to that of the fractional derivative
in time.

Index Terms—Fluid dynamics, turbulence, fractional calculus,
partial differential equations, nonlinear equations.

I. INTRODUCTION

NONLINEAR dynamics blossomed in the decades of the
1980’s and 1990’s, subsequently becoming foundational,

not only in the description of mechanical systems[1], but
in non-equilibrium statistical physics, as well[2]. Much of
that analysis bypassed the contributions made by Koopman[3]

and von Neumann[4−5], in which they formulated classical
mechanics using linear operators to represent physical observ-
ables, providing a Hilbert space for the theory of nonlinear
dynamic systems. The mathematics of this latter theory was
carried to maturity by Kowalski[6]. Herein we apply a version
of these techniques to the solution of fractional nonlinear rate
equations.

The strategy we adopt herein is to introduce the new
technique to examine Landau’s theory of the critical in-
stability leading to turbulent fluid flow. In this application
we demonstrate how nonlinear systems can be solved using
a generalization of normal modes from linear to nonlinear
dynamic systems. It cannot be stressed too strongly that
this method yields non-perturbative solutions, not linearized
approximate solutions to the nonlinear dynamic equations.
This is a straight-forward application of the Koopman-von
Neumann approach to the solution of an initial value problem.

Memory effects appear as integro-differential equation in
the study of open systems interacting with the environment
in the form of generalized Langevin equations[7]. It has been
shown that the fractional calculus very often results from these
integral expressions and have proven to be useful for mod-
eling systems with memory, as demonstrated in viscoelastic
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materials[8], biological processes[9−10], wave propagation in
porous media[11], instability in fluid dynamics[12], and a gen-
eral perspective on the utility of the fractional calculus is pre-
sented in [13−14]. The normal mode technique is generalized
to include the effect of memory modeled using a fractional
time derivative. This occurs generically when there is no time-
scale separation between the microscopic and macroscopic lev-
els of description, that is, the non-differentiable nature of the
microscopic dynamics (non-integrable Hamiltonian dynamics)
is transmitted to the macroscopic level[15].

In Section II, the Landau theory of the transition from
laminar to turbulent fluid flow is briefly presented. The non-
linear rate equation is solved using the spectral decomposition
method of Koopman and von Neumann to obtain the analytic
solution. At early times this solution is shown to undergo an
inverse power law decay, characteristic of critical slowing near
a critical point. Section III generalizes the Landau theory of the
transition to turbulence to include memory using the fractional
calculus. The resulting fractional nonlinear rate equation is
solved and the power law index for the critical slowing down at
early time is shown to be the same as the fractional derivative
index. We draw some conclusions in Section IV.

II. LANDAU TRANSITION THEORY

Historically the fluctuations in turbulent fluid flow have
been modeled to be memoryless and often with Gaussian
statistics[16], using Langevin equations for the dynamics[7].
More recent experiments/observations have shown that Lévy
statistics more accurately model turbulent fluctuations and
that they contain memory[14]. The transition from laminar to
turbulent fluid flow is described by Landau as a critical phase
transition, with the essential features of the flow given in terms
of simple models. Consider the nonlinear rate equation for
the model of the onset of a critical instability of fluid flow
introduced by Landau[16−17]:

du

dt
= 2γu− αu2, (1)

which is valid for times on the time scale 1/γ; α is the Landau
parameter; u(t) = |A(t)|2 , and A(t) is the time-dependent
amplitude of the fluid velocity.

Near the critical point, where the flow becomes unstable
and transitions to turbulence, the linear coefficient can be
expressed as the difference in Reynolds number γ ∝ (R−Rc)
and subsequently vanishes at criticality where R = Rc

[18].
Consequently, the dynamics are dominated by the nonlinear
interaction in the transition region, but that need not concern
us here.
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A. Exact Solution

The exact solution to (1) can be obtained by introducing the
operator O such that (1) takes the form

du

dt
= Ou (2)

and the eigenfunction/eigenvalue expansion of the solution is

u(t) =
∞∑

k=0

vkφk(u0)χk (t) , (3)

where χk (t) φk(u0) is the eigenfunction, factored into a piece
determined by the eigenvalue and the piece determined by the
initial condition u(0) = u0 for the nonlinear dynamics. The
set of coefficients {vk} is determined by the initial condition.

Inserting (3) into (2), yields for the time dependence of the
eigenfunctions

dχk (t)
dt

= λkχk (t) ⇒ χk (t) = eλkt. (4)

Correspondingly, the eigenvalue equations are determined by

O0φk(u0) =
[
2γu0 − αu2

0

] dφk(u0)
du0

= λku0. (5)

Integrating this equation yields

φk(u0) =

(
u0

u0 − α
2γ

)λk
2γ

(6)

for which the eigenvalue are determined to be λk = −2γk by
equating coefficients of the time-dependent terms obtained by
inserting (3) into (1). The expansion coefficients are chosen
such that the series solution satisfies the initial condition,
resulting in (

− α

2γ

)k

vk =
2γ

α
. (7)

In this way the eigenfunction expansion (3) reduces to

u(t) =
2γ

α

∞∑

k=0

(
u0 − 2γ

α

u0

)k

e−2γkt, (8)

=
2γ

α

u0e2γt

(e2γt − 1) u0 + 2γ
α

. (9)

The asymptotic form of the solution is given by

lim
t→∞

u (t) =
2γ

α
. (10)

Consequently, the maximum amplitude of the fluid velocity
scales with the deviation of the Reynolds number from its
critical value

√
(R−Rc). Note that the asymptotic time scale

is still much smaller than the period of oscillation of A(t)[18].
It is also of interest to consider the γ → 0 limit as the system
approaches criticality

lim
γ→0

u (t) =
u0

1 + αu0t
, (11)

which is the phenomenon of critical slowing down, that is,
the decay of any fluctuation in the velocity field slows as
turbulence (the critical point) is approached.

