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Constrained Swarm Stabilization of Fractional
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Mojtaba Naderi Soorki and Mohammad Saleh Tavazoei, Member, IEEE

Abstract—This paper deals with asymptotic swarm stabiliza-
tion of fractional order linear time invariant swarm systems in
the presence of two constraints: the input saturation constraint
and the restriction on distance of the agents from final destination
which should be less than a desired value. A feedback control law
is proposed for asymptotic swarm stabilization of fractional order
swarm systems which guarantees satisfying the above-mentioned
constraints. Numerical simulation results are given to confirm
the efficiency of the proposed control method.

Index Terms— Fractional order system, swarm system, swarm
stability, input saturation, constraint stabilization.

I. INTRODUCTION

COORDINATION of multi-agent swarm systems has at-
tracted great interest in recent years. Coordinated move-

ment of fish and formation of birds are two examples of
coordination of multi-agent swarm systems in nature. Also,
it is known that the swarm behavior of networks of agents
has potential applications in various areas (for example in
formation control[1−2], flocking[3] and sensor networks[4]).
Asymptotic swarm stability, as a general form of consensus,
is one of the interesting behaviors in swarm systems. Till now,
different studies have been done in this regard[5−9]. The dy-
namic model of agents in most of these studies has been con-
sidered in a classical integer order form, whereas the dynamic
model of many real-world systems can be better described by
fractional order dynamical equations[10−11]. Considering this
point, study on fractional order swarm systems has attracted
much interest in recent years[12−20]. For example, these studies
include obtaining conditions for coordination in the networked
fractional order systems[12], time response behavior analysis of
agents in asymptotically swarm stable fractional order swarm
systems[16], controller design for enforcing the agents in uncer-
tain fractional order systems to track a desired trajectory while
achieving consensus[18], and deriving consensus conditions in
the presence of communication time-delays[14,19−20].

In practice, we are faced with different constraints in
coordination of multi-agent swarm systems (for example, mea-
surement constraints[21], dealing with agents having nonlinear
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dynamics[22], communication constraints[23], uncertainty in the
dynamical models of the agents[24], and time-varying commu-
nication links[25]). One of the major challenges in the swarm
systems is to control the agents when they are exposed to input
saturation constraint[26−29]. In real-world swarm systems, this
constraint is commonly due to physical limitations of the
actuators. In this paper, the aim is asymptotic swarm stabi-
lization of fractional order linear time invariant swarm systems
subject to input constraints. To clarify the motivation of the
paper, let us give an example. Consider a multi-robot system
composed of a large number of cooperative mobile robots[18].
Assume that the aim of coordination is consensus in such
a system[30−31]. In some situations, it is more accurate and
realistic to model these robots with fractional order differential
equations[32−33] (for example, when the friction is modeled by
the fractional order equations[34−35], or when the robots are
driven on the sandy or muddy road[12]). In these situations, we
face a multi-agent system with a fractional order swarm model.
Also due to the physical constraints, in these cases the input
torque that should be applied to the wheels of the robot for
changing the velocity or the orientation is limited. Generally
speaking, in the mentioned example the control objective is
to achieve consensus in a multi-robot system as a fractional
order swarm system where the control inputs are subjected to
input constraints. This example clearly verifies the importance
of controller design in the presence of control input constraints
for achieving consensus in a fractional order swarm system.

Considering input saturation constraints, consensus in net-
worked multi-agent systems has been studied in [26−29]. But,
the dynamics of each agent in these papers is in classical
integer order form. Recently, [36] has considered input sat-
uration in stability and stabilization of fractional order linear
systems. In the present paper, the results of[36] are used for
proposing a control law for asymptotic swarm stabilization
of fractional order swarm systems in the presence of input
saturation constraints. Another constraint is also considered
in this paper. More precisely, the other constraint is an
assumption that during achieving consensus, all the agents
will be inside a specified region and the distance of agents
from the final destination is less than a desired value. To
reveal the motivation for considering such a constraint in
this paper, we again recall the above-mentioned example on
consensus in a multi-robot system. In this swarm system,
due to the communication and environmental limitations, it
may be desirable that the distance between the robots and
their final distention is less than a specified value during the
reaching consensus. This control objective can be satisfied by
considering the second constraint in the controller design
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procedure. In summary, the main contribution of the paper
is to propose a feedback controller for asymptotic swarm
stabilization of fractional order linear time invariant swarm
systems in the presence of the aforementioned constraints.

This paper is organized as follows: The problem formulation
and some preliminaries are given in Section II. Section III
presents some properties on linear transformations appeared
in our study. The control law for the asymptotic swarm
stabilization of fractional order swarm systems with input
constraint is obtained in Section IV. Simulation results in
Section V are given to confirm the analytical results. Finally,
conclusions in Section VI close the paper.

II. PRELIMINