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Improving the Control Energy in Model Reference
Adaptive Controllers Using Fractional
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Abstract—This paper presents the analysis of the control
energy consumed in model reference adaptive control (MRAC)
schemes using fractional adaptive laws, through simulation stud-
ies. The analysis is focused on the energy spent in the control
signal represented by means of the integral of the squared control
input (ISI). Also, the behavior of the integral of the squared
control error (ISE) is included in the analysis.

The orders of the adaptive laws were selected by particle
swarm optimization (PSO), using an objective function including
the ISI and the ISE, with different weighting factors. The
results show that, when ISI index is taken into account in the
optimization process to determine the orders of adaptive laws,
the resulting values are fractional, indicating that control energy
of the scheme might be better managed if fractional adaptive
laws are used.

Index Terms—Control energy, fractional adaptive laws, model
reference adaptive control.

I. INTRODUCTION

The main idea behind direct model reference adaptive
control (direct MRAC) technique is to create a closed loop
system with adjustable parameters, such that the application of
the resulting control signal to the plant makes the output of the
plant to follow the output of a given reference model. Adaptive
laws for adjusting controller parameters have been synthesized
using several techniques, where the most commonly used is
the gradient approach, in which the estimated parameter is the
result of a differential equation of integer order, moving in the
negative direction of the gradient of the criterion function to
be minimized[1].

The fractional calculus, that is calculus of integrals and
derivatives of real or complex orders[2], has been increasingly
used in many fields of science and engineering, and the control
techniques are not the exception. Since the paper by Vinagre
et al.[3], which as far as we know is the first paper proposing
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the inclusion of fractional operators in MRAC schemes, many
works have been published including fractional operators not
only in MRAC schemes (see for example [4−9]) but also in
some other adaptive schemes[10−11]. Some researchers have
mentioned advantages of using fractional operators in MRAC
schemes such as better management of noise[10], better behav-
ior under disturbances[4−5, 9] and improvements in transient
responses[3, 9], among others.

However, there is still a reticence in the adaptive control
community about using these fractional operators inside adap-
tive schemes because of their complexity. In [9] it has been
mentioned that the use of fractional adaptive laws in a MRAC
scheme for an automatic voltage regulator leads to a smoother
control signal, which is a very interesting fact. This behavior
could be seen as a better management of the energy used in
the control scheme, and this could be a point in favor of the
fractional operators, at least in MRAC schemes, since energy
efficiency is a trending topic nowadays due to the increasing
cost of energy worldwide.

This paper makes a preliminary analysis of the behavior of
control signals in a MRAC scheme, when fractional adaptive
laws are used to adjust control parameters. The analysis is
made empirically, since it follows from simulation studies,
but we believe this could be the first step to a more detailed
study on this topic. The results show that the introduction
of fractional adaptive laws in the MRAC schemes analyzed
leads to smoother control signals, with a lower integral of the
squared control, which can be seen as a better management of
the energy spent in the control scheme. The simulations also
show that there could exist a trade-off between the control
energy and the convergence speed of the control error, which
suggests the use of optimization techniques to select the
suitable orders to be used in adaptive laws.

The paper is organized as follows. Section II presents some
basic concepts about fractional calculus. Section III introduces
the MRAC scheme that is analyzed in the paper, with the
corresponding fractional adaptive laws. Section IV presents
the simulation and analysis of the results for the MRAC
scheme, implemented for three different plants: one stable,
one marginally stable and one unstable. Finally, Section V
presents the conclusions of the study.

II. BASIC CONCEPTS

This section presents some basic concepts of fractional
calculus, which are used in this paper.
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A. Fractional Calculus

Fractional calculus studies integrals and derivatives of real
or complex orders[2]. The Riemann-Liouville fractional inte-
gral is one of the main concepts of fractional calculus, and is
presented in Definition 1.

Definition 1 (Riemann-Liouville fractional integral)[2].

Iα
a+f (t) =

1
Γ (α)

∫ t

a

f (τ)
(t− τ)1−α dτ, t > a, R (α) > 0,

(1)
where Γ (α) corresponds to the Gamma Function, given by
Equation (2).