In the Kolmogorov picture of turbulence the random for-
mation and breakup of eddies rapidly erase memory, but
this equilibrium argument is difficult to realize in nature[19].
Turbulence with memory is certainly an unorthodox notion
theoretically, but this seems to be the conclusion entailed by
observations. The most recent experiments [19] suggest that
Landau’s theory for the transition to turbulence might be better
modeled using a fractional rate equation.

III. GENERALIZED LANDAU THEORY

We suggest a fractional Landau equation (FLE) as the
lowest-order model that includes the memory effect

∂β
τ [u] = 2γu− αu2, (12)

where all the parameters retain their original interpretation and
∂β

τ [·] is the Caputo derivative[20] in the “time” τ having units
of (sec)1/β . The index of the fractional derivative determines
the strength of the memory in the phenomena of interest,
with no memory at the integer value β = 1 and increasing
memory as β recedes to zero. Consequently, for the moment,
we consider the fractional equation with 0 < β < 1.

The fractional Landau model (FLM) can be written formally
as, using the operator introduced in the integer-value equation,

∂β
τ [u] = Ou, (13)

whose solution can be expressed in terms of the eigenfunction
expansion given by (3)[21]. Inserting the eigenfunction expan-
sion into the fractional equation and separating terms yields

∂β
τ [χk (τ)] = λkχk (τ) . (14)

The solution to this linear fractional rate equation is the
Mittag-Leffler function (MLF)[20, 22]:

χk (τ) = Eβ

(
λkτβ

)
, (15)

which has the series form

Eβ(z) =
∞∑

k=0

zk

Γ (kβ + 1)
. (16)

The eigenvalue spectrum is again determined by the solution
to (5), using the early time stretched exponential form of the
MLF. The expansion coefficients in turn are determined by the
initial condition and results in the solution for the FLM being
given by[23]

u(τ) =
2γ

α

∞∑

k=0

(
u0 − 2γ

α

u0

)k

Eβ

(−2kγτβ
)
. (17)

Consequently, the Landau model with long-term memory has
been decomposed into nonlinear modes, with eigenfunctions
and eigenvalues that map over from the memoryless model. It
is clear that since

lim
β→1

Eα

(−2kγτβ
)

= e−2γkτ

the solution equation (17) reduces to (8) at β = 1, as
it should. However, the solution to the FLM has not been
published previously and in Fig. 1 we present a comparison
of the analytic solution with the solution obtained from a
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numerical integration of the FLE. The numerical integration
was performed with the help of Adams-Bashforth-Moulton
predictor-corrector technique, developed by Diethelm et al.[18].
The two calculations differ by 2 % at most and this deviation
is discussed elsewhere[23].

Fig. 1. The solid lines are the analytic solutions to the FLM and the
dashed curves are from the numerical integration of the FLE. The
four different sets of curves are for the initial conditions indicated.
The time scale parameter is γ = 0.5 and the Landau parameter is
α = 1.0. The step of numerical integration is h = 10−3.

The rapidly decaying exponential function in the Landau
model is replaced with the slowly decaying MLF in the FLM,
since the MLF has the scale-free property in the asymptotic
limit

lim
τ→∞

Eβ

(−2kγτβ
) ∝ 1

τβ
. (18)

In the γ → 0 limit of criticality the MLF can be replaced with
the exponential:

lim
γ→0

Eβ

(−2kγτβ
) ∝ exp

(−2kγτβ
)
,

and (17) simplifies to

lim
γ,τ→0

u (τ) =
u0

1 + αu0τβ
, (19)

so that with memory and 0 < β < 1, the transition
to turbulence is slower than in the memoryless case, since
asymptotically τ > τβ for β < 1.

The solution given by (19) predicts that the energy of the
turbulent flow field, at a point in space, asymptotically decays
as an inverse power law in time. Numerical calculations of
the Euler equations using the “t-model” in 2D and 3D yield
inverse power-law decay with β = 1.84[24]. The solution to the
fractional Landau model must therefore be generalized to 1 <
β < 2. This can be done by expressing the solution in terms of
its initial value u0, taking the initial time derivative

·
u0 = 0 and

noting that as γ → 0 the critical slowing down maintains the
asymptotic form 1/τβ , although now τβ > τ , asymptotically,
since β > 1. The decay of turbulent fluctuations is faster than
in the memoryless case, but certainly much slower than the
pre-critical exponential case.

IV. CONCLUSION

In summary the spectral decomposition of the solution to a
nonlinear dynamic equations can be generalized to fractional
nonlinear rate equations and subsequently solved without
approximation[21, 23]. In considering the Landau model for the
transition to turbulence we used a phenomenological argument
to motivate replacing the first-order with a fractional-order
time derivative, but that need not be done. Stanislavsky[25]

used subordination theory to develop a fractional Hamiltonian
formalism, in which Hamilton’s equations are given in terms of
fractional derivatives. Memory is entailed by the dynamics of
systems so described. He observed that space and time in these
complex systems are not the continuous featureless processes
first assumed by Newton[14], and turbulence certainly qualifies
as being complex.
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