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Set-point Filter Design for a Two-degree-of-freedom
Fractional Control System

Fabrizio Padula and Antonio Visioli, Senior Member, IEEE

Abstract—This paper focuses on a new approach to design
(possibly fractional) set-point filters for fractional control sys-
tems. After designing a smooth and monotonic desired output
signal, the necessary command signal is obtained via fractional
input-output inversion. Then, a set-point filter is determined
based on the synthesized command signal. The filter is computed
by minimizing the 2-norm of the difference between the command
signal and the filter step response. The proposed methodology
allows the designer to synthesize both integer and fractional set-
point filters. The pros and cons of both solutions are discussed
in details. This approach is suitable for the design of two degree-
of-freedom controllers capable to make the set-point tracking
performance almost independent from the feedback part of
the controller. Simulation results show the effectiveness of the
proposed methodology.

Index Terms—Fractional control systems, two-degree-of-
freedom control, set-point following, system inversion.

I. INTRODUCTION

FRACTIONAL systems have been proven to be effective in
the design of control systems because of their capability

to model complex phenomena and to achieve more challenging
control specifications[1−12].

Actually, one of the main issues in a control system is often
to achieve a satisfactory performance in the load disturbance
rejection and in the set-point following tasks at the same time.
An effective solution to this problem is the use of a two
degree-of-freedom control system[13], where a suitable set-
point filter should be designed in order to recover the set-
point following performance independently from the employed
feedback controller. Indeed, this approach has been proven to
be effective also in the fractional framework. For example,
in [14] the use of a set-point weight for fractional-order
proportional-integral-derivative controllers is discussed. The
use of a Davidson-Cole filter has then been proposed in [15].
In any case, it has to be stressed that such a kind of filter
cannot decrease the rise time of the step response but it can
just effectively reduce the overshoot[16].

By following another approach, the set-point following
performance can be improved by using a suitably designed
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feedforward control law. In particular, the command signal
to be applied to the closed-loop system is determined by
exploiting the input-output inversion concept[17−19], that is, is
computed in such a way it causes a desired smooth monotonic
process variable transition, which is selected as a transition
polynomial[20]. In this context, constraints on the control and
process variables can be explicitly considered. This technique
has been extended successfully also to fractional control
systems[16] but it has the drawback that the use of a complex
feedforward command signal might lead to implementation
problems, especially considering the memory allocation issue.

Thus, in order to simplify significantly the implementation
of this strategy by using a standard two-degree-of-freedom
control scheme, in this paper, which is an extended version of
[21], a methodology to design a set-point filter based on the
inversion technique is proposed.

Indeed, the set-point filter is determined as the system
that minimizes the 2-norm of the difference between its
step response and the synthesized command signal. For this
purpose, the differintegrals of both the transition polynomial
and the command signal are determined. Then, two techniques
to determine either a fractional-order or an integer-order filter
are proposed. The advantages of both techniques will be
discussed in detail: the integer filter is easier to implement on
a commercial off-the-shelf control system, but may become
unstable for a small transition time and cannot cope with
uncompensated long fractional tails. On the contrary, the
fractional filter (which is more complex to implement) is stable
for every desired output transition time and works properly
independently from the feedback controller tuning.

In this way, the achieved performance is close to the one that
would have been obtained by using the synthesized command
signal, without the memory allocation problems that would
arise from the use of a complex feedforward signal. Moreover,
the performance is still independent from the chosen controller
and, finally, the filter can be fed with a simple step signal,
that is, the overall control system can be implemented in any
control setup.

The effectiveness of the proposed methodologies is proven
through a series of illustrative examples.

Summarizing, the contribution of the paper is in the design
of a (possibly) fractional set-point filter that can be employed
in a standard two-degree-of-freedom control scheme and al-
lows the achievement of high performance in terms of low
settling time and low overshoot at the same time. This is
different from the standard design of set-point filtering that
uses a low-pass filtering approach that allows the reduction of
the overshoot at the expense of the rise time.
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The paper is organized as follows. In Section II the problem
is formalized and, in Section III, the design technique of the
command signal is reviewed. The fractional differintegral of
both transition polynomial and command signal is obtained in
Section IV, while the filter design methodologies are presented
in Section V and their use is discussed in Section VI. Illus-
trative examples are given in Section VII and conclusions are
drawn in Section VIII.

Notation. C(i) denotes the space of the scalar real functions
which are continuous till the ith time derivative. Di denotes
the ith derivative operator. Finally [x] with x ∈ R is the
biggest integer lower than x (note that, when x ∈ R\N, this
is the well-known integer part of x).

II. PROBLEM FORMULATION

Consider the two degree-of-freedom control system shown
in Fig. 1 where the process is a linear time-invariant commen-
surate strictly proper fractional system, L is the delay term
and Ḡ(s) is minimum-phase.

Fig. 1. The two degree-of-freedom unity-feedback control scheme.

G(s) = Ḡ(s)e−Ls (1)

The closed-loop systems transfer function is

T (s) =
K(s)G(s)

1 + K(s)G(s)
(2)

and it is assumed to be strictly proper.
It is also assumed that the controller has been designed in

order to make the considered feedback loop internally stable.
The goal here is to design a filter F (s) such that process

output behaves well. Namely, to obtain, independently from
the chosen controller K(s), an output transition as close as
possible to a desired output function which exhibits a smooth
and monotonic transition from an initial steady-state value to
a new one in a finite time interval τ , given a set of bounds on
the control and process variables and their derivatives.