Γ (α) =
∫ ∞

0

tα−1e−tdt. (2)

There are several definitions regarding fractional derivatives.
Definition 2 corresponds to the fractional derivative according
to Caputo, and is the one used in this paper for implementing
fractional adaptive laws.

Definition 2 (Caputo fractional derivative)[2].

C
t0D

α
t x (t) =

1
Γ (n− α)

∫ t

a

f (n) (τ)
(t− τ)α−n+1 dτ, (3)

where t > a, n− 1 < α < n, n ∈ Z+.

III. MODEL REFERENCE ADAPTIVE CONTROL SCHEME

In this section, we present the structure of the MRAC
scheme analyzed in this work. Since this adaptive scheme has
been very well studied in [1], for the sake of space we only
present here the equations needed for its implementation. For
more specific details, the reader is referred to [1], Chapter 5.

A. MRAC Scheme for Plants with Only the Output Accessible

Usually, the whole state of a plant is not accessible, because
some variables cannot be physically measured or because
there is no instrumentation available to do it. In these cases,
the designer has access only to the input and output of the
plant, and the control scheme must be designed under these
constraints.

Let us consider a single-input single-output linear time
invariant plant of n-th order described by the vector differential
equation

ẋp (t) = Apxp (t) + bpu (t) ,
yp (t) = hT

p xp (t) ,
(4)

where Ap ∈ Rn×n, bp, hp ∈ Rn are completely unknown.
xp ∈ Rn is the state vector, which is not accessible, and
u, yp ∈ R are the input and the output of the system. The
plant is assumed to be controllable and observable.

An asymptotically stable reference model is specified by the
linear time-invariant system described by

ẋm (t) = Amxm (t) + bmr (t) ,
ym (t) = hT

mxm (t) ,
(5)

where Am ∈ Rn×n is a known asymptotically stable matrix
and bm, hm ∈ Rn are known vectors. The reference model
is assumed to be controllable and observable. ym ∈ R is

the output of the reference model and r ∈ R is a bounded
reference input. It is assumed that ym(t), for all t ≥ t0,
represents the desired trajectory for yp(t).

The transfer function of the plant (4) can be represented as

Wp (s) = hT
p (sI −Ap)

−1
bp = kp

Zp (s)
Rp (s)

(6)

where kp is the high frequency gain and Zp (s) , Rp (s) are
monic polynomials with unknown parameters. It is assumed
that Zp (s) is a Hurwitz polynomial and that the sign of kp

is known. The control goal here is to keep bounded all the
signals of the scheme and that limt→∞ (yp (t)− ym (t)) = 0.

As we may expect, having no access to the plant state
implies that a more complex control scheme has to be used
in the problem to synthesize stable adaptive laws, compared
to the case when the whole state xp (t) is accessible (see
[1], Chapter 3). For this kind of scheme and with no loss
of generality, it is assumed that the transfer function of the
reference model is strictly positive real (SPR). The transfer
function of the reference model is represented as

Wm (s) = hT
m (sI −Am)−1

bm = km
Zm (s)
Rm (s)

, (7)

where km is the high frequency gain and Zm (s) , Rm (s)
are monic coprime and Hurwitz polynomials with all the
parameters known. Note that since the reference model is
chosen by the designer, then all these conditions can be
fulfilled.

This control problem has to be solved in a different way for
plants with relative degree n∗ = 1 and for plants with relative
degree n∗ ≥ 2[1]. For the sake of simplicity, let us consider
that the plant under study has relative degree n∗ = 1. Then,
the control input to the plant is chosen as

u (t) = θT (t) ω (t) , (8)

where θ (t) ∈ R2n is a vector of adjustable parameters and
ω (t) ∈ R2n is a vector of known signals. Specifically

θ (t) =
[
k (t) θT

1 (t) θ0 (t) θT
2 (t)

]T
,

ω (t) =
[
r (t) ωT

1 (t) yp (t) ωT
2 (t)

]T
,

(9)

with k, θ0 : R+ → R; θ1, ω1 : R+ → Rn−1; θ2, ω2 : R+ →
Rn−1.

The auxiliary signals ω1 (t) ∈ Rn−1, ω2 (t) ∈ Rn−1 are
obtained by filtering the input and the output, respectively,

ω̇1 (t) = Λω1 (t) + l u (t) ,
ω̇2 (t) = Λω2 (t) + l yp (t) ,

(10)

where Λ ∈ R(n−1)×(n−1) and l ∈ Rn−1 must be chosen such
that det(sI − Λ) = Zm (s) and the pair (Λ, l) is controllable
and asymptotically stable.

Defining the control error as

e (t) = yp (t)− ym (t) , (11)

then for the classic integer order MRAC (IOMRAC) the stable
adaptive laws for the parameters are generated as

k̇ (t) = −γ sgn (kp) e (t) r (t) ,

θ̇0 (t) = −γ sgn (kp) e (t) yp (t) ,

θ̇1 (t) = −γ sgn (kp) e (t) ω1 (t) ,

θ̇2 (t) = −γ sgn (kp) e (t) ω2 (t) ,

(12)
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where γ ∈ R+ corresponds to the adaptive gain[1].
In this work we are going to use the same structure already

explained for the IOMRAC scheme, but using fractional
adaptive laws (FOMRAC) given by

CDαk
t0 k (t) = −γ sgn (kp) e (t) r (t) ,

CDα0
t0 θ0 (t) = −γ sgn (kp) e (t) yp (t) ,

CDα1
t0 θ1 (t) = −γ sgn (kp) e (t)ω1 (t) ,

CDα2
t0 θ2 (t) = −γ sgn (kp) e (t)ω2 (t) ,

(13)

where αk, α0 and each component of α1, α2 belong to the
interval (0, 1]. It is important to have in mind that these
fractional orders can be different for every component of the
adaptive laws.

It should also be noted that, although some advances have
been made regarding the stability analysis of fractional adap-
tive schemes[12], the stability of this particular case has not
been proved yet. Nevertheless, since the main idea of this
work is obtaining some empirical conclusions from simulation
studies on the control effort, we will focus only on this topic.
The reader will observe, however, that in simulation studies
the fractional case remains stable as well.

IV. SIMULATIONS STUDIES

In this section we will study the control of three second
order plants, using the controller presented in Section III,
through simulations. The plants under control have the same
vectors bp, hp specified in (14), and only the matrix Ap

changes from one plant to another.
In the first case we study an unstable plant (a11 = 4, a12 =

−1, a21 = 5, a22 = −3) with poles p1 = 3.1926 and
p2 = −2.1926. The second case corresponds to a marginally
stable plant (a11 = −5, a12 = 1, a21 = 0, a22 = 0), with
poles p1 = 0 and p2 = −5. Finally, the third case corresponds
to a stable plant (a11 = −5, a12 = 3, a21 = −15, a22 = 1)
with complex conjugate poles p1,2 = −2± 6i. The reference
model is asymptotically stable, as detailed in (14).

Ap =
[

a11 a12

a21 a22

]
, Am =

[ −1 0
0 −2

]
,

bp = bm =
[

1
1

]
, hp = hm =

[
1
0

]
.

(14)

The initial conditions used in simulations are xp (0) =
[0 1]T and xm (0) = [1 5]T.

It can be checked that the transfer function of the reference
model is SPR and the relative degree is n∗ = 1 for the three
plants, so that conditions for designing MRAC are fulfilled.
Since the numerator of the reference model transfer function
is Zm (s) = s + 2, the design parameters Λ, l were chosen as
Λ = −2 and l = 1.

For the three plants to be controlled, the initial conditions
of the four estimated parameters were chosen as θ (0) =
[5 4 − 8 − 5]T, the simulation time was set to T = 500 s,
γ = 1 and the reference input r (t) used is a unit step.

As we mentioned at the beginning of this paper, we will
focus on analyzing how the management of control energy can
be improved using fractional adaptive laws. To that extent, we

use the integral of the squared input (ISI) as an indicator of
the control energy, calculated using the following expression

ISI =
∫ T

0

u2 (t) dt, (15)

where T is the final simulation time.
Since the control signal is usually generated using some

kind of energy, then ISI represents an excellent measurement
of the energy spent to control the plant. Nowadays, ISI has
become extremely important in control schemes, since indus-
trial processes design and operation are focusing on saving
energy, as a way of contributing to protect natural resources
and planet sustainability.

Although our main goal is showing that the use of the
fractional adaptive laws may improve the use of control energy
in the adaptive schemes, we have to consider another important
variable which is the control error. The integral of the squared
control error is usually used as a performance index, measuring
the deviation of the controlled variable from its desired value
over the time. This index is given in (16) and it will be taken
in mind during our studies as well.

ISE =
∫ T

0

e2 (t) dt. (16)

A. Numerical Results for the Unstable Plant

Although the order of the adaptive law can be different
for each of the four components, let us make a preliminary
analysis using the same value for αk, α0, α1 and α2. To
get some insight about the behavior of the MRAC scheme
depending on the order of the adaptive laws, let us compare
the results using the values specified in Table I.

The fractional adaptive laws were implemented using the
NID block of the Ninteger toolbox[13], developed for Mat-
lab/Simulink. This implementation requires the definition of
the number of poles and zeros of the transfer function (N ) to
be used in the approximation, as well as the frequency range
where approximation is valid and where these poles/zeros lie.
In general, large values of N lead to more accurate approxima-
tion of the fractional order operator, and the converse is also
true. In this paper the Crone approximation[14−18] of order
10 was used, with a frequency interval of [0.01, 1 000] rad/s.
Table I shows the resulting values of ISI and ISE for these
simulations.

TABLE I
RESULTING VALUES OF ISI AND ISE FOR

REPRESENTATIVE VALUES OF THE ORDERS IN THE
ADAPTIVE LAWS, FOR A STABLE PLANT

α1 α2 α0 αk ISI ISE

0.5 0.5 0.5 0.5 5 212.4 6.3651

0.7 0.7 0.7 0.7 58 379 2.1056

0.9 0.9 0.9 0.9 6 033.8 1.2405

1 1 1 1 6 071.7 1.0781

As can be seen from Table I, the lowest ISI value corre-
sponds to the fractional case with lower order (α1 = α2 =
α0 = αk = 0.5), increasing from there up to the integer order
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case. However, the behavior of the ISE is the opposite, being
the case with the lowest ISI the one having the highest ISE.

Fig. 1 shows the evolution of control error and the control
signal for these simulations. As can be seen, the control signal
is smoother for the fractional cases and also converges slowly
to its final value, which explains why these cases have lower
ISI. However, the convergence of the control error is slower
for the fractional cases, which explains why they also have the
higher ISE. Thus, there is a trade-off between the magnitudes
of the ISI and ISE values, which must be analyzed before
making a decision about what values to choose for the orders
of the adaptive laws.

Fig. 1. Control error e (t) (above) and control signal u (t) (below)
for representative values of the orders in the adaptive laws, when the
reference signal is a unit step.

How to choose the right orders in the adaptive laws is
a question that always arises. The answer to this question,
however, is not absolute, since it will depend on many factors.
It can be seen in the very simple simulation example given
here, where the same order was used for the four components
of the adaptive laws, that different behaviors will be obtained
depending on the selection.

For that reason, the first question we must answer is: how
important is the ISI index with respect to the ISE index for our
problem? As the reader may note, the answer to this question
will strongly depend on the specific application. For example,
for processes that are high energy consuming, a reduction of a
2 % of the ISI could lead to million dollars savings in energy,
and having probably a bit slower convergence speed of the
control error.

Once this question is answered, it is still hard to choose
the orders of the adaptive laws. Having in mind that there
exists a trade-off between the ISI and the ISE, an optimization
procedure appears to be the right option to decide.