In order to do that a suitable command signal r(t) is first
synthesized, according to the technique proposed in [16], to
obtain a perfect tracking of the desired output function.

Then, a linear (possibly fractional) filter F (s) whose step
response is the closest in terms of 2-norm to the determined
command signal r(t) is found.

It is worth stressing that in this way, once a suitable filter
has been designed and implemented, the control system can
be fed directly with a simple step signal instead of a complex
command signal r(t), that would require a significant precom-
putation and memory storage. Moreover, this allows the user
to design the feedback controller K(s) independently from
the set-point following performance, hence, for example, by
better addressing the performance/robustness trade-off (such as
focusing the feedback controller design on robustness and/or
disturbance rejection).

III. COMMAND SIGNAL SYNTHESIS

For the reader’s convenience, the technique proposed in [16]
to design r(t) is briefly revisited here. The command signal
design problem can be formalized as follows:

Problem 1. Starting from null initial conditions and given
a new steady-state output value ye, design a “sufficiently
smooth” τ -parametrized desired output ȳ(·; τ) such that
ȳ(0; τ) = 0 and ȳ(t; τ) = 1 ∀t ≥ τ , and ȳ(·; τ) ∈ C(k)

for some k ∈ N. Then, find r(·; τ) such that, for the τ -
parametrized couple (r(·; τ), ȳ(·; τ)), it holds that

L[ȳ(t− L; τ)] = T (s)L[r(t; τ))]. (3)

Moreover, determine the minimum time τ∗ such that u(t; τ∗)
and the first l ∈ N0 (v ∈ N, respectively) derivatives of
u(t; τ∗) (ȳ(t; τ∗)), are bounded:

|Diu(t; τ∗)| < ui
M , ∀t > 0, i = 0, 1, . . . , l;

|Diȳ(t; τ∗)| < yi
M , ∀t > 0, i = 1, 2, . . . , v.

(4)

Note that the requirements of null initial conditions and unitary
transition are without loss of generality in view of the system
linearity.

The simple and computationally efficient τ -parametrized
transition polynomial proposed in [20] is chosen as desired
output function. It has the nice property of being monotonic,
which implies that neither overshoots nor undershoots occur.
In the interval [0, τ ] the desired output function is therefore
selected as a polynomial

ȳ(t) := c0 + c1t + · · ·+ c2n+1t
2n+1, (5)

where the coefficients ci (i = 0, 1, . . . , 2n + 1) are obtained
by solving the following system:

{
ȳ(0) = 0, Dȳ(0) = 0, . . . , Dnȳ(0) = 0;
ȳ(τ) = 1, Dȳ(τ) = 0, . . . , Dnȳ(τ) = 0.

(6)

Eventually, the solution of the previous systems leads to the
desired output function

ȳ(t; τ) :=



0, if t < 0;
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτrt2n−r+1

r!(n−r)!(2n−r+1) , if 0 ≤ t ≤ τ ;

1, if t > τ.
(7)

Note that, by construction, ȳ(t; τ) allows an arbitrarily smooth
transition between 0 and 1; indeed, it is possible to show that
ȳ(t; τ) ∈ C(n)[20].

Consider a commensurate minimum-phase fractional system
H(s) of commensurate order ν ∈ R. By polynomial division
the inverse of its transfer function can be always represented
as

H−1(s) = γq−msρ +γq−m−1s
ρ−ν + · · ·+γ1s

ν +γ0 +H0(s),
(8)

where qν and mν, with q, m ∈ N, are, respectively, the
numerator and the denominator orders, ρ ∈ R is the relative
order and H0(s) is the zero dynamics of H(s).
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By polynomial division it can be shown that H0(s) is always
stable and strictly proper and that it can be represented as

H0(s) =
m∑

i=1

gi

(sν − λi)ki+1
. (9)

As a consequence, in the time domain, its impulse response
η0(t) can be described as a linear combination of Mittag-
Leffler functions[16, 22], that is:

η0(t) =
m∑

i=1

gi

ki!
εki

(t, λi; ν, ν), (10)

where

εk(t, λ;α, β) := tkα+β−1 dk

d(λtα)k
Eα,β(λtα), (11)

with

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
α > 0, β > 0, (12)

The following lemma solves the problem of computing the
input signal such that a perfect tracking of the desired output
is obtained for the system H(s).

Proposition 1[23]. Consider ȳ(t; τ) defined in (7). If n ≥
[ρ] + 1 then

u(t; τ) = γq−mDρȳ(t; τ) + γq−m−1D
ρ−ν ȳ(t; τ) + · · ·

+ γ1D
ν ȳ(t; τ) + γ0ȳ(t; τ) +

∫ t

0
η0(t− ξ)ȳ(ξ; τ)dξ.

(13)
Eventually, for Problem 1, the command signal can be

computed by applying Proposition 1 to the delay-free part
of the open-loop transfer function, i.e., by defining H(s) =
K(s)Ḡ(s), yielding the signal rol(t; τ). Then, a correction
term rc(t; τ) = ȳ(t − L; τ) must be considered, so that the
command signal is

r(t; τ) = rol(t; τ) + rc(t; τ). (14)

Finally, it can be proven that the existence of a suitable
command signal is guaranteed under the following condition:

n ≥ [ρKḠ] + 1, (15)

where ρkḠ is the relative order of the open-loop transfer
function. {

n ≥ max{v; [ρḠ] + 1 + l},
τ ≥ max{τ∗i ; τ∗o }, (16)

where τ∗o is the minimum transition time satisfying the output
constraints, whereas τ∗i is minimum transition time such that
the input constraints are satisfied for each τ ≥ τ∗i .

IV. COMMAND SIGNAL DIFFERINTEGRALS

In this section, the differintegral of both the transition
polynomial and the command signal are analytically obtained.
Indeed, they are necessary to achieve the final result of
designing an inversion-based set-point filter.

A. Transition Polynomial Fractional Differintegral

Considering that

xn = (x− τ + τ)n =
n∑

j=0

(
n
j

)
(x− τ)n−jτ j (17)

the transition polynomial can be represented as

ȳ(t; τ)=





0, if t < 0,

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ rt2n−r+1

r!(n− r)!(2n− r + 1)
, if 0 ≤ t ≤ τ,

(2n + 1)!
n!τ2n+1

n∑
r=0

(−1)n−rτ r

r!(n− r)!(2n− r + 1)

×[t2n−r+1 −
2n−r+1∑

j=0

(
2n− r + 1

j

)

×(t− τ)2n−r+1−jτ j ] + 1(t− τ), if t > τ,
(18)

where 1(·) is the Heaviside function. The previous expression
can be further simplified considering that the transition poly-
nomial is C(n) by construction. Hence, the summation of all
the terms that by differentiating till the order n the transition
polynomial would lead to impulse-like behaviors at t = τ , is
null. Thus, the summation over j can be truncated at n− r.

Now consider the fractional differintegral of the transition
polynomial. By virtue of the previous reasoning, considering
that Dαxn = n!

Γ(n+1−α)x
n−α, α ∈ R and expanding the

binomial coefficients in (18), the differintegral of the transition
polynomial is finally obtained for −∞ < α ≤ n + 1:

Dαȳ(t; τ) =



0, if t < 0;
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτr(2n−r+1)!
r!(n−r)!(2n−r+1)Γ(2n−r+2−α)

×t2n−r+1−α, if 0 ≤ t ≤ τ ;
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτr(2n−r+1)!
r!(n−r)!(2n−r+1)

×
(

t2n−r+1−α

Γ(2n−r+2−α) −
n−r∑
j=0

τjt2n−r+1−j−α

j!Γ(2n−r+2−j−α)

)
, if t > τ.

(19)
It is worth stressing the previous equation can also be

used for a direct computation of the transition polynomial by
selecting α = 0.

B. Command Signal Fractional Differintegral

In order to integrate and differentiate the command signal,
the following signals must be differintegrated: 1) the transition
polynomial (rc in (14)), 2) the fractional derivatives of the
transition polynomial appearing in (13) and 3) the convolution
integral appearing in (13).

In order to solve the first point, (19) can be used directly.
However, (19) cannot be applied straightforwardly to the

second point since, in general, fractional operators do not
commutate[22]. In particular, when using Caputo fractional
derivatives, DmDαy(·) 6= Dm+αy(·),m ∈ N, α ∈ R, unless
Diy(0) = 0 (i = 0, . . . , m). Nevertheless, when differentiat-
ing the fractional derivatives of the transition polynomial, in
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order to guarantee the existence of all the derivatives till a
given order m, a sufficient condition is

n ≥ m + [ρ]. (20)

Hence, (19) can be applied. On the contrary, when in-
tegrating the fractional derivatives of the transition poly-
nomial, Riemann-Liouville and Grünwald-Letnikov frac-
tional operators do not commutate, that is D−mDαy(·) 6=
D−m+αy(·), m ∈ N, α ∈ R unless Diy(0) = 0 (i =
0, . . . , [α]). This condition, considering the transition polyno-
mial, would lead to n ≥ [ρ], and it is automatically satisfied by
the condition of existence for the inverting signal n ≥ [ρ]+1.
Evidently, all these conditions must be applied to the specific
inverting signal, that is ρ = ρKḠ.

Finally, consider the differintegration of the convolution
integral appearing in (13). In this case the operators commuta-
tion is guaranteed, independently from the adopted definition
because of the strict properness of zero order dynamics,
provided (20) is satisfied.

In [0, τ ], considering that the Laplace transform of the
convolution integrals equals the product of the Laplace trans-
forms and that L[tα] = Γ(α + 1) 1

sα+1 , starting from (19)
its differintegral can be derived as an explicit expression in
terms of Mittag-Leffler functions by exploiting the following
equality:

L−1

[
k!sα−β

(sα ± λ)k+1

]
= εk(t,∓λ;α, β). (21)

For t > τ a similar result is achievable by considering
that the transition polynomial (19) can be represented as the
summation of a polynomial and a delayed one. Hence, the
same reasoning previously applied can be used by considering
that L[(t− τ)α] = Γ(α + 1) 1

sα+1 e−τs, that is, the integration
of a polynomial function, possibly delayed, that can be solved
again in terms of Mittag-Leffler functions, leading to

Dα
∫ t

0
η0(t− ξ)y(ξ; τ)dξ

=
m∑

i=1

gi

ki!
(2n+1)!
n!τ2n+1

n∑
r=0

(−1)n−rτr

r!(n−r)!(2n−r+1) (2n− r + 1)!

× [εki
(t, λi; ν, 2n− r + 2 + ν − α)

−





0, if 0 ≤ t ≤ τ
n−r∑
j=0

τj

j!

×εki
(t− τ, λi; ν, 2n− r + 2− j + ν − α), if t > τ


.

(22)
Again, it is worth mentioning that the previous equation can
be used for a direct computation of the convolution integral
appearing in (13) in terms of Mittag-Leffler functions by
selecting α = 0.

It is noteworthy that the computation of (13) by means
of (22) only requires the computation of the Mittag-Leffler
function, that is widely treated in the literature (see for
example [22, 24]). Note that, in the fractional framework,
this is a basic requirement since the Mittag-Leffler function
plays for fractional systems the same role that the exponential
function plays for integer systems.

V. LEAST-SQUARES FILTER DESIGN

In this section, two methodologies will be proposed to
obtain the set-point filter. The first one will lead to a fractional-
order filter, while the second one to an integer-order one. Also,
pros and cons of the two approaches will be discussed in
details.

A. Transition Polynomial-based Filter

The first methodology proposed exploits the design of a
transfer function whose step response is as close as possible
(in terms of 2-norm) to the transition polynomial. In this case,
the following transfer function structure is proposed:

F̃ (s) =
1

o∑
i=1

aisi + 1
. (23)

First o = n + 1 is selected, so that the filter step response
exhibits the same degree of regularity of the transition polyno-
mial. Then, by sampling at each ∆t the transition polynomial
and its derivatives obtained via (19), the following matrices
are created

A =




Doȳ(0; τ) · · · D1ȳ(0; τ)
...

. . .
...

Doȳ(t−∆t; τ) · · · D1ȳ(t−∆t; τ)
Doȳ(t; τ) · · · D1ȳ(t; τ)

Doȳ(t + ∆t; τ) · · · D1ȳ(t + ∆t; τ)
...

. . .
...

Doȳ(3τ ; τ) · · · D1ȳ(3τ ; τ)




, (24)

B =




1(0)− ȳ(0; τ)
...

1(t−∆t)− ȳ(t−∆t; τ)
1(t)− ȳ(t; τ)

1(t + ∆t)− ȳ(t + ∆t; τ)
...

1(3τ)− ȳ(3τ ; τ)




. (25)

Finally the coefficients vector Θ = [ao · · · a1]T is obtained
as Θ = AT(AAT)−1B. Note that, the transfer function (23)
designed in this way has, by construction, unitary dc-gain.
Now, using (23) and the process dynamics, the set-point filter
can be designed as

F (s) = F̃ (s)(e−Ls + (K(s)Ḡ(s))−1). (26)

It is worth noting that, in this case, the obtained filter
is fractional. Hence, it may be difficult to implement with
standard industrial control hardware. In order to overcome
this problem, in the next subsection a second methodology
to design the set point filter is proposed.

B. Command Signal Filter

The second methodology is based on direct design of a filter
whose step response is the closest, in terms of 2-norm, to the
command signal.

Actually, a double approach to solve this problem is pro-
posed. The first approach consists in identifying a suitable
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filter using directly the command signal (14). The second
approach is based on the separate identification of a transfer
function for the transition polynomial and a transfer function
for the inverting part of the command signal rol(t, τ). The re-
sponse of the first transfer function can therefore be arbitrarily
delayed and, by selecting the system delay, a signal close to
rc(t; τ) is obtained.

When the first approach is used, the proposed filter structure
is

F (s) =

o−p∑
j=1

bjs
j + 1

o∑
i=1

aisi + µ
, (27)

where µ is the closed-loop dc-gain and

p = n− [ρKḠ]. (28)

Note that the relative order of the filter is chosen in such a way
that forces the filter step response to have the greater degree
of regularity equal to or smaller than the one of the command
signal. Indeed, considering the possibly fractional nature of
the considered control systems, the degree of regularity of the
command signal is n− ρKḠ. Also, note that the chosen value
of p guarantees the accomplishment of condition (20), hence
the existence of the derivative of the command signal inde-
pendently from the adopted definition of fractional operator.

In this case, o ∈ R is a design parameter, to be chosen large
enough to give to the filter a sufficient number of degrees of
freedom. In this case, the identification would require o − p
differentiations of the step signal. In order to overcome this
problem an integral approach is adopted integrating o−p times
both the step signal and the command signal.

Then, by sampling at each ∆t the command signal and
its integrals obtained via (13), (19) and (22) the following
matrices are created

A =




Dpr(0; τ) · · · D−o+p+1r(0; τ)
...

. . .
...

Dpr(t−∆t; τ) · · · D−o+p+1r(t−∆t; τ)
Dpr(t; τ) · · · D−o+p−1r(t; τ)

Dpr(t + ∆t; τ) · · · D−o+p+1r(t + ∆t; τ)
...

. . .
...

Dpr(3τ ; τ) · · · D−o+p+1r(3τ ; τ)
−1(0) · · · − 1

(o−p+1)!0
(o−p+1)

...
. . .

...
−1(t−∆t) · · · − 1

(o−p+1)! (t−∆t)(o−p+1)

−1(t) · · · − 1
(o−p+1)! t

(o−p+1)

−1(t + ∆t) · · · − 1
(o−p+1)! (t + ∆t)(o−p+1)

...
. . .

...
−1(ψτ) · · · − 1

(o−p+1)! (ψτ)(o−p+1)




,

(29)

B =




1
(o−p)!0

(o−p) − µD−o+pr(0; τ)
...

1
(o−p)! (t−∆t)(o−p) − µD−o+pr(t−∆t; τ)

1
(o−p)! t

(o−p) − µD−o+pr(t; τ)
1

(o−p)! (t + ∆t)(o−p) − µD−o+pr(t + ∆t; τ)
...

1
(o−p)! (τ)(o−p) − µD−o+pr(ψτ ; τ)




,

(30)
where ψ ∈ R is a design parameter that must be big enough
to capture a sufficient part of the command signal transient
(made of action and postaction, see [16] for details) in order to
obtain a satisfactory filter. Finally the coefficients vector Θ =
[ao · · · a1 bo−p · · · b1]T is obtained as Θ = AT(AAT)−1B.

The second approach uses the same filter structure (27) of
the first one, but in order to identify the filter parameters it uses
rol(t; τ) instead of the whole command signal (14) to build
the matrices (29) and (30). In order to do that, the following
procedure should be used:

1) If the open-loop transfer function K(s)G(s) has a finite
dc-gain µol, then substitute µ with µol both in (27) and (30).
Then, use them to compute a filter F̄ (s) having the same
structure of (27) following the standard procedure;

2) If the open-loop transfer function has an integral behavior
of order λ ∈ R, then eliminate from (29) the last [λ] − 1
columns, eliminate from (30) the integrals of the Heaviside
function, set µ = 1 in (30) and use the following filter
structure:

F̄ (s) =

o−p∑
j=[λ]

bjs
j

o∑
i=1

aisi + 1
, (31)

where Θ = [ao · · · a1 bo−p · · · b[λ]]T.
Then, the technique proposed in the Subsection V-A is

employed to design a transfer function F̃ (s) whose step
response is close to the transition polynomial ȳ(·). Finally,
the filter is obtained as

F (s) = F̄ (s) + F̃ (s)e−Ls. (32)

VI. DISCUSSION

Two methodologies have been proposed in Section V. The
first one generates fractional set-point filters, while the second
one can be used to obtain different integer-order set-point
filters.

Clearly, when able to guarantee the same set-point tracking
performance, an integer order filter is preferable for its ease
of implementation.

Nevertheless, the second methodology is not always usable.
In particular it may present two different problems:

1) When the required transition time τ is too small it may
lead to unstable filters. In this case the first methodology
i.e., the fractional filter, offers a great advantage. Indeed, the
first technique gives the same results independently from the
chosen transition time. Actually, when varying the transition
time, the transition polynomial is just scaled along the time
axis (i.e., it is selfsimilar). So, once a stable filter for a given
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τ has been identified, it is possible to obtain many others just
scaling its coefficients in such a way that the filter Bode plot is
rigidly shifted along the jω axes without changing its shape;

2) When the control loop presents uncompensated fractional
dynamics (i.e., it is not properly tuned) the integer filter may
lead to undershoot or overshoot long time after the application
of the step signal. This depends on the fact that the transient
response generated by the filter has already expired while the
loop dynamics exhibits a slow non exponential decay typical
of uncompensated fractional dynamics[25]. It is well known
that it is not possible to match this kind of fractional power-
law decay using integer systems, hence, in this case, the use of
a fractional filter is mandatory in order to obtain a satisfactory
result.

Summarizing, the first methodology always guarantees the
same level of performance and can be successfully employed
on a broader class of control systems, but its use should be
carefully evaluated for the intrinsic complexity of implemen-
tation that fractional order systems have. Indeed, when usable,
the second approach is preferable since, independently from
the adopted approach, it leads to integer-order filters, which
are easy to implement on off-the-shelf control setups. This
issue will be further illustrated in the following section.

VII. SIMULATION EXAMPLES

In this section the proposed techniques will be tested via
simulation examples in order to highlight the benefits and the
problem that may arise from the use of these set-point filters.

For the purpose of simulation, the fractional-order dynamics
has been approximated in the frequency domain by using the
well-known Oustaloup approximation[26]. In order to obtain
a precise approximation of the real fractional system, a high
number of poles and zeros has been used, namely, 20 cells in
a frequency band [0.0001 10000].

A. Example 1

As a first illustrative example consider an unstable fractional
system with the following transfer function[16]:

G(s) =
3s0.5 + 1
s1.5 − 1

e−0.1s, (33)

whose commensurate order is, evidently, 0.5. A very simple
stabilizing controller can be used, indeed a satisfactory set-
point tracking performance can be obtained independently
from the chosen feedback controller by using a suitable set-
point filter. A proportional controller K(s) = 2 is used here.

The control requirement is to obtain a smooth transition of
the output from 0 to 1 constraining both the amplitude and
the slew rate of control and process variables (note that these
are common requirements in practical applications).

Accordingly, considering that the relative order of the
system Ḡ(s) is ρ = 1, n = 3 is chosen, that is sufficient
(not necessary) to satisfy conditions (15) and (16), and the
transition polynomial ȳ(t; τ) is computed via (7):

ȳ(t; τ) = −20
τ7

t7 +
70
τ6

t6 − 84
τ5

t5 +
35
τ4

t4. (34)

Then, the technique proposed in Section III is applied. The
zero dynamics of K(s)Ḡ(s) is obtained as

H0(s) =
−0.5185
3s0.5 + 1

(35)

and its time domain version as

η0(t) =
−0.5185

3
εki

(
t,

1
3
; 0.5, 0.5

)
. (36)

Subsequently, the inversion-based part rol(t; τ) of the com-
mand signal r(t; τ) can be computed via (13), (19) and (22):

rol(t; τ) = 0.1667D1y(t; τ)− 0.0556D0.5ȳ(t; τ) + 0.0185
+

∫ t

0
η0(t− ξ)y(ξ; τ)dξ.

(37)

Now consider the following set of constraints:

u0
M ≤ 1.5, u1

M ≤ 5,
y1

M ≤ 5.
(38)

The minimum transition time can be found by using, for
instance, a simple bisection algorithm. It turns out that the
most tightening constraint is the one imposed on the derivative
of the control variable and the minimum transition time is
τ∗ = τ∗i = 0.72.

Once the command signal has been computed, the set-point
filter is designed. First, the technique proposed in Subsection
V-A is used to identify the parameters of (23) leading to

F̃ (s) =
1/(0.0002416s4 + 0.004027s3 + 0.05374s2 + 0.3418s + 1).

(39)
The step response of F̃ (s) is represented in Fig. 2 where it
immediately shows the effectiveness of its design. Then, the
fractional set-point filter F (s) is obtained via (26) as

F (s) = (s1.5 + 6se−0.1s + 2e−0.1s − 1)/(0.001450s4.5

+0.0004839s4 + 0.02416s3.5 + 0.008054s3 + 0.3224s2.5

+0.1075s2 + 2.0509s1.5 + 0.6836s + 6s0.5 + 2).
(40)

Fig. 2. Transition polynomial (dotted line) and F̃ (s) step response
obtained by using the technique of Subsection V-A (solid line) for
the set of constraints (38). – Example 1.
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Now, also the first methodology proposed in Subsection V-B
is implemented selecting m = 3, leading to the following
integer-order filter

F (s) = (0.272s2 + 15.28s + 1)/(0.001041s5

+0.03607s4 + 0.6633s3 + 5.473s2 + 17.91s + 2). (41)

Fig. 3 shows the responses obtained with the command
signal, the proposed (fractional- and integer-order) set-point
filters and, for the sake of comparison, the step command
signal (scaled by the closed-loop dc-gain). Indeed, the re-
sponse using the proposed fractional-order filter is close to
the optimal one obtained with the inversion-based command
signal and the constraints are almost satisfied. On the con-
trary, the step response does not respect the constraints and
the system is very sluggish. Moreover, because of the long
memory of the fractional dynamics, the 2 % settling time has
the unacceptable value of 3800. Fig. 3 also reveals that the
response of the integer-order filter is not capable to capture
the long tail that the fractional dynamics exhibits, causing an
unacceptable undershoot. Indeed, because of the very simple
controller, the control loop exhibits a sluggish behavior with an
uncompensated slow fractional dynamics and a settling time
approximately close to the one obtained without the filter.

Fig. 3. Process variable (top) and control variable (bottom) obtained
by using the command signal (dotted line), the filter designed with
the technique of Subsection V-A (dashed line) and Subsection V-B
(solid line) and a step command signal (dash-dot line) for the set of
constraints (38). – Example 1.

In this context, the fractional-order filter is the only one that
is capable to completely compensate this phenomena guaran-
teeing very good performance despite the simple (detuned)
controller. This behavior is even clearer by analyzing the filter
responses compared to the ideal command signal, as shown in
Fig. 4. By observing Fig. 5, it turns out that the integer-order
filter cannot match the whole fractional power-law tail, but it
is only capable to match the required command signal only
in the first part of the transient response. As a consequence,
also the performance of the control system is satisfactory only
in the first part of the transient response, as Fig. 6 shows.
This depends on the incapability of integer-order systems to

match power law decays[25]. It is worth stressing that this is
a structural problem that cannot be solved by increasing m
in (29) and (30). Moreover, an excessive growth of m would
cause a loss of information in the first part of the transient with
a consequent decay of the filter performance also in describing
that part, which is usually the most exciting for the system
dynamics.

Finally, a second simulation has been performed, this time

Fig. 4. Command signal (dotted line) and filter step response ob-
tained by using the technique of Subsection V-A (dashed line) and
Subsection V-B (solid line) for the set of constraints (38). – Example
1.

Fig. 5. Zoom of the first part of the command signal (dotted line)
and filter step response obtained by using the technique of Subsection
V-A (dashed line) and Subsection V-B (solid line) for the set of
constraints (38). – Example 1.

neglecting the constraints and reducing the transition time to
τ = 0.3. Using this transition time the second methodology
cannot be applied since it leads to an unstable filter. On the
contrary, the first technique gives the same results indepen-
dently from the chosen transition time. Indeed, when varying
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the transition time, the transition polynomial is just scaled
along the time axis (i.e., it is selfsimilar). Thus, the Bode
plot of the transfer function (23) identified again is identical
to the previous one, but just rigidly shifted along the ω axis,
as show in Fig. 7. The transfer function is

F̃ (s) = 1/(7.28 · 10−6s4 + 0.0002913s3 + 0.009328s2

+0.1424s + 1)
(42)

and the associated fractional set-point filter is

Fig. 6. Zoom of the first part of the process variable (top) and
control variable (bottom) obtained by using the command signal
(dotted line), the filter designed with the technique of Subsection V-A
(dashed line) and Subsection V-B (solid line) and a step command
signal (dash-dot line) for the set of constraints (38). – Example 1.

Fig. 7. Bode diagram of F̃ (s) for τ = 0.72 (dotted line) and
τ = 0.3 (solid line). – Example 1.

F (s) = (s1.5 + 6se−0.1s + 2e−0.1s − 1)/(0.00004368s4.5

+0.00001456s4 + 0.001749s3.5 + 0.0005826s3

+0.05597s2.5 + 0.01865s2 + 0.8545s1.5 + 0.2848s
+6s0.5 + 2).

(43)
Again, the filter is computed via (26), and its step response is
quite close to the ideal command signal, as shown in Fig. 8.

Finally, Fig. 9 shows that, despite the strong transition time
reduction, the process response remains smooth and almost
monotonic, close again to the one obtained with the ideal
command signal.

B. Example 2

As a second example consider a unity feedback control
system where the process and the controller are the ones
proposed in [27] and already used as a benchmark in [16].
The controlled process has the transfer function

Fig. 8. Command signal (dotted line) and filter step response ob-
tained by using the technique of Subsection V-A (dashed line) for
the unconstrained solution. – Example 1.

Fig. 9. Process variable (top) and control variable (bottom) obtained
by using the command signal (dotted line), the filter designed with
the technique of Subsection V-A (dashed line) and a step command
signal (dash-dot line) for the unconstrained solution. – Example 1.

G(s) =
0.25

s(s + 1)
(44)
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and the proposed controller is a fractional-order PID tuned in
order to achieve the isodamping property:

K(s) = 3.8159 +
2.1199
s0.6264

+ 2.2195s0.809. (45)

Using the same reasoning proposed in [16], the actual con-
troller is approximated with the following commensurate one

K̃(s) = 3.8159 +
2.1199
s0.6

+ 2.2195s0.8, (46)

leading to a control system (only used for design purposes)
with commensurate order ν = 0.2. A constraint on the
maximum control variable has been considered:

u0
M ≤ 10. (47)

Note that, in the case of a servomotor, this is a common
choice that means avoiding to saturate the current loop. In
order to select the transition polynomial the relative order of
the approximate closed-loop transfer function ρT̃ = 1.2 and
the relative order of the system ρḠ = 2 have been considered.
Applying (15) and (16), the necessary and sufficient condition
n = 2 is obtained. This choice also satisfies (16) and leads to
the following transition polynomial:

ȳ(t; τ) =
6
τ5

t5 − 15
τ4

t4 +
10
τ3

t3. (48)

Applying the command signal design technique (details are not
given for the sake of brevity, they can be found in [16]) it turns
out that a transition time τ = 1.8 is sufficient to guarantee the
constraint satisfaction.

Finally the filter design methodologies proposed in Section
V have been employed, again selecting m = 3. It turns out
that:

F̃ (s) = 1/(0.068s3 + 0.27s2 + 0.8819s + 1) (49)

that leads to the fractional filter

F (s) = (s2.6 + s1.6 + 0.5549s1.4 + 0.9540s0.6 + 0.5300)/
(0.0377s4.4 + 0.0649s3.6 + 0.1498s3.4 + 0.0360s3

+0.2576s2.6 + 0.4893s2.4 + 0.1431s2 + 0.8413s1.6

+0.5549s1.4 + 0.4674s + 0.9540s0.6 + 0.5300),
(50)

while the resulting integer-order filter transfer function (ob-
tained by using the first approach of Section V-B) is

F (s) = (0.01071s4 − 0.01051s3 + 1.133s2 + 1.222s + 1)/
(0.003553s5 + 0.0363s4 + 0.2631s3 + 0.8111s2

+1.819s + 1).
(51)

Again, both filters have been tested, as well as a step command
signal and the ideal one. It is worth stressing that the tests have
been done using the actual controller and not the approximated
one.

Fig. 10 shows that both step responses of the filters are quite
close to the ideal command signal. Indeed, in this case, as the
fractional slow decay has been well compensated, the integer-
order filter step response remains close to ideal command
signal also after a long time.

Finally, in Fig. 11 the simulation results are shown. It
appears evidently that both methodologies are able to provide

responses close to the one obtained using the ideal command
signal, notably improving the performance despite the already
well-tuned controller.

Among the benefits that both the proposed methodologies
provide, a smaller rise and settling times have to be mentioned,
as well as a continuous control signal. In particular, this allows
the avoidance of a very high peak (or saturation) of the control
variable due to the so called “derivative kick” phenomenon[13].

Fig. 10. Command signal (dotted line) and filter step response
obtained by using the technique of Subsection V-A (dashed line) and
Subsection V-B (solid line) for the set of constraints (47). – Example
2.

Fig. 11. Process variable (top) and control variable (bottom) ob-
tained by using the command signal (dotted line), the filter designed
with the technique of Subsection V-A (dashed line) and Subsection
V-B (solid line) and a step command signal (dash-dot line) for the
set of constraints (47). – Example 2.