In order to see how an optimization procedure can help
to choose the orders α1, α2, α0, αk, we performed another
simulation study. In this case, an optimization procedure was
carried out using particle swarm optimization (PSO)[19], but
other techniques could be used at designer will. The objective
function used in this optimization process is presented in
(17). Certainly, it includes both, the ISE and the ISI indexes,

with their corresponding weighting factors to indicate how
important is each index in the minimization problem.

Jopt = w1 ISE + w2 ISI. (17)

For the optimization procedure we consider four cases. The
first one takes into account only the ISE. The second, third
and fourth take into account both, the ISE and the ISI, using
different weighting factors w1, w2, as follows:

Case 1 : w1 = 1 and w2 = 0,
Case 2 : w1 = 0.5 and w2 = 0.5,
Case 3 : w1 = 0.8 and w2 = 0.2,
Case 4 : w1 = 0.2 and w2 = 0.8,

(18)

The optimization process delivers the best values of orders
α1, α2, α0 and αk minimizing the objective function Jopt (17),
using the weighting factors (18). The Matlab PSO toolbox[20]

was used, with the most representative PSO parameters spec-
ified as:

1) Swarm size: 100
2) Number of iterations: 1 000
3) Initial inertia weight: 0.9
4) Final inertia weight: 0.4
The selection of these PSO parameters was made based on

the works by [21–23]. The remaining PSO parameters were
chosen at their default values.

For every case specified in (18), the optimization process
was carried out ten times, obtaining ten sets of values for
parameters α1, α2, α0 and αk. In order to select one set of
parameters, a criterion function J was calculated for each case,
as it is specified in (19)

J = w1 ISEnorm + w2 ISInorm, (19)

where ISEnorm and ISInorm are the normalized values of
ISE and ISI respectively. These normalized values were
calculated as

ISEnorm =
ISE − ISEmin

ISEmax − ISEmin
, (20)

and
ISInorm =

ISI − ISImin

ISImax − ISImin
, (21)

where ISEmax, ISEmin, ISImax and ISImin are the maxi-
mum and minimum values of ISE and ISI , respectively, for
the ten simulations.

The values of ISI and ISE were normalized because
their absolute values were of very different magnitudes (see
Table II), where the resulting orders are specified. Thus,
normalization allows the resulting ISInorm and ISEnorm to
lie in the same interval [0, 1], and then weighting them with
weighting factors that are also in the interval [0, 1] is much
more fair.

Analyzing the optimal set of parameters for the four cases,
some conclusions can be drawn. It can be seen that the
resulting optimal orders for Case 1 were all 1, that is, in
this case the IOMRAC is the best solution. This means that
when the control energy spent in the scheme is not taken into
account, then the classic MRAC gives the best results.
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However, for Case 2, Case 3 and Case 4, the resulting
optimal orders are fractional. This means that, at least for
this particular case analyzed, the recommended adaptive laws
should not be the classic, if it is taken into account not only
the behavior of the control error but also the energy used in
the control. This empirical conclusion opens a lot of questions
about MRAC, being a topic that deserves more research, from
which interesting and useful results could be derived.

B. Numerical Results for the Marginally Stable Plant

As it was done in the case of the unstable plant, optimization
process was carried out for the case of the marginally stable
plant as well. All the details of the procedure used with the
unstable plant were preserved, changing only the plant to
be controlled. As a result of the optimization process, the
fractional orders detailed in Table III were obtained. The
values of the criterion function J for these cases are also
specified in Table III.

If we look at Table III, it can be noted that the resulting
optimal orders for Case 1 were all 1. This is the same that
happened for the unstable plant, that is, in this case the
IOMRAC is the best solution. As we mentioned before, this
means that when the control energy spent in the scheme is
not taken into account, then the classic MRAC gives the best
results.

As it was observed for the unstable plant, in this case it can
be seen from Table III that for Case 2, Case 3 and Case 4, the
resulting optimal orders are fractional or combinations of frac-
tional and integer orders. Thus, when the energy used in the
control scheme is taken into account, then the recommended
adaptive laws should not be the integer order but fractional.