C. Example 3

As a third example consider the following delay-dominant
fractional plant
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G(s) =
1

s1.8 + 1
e−3s (52)

and the proportional-integral (PI) controller

K(s) = 0.12
(

1 +
1

0.65s

)
, (53)

tuned in order to achieve a phase margin of approximately 60◦.
The system, because of the fractional order of 1.8, exhibits an
oscillatory behavior. It is well known that a PI controller is not
sufficient to achieve a high performance when dealing with
underdamped systems, but in many cases the use of such a
controller is in force (in particular in the industry). Bearing in
mind this idea, it is shown here how to significantly improve
the set-point following performance by using a two-degree-
of-freedom controller with suitable set-point filters. Also, note
that an integrator is absolutely necessary in the controller in
order to reject possible disturbances, since the proportional
gain must be very small in order to avoid oscillations because
of the strong delay of the plant.

Considering that no constraints are imposed, the condition
n = 2 is sufficient to guarantee the existence of a command
signal. Hence, the transition polynomial (48) is obtained.
Then, by applying the command signal design procedure, the
following results are obtained

H0(s) = 2.1281
s0.2+1.0900 + 3.3834+1.7277i

s0.2+0.3368+1.0366i

+ 3.3834−1.7277i
s0.2+0.3368+1.0366i + 5.4145+1.0678i

s0.2−0.8818+0.6407i

+ 5.4145−1.0678i
s0.2−0.8818−0.6407i ,

(54)

rol(t; τ) = 8.3333D1.8ȳ(t; τ)− 12.8205D0.8ȳ(t; τ)
+8.3333ȳ(t; τ) +

∫ t

0
η0(t− ξ)ȳ(ξ; τ)dξ,

(55)

where the impulse response of the zero-order dynamics is not
reported for the sake of readability, but can be easily obtained
following the procedure proposed in [16].

After selecting the very small transition time τ = 1
(note that it is considerably smaller than the time delay), the
technique of Subsection V-A and the second one of Subsection
V-B have been applied. It results

F̃ (s) = 1/(0.01155s3 + 0.08333s2 + 0.4886s + 1). (56)

Then, the associated fractional-order filter is determined as

F (s) = (s2.8 + s + 1.2se−3s + 0.1846e−3s)/(0.001386s4

+0.01213s3 + 0.07402s2 + 0.2102s + 0.1846),
(57)

while, using the integer-order approach we obtain:

F̄ (s) = (−0.05786s4 + 4.801s3 + 1.347s2 + 5.127s)/
(0.0003913s5 + 0.0132s4 + 0.09208s3 + 0.5454s2

+1.117s + 1).
(58)

and the associated integer-order filter is:

F (s) = (−0.0006684s7 + 0.05064s6 + 0.3873s5 + 2.459
+s4 + 0.01155s3e−3s + 5.886s3 + 0.08333s2e−3s

+3.852s2 + 0.4886se−3s + 5.127s + e−3s)/
(4.52× 10−6s8 + 0.000185s7 + 0.002354s6 + 0.02081s5

+0.1165s4 + 0.463s3 + 1.175s2 + 1.606s + 1).
(59)

It is worth stressing that here the parameter m = 5 has
been used, because of the large process delay and the small
transition time. Indeed, the previous examples choice m = 3
would not be able to capture the first part of the postaction.

Since here a slow decay tail does not appear, both the
techniques work properly. In particular, Fig. 12 shows that both
the filters are capable to satisfactorily match the command
signal.

Fig. 12. Command signal (dotted line) and filter step responses
obtained by using the technique of Subsection V-A (dashed line) and
Subsection V-B (solid line) for the unconstrained problem. – Example
3.

Finally, Fig. 13 shows that both the integer filter and the
fractional one are capable to strongly decrease the rise and
the settling time contemporarily, guaranteeing a clear im-
provement of the set-point tracking performance despite the
significant delay.

VIII. CONCLUSIONS

In this paper, a novel technique to design a set-point filter
for a unity-feedback fractional control loop has been proposed.

It is based on a two-step procedure. First, an ideal com-
mand signal is synthesized in such away that a smooth and
monotonic process output would have been obtained. Then, a
linear filter is designed so that its step response is as close as
possible, in terms of 2-norm, to the ideal command signal.

Two approaches are proposed, the first one based on a
fractional-order filter and the second one on an integer-order
one. Summarizing, the use of an integer-order filter should
be limited to those cases where the feedback loop is tuned
in such a way that no long fractional tails appear (note that
this does not prevent the control system to exhibit a fractional
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dynamics as Examples 2 and 3 show) and the transition time
is big enough to guarantee a stable filter. On the contrary, the
fractional filter is always usable and guarantees a satisfactory
performance, at the price of an increased implementation
complexity.

The proposed technique is suitable for the design of two
degree-of-freedom control structures and allows the user to
design the feedback controller almost independently from the
set-point tracking performance, that, on the contrary, mostly
depends on the set-point filter.

Simulation results have demonstrated the effectiveness of
the proposed methodology.

Fig. 13. Process variable (top) and control variable (bottom) ob-
tained by using the command signal (dotted line), the filter designed
with the technique of Subsection V-A (dashed line) and Subsection
V-B (solid line) and a step command signal (dash-dot line) for the
unconstrained problem. – Example 3.

REFERENCES
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