C. Numerical Results for the Stable Plant

Finally, optimization process was carried out for the case
of the stable plant. Again in this case, all the details of
the procedure used with the unstable plant were preserved,
changing only the plant to be controlled. As a result of the
optimization process, the fractional orders and the values of
J obtained are detailed in Table IV.

As can be seen from Table IV, the main difference arising
in the case of the stable plant is that the resulting optimal
orders for Case 1 are not all 1, like in the case of unstable
and marginally stable plant, but all fractional. The resulting
optimal orders for Case 2, Case 3 and Case 4, are all fractional
or combinations of fractional and integer orders, same as in
the case of the two previously studied plants. Thus, although
for the stable plant the optimal scheme for Case 1 is not the
IOMRAC, the fractional orders do remain as the best options
when the control energy spent in the scheme is taken into
account.

Remark 1. Although the work presented here is prelimi-
nary, we must point out an important issue. Beside the orders
of the adaptive laws (α1, α2, α0 and αk), MRAC schemes have
some other design parameters such as adaptive gains γ and
initial conditions of the controller parameters. In this study, we
used specific values for all these design parameters, and only
the orders of the adaptive laws were varied. For that reason,
a more complete study should include all these parameters in
the decision making, being this a topic that is currently under
investigation.

V. CONCLUSIONS

In this paper, an empirical analysis of the control energy

TABLE II
RESULTING FRACTIONAL ORDERS FROM THE OPTIMIZATION PROCESS FOR THE UNSTABLE PLANT

α1 α2 α0 αk ISI ISE J

Case 1 1 1 1 1 6 071.7 1.0781 0

Case 2 0.01 0.01 0.397 0.6331 5 451 7.7834 0.3881

Case 3 0.8058 0.1657 0.01 0.7619 5 911.7 1.9744 0.1947

Case 4 0.01 0.8818 0.01 0.01 1 471 131.0084 0.1544

TABLE III
RESULTING FRACTIONAL ORDERS FROM THE OPTIMIZATION PROCESS FOR THE MARGINALLY STABLE PLANT

α1 α2 α0 αk ISI ISE J

Case 1 1 1 1 1 4.4786 0.7313 0

Case 2 0.7953 1 0.409 1 4.4558 1.0097 0.0174

Case 3 0.6224 0.1333 0.8913 1 4.4693 0.8601 0.0011

Case 4 1 0.4239 1 0.6472 4.4556 1.2604 0.0171

TABLE IV
RESULTING FRACTIONAL ORDERS FROM THE OPTIMIZATION PROCESS FOR THE STABLE PLANT

α1 α2 α0 αk ISI ISE J

Case 1 0.6585 0.2147 0.7345 0.01 2.0052× 105 0.2402 0.2402

Case 2 1 0.6722 0.9677 0.4263 1.9968× 105 0.2718 0

Case 3 1 1 0.3875 0.1408 1.9969× 105 0.2588 0.2

Case 4 1 1 0.4185 1 1.9968× 105 0.2833 0
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used in MRAC schemes has been presented, using orders for
the adaptive laws in the interval (0, 1]. The analysis was made
through simulation studies, including optimization procedures
using PSO to select the orders of the adaptive laws. The
behavior of the control energy spent by the system was
analyzed through the integral of the squared control input ISI.
The integral of the squared control error ISE was also included
in the optimization process.

Simulation studies together with the optimization proce-
dures were carried out for three different types of plants,
and they have shown that, when the ISI is included in the
objective function of the optimization to determine the orders
of the adaptive laws, the resulting orders are fractional or
combinations of fractional and integer orders. This is a very
interesting result, since it suggests that the use of fractional
adaptive laws could play an important role in the control
energy management in MRAC schemes, which is an extremely
important issue in today industry.

Since the results presented here are preliminary, research
should be conducted to include other design parameters of the
MRAC schemes into the optimization procedures.
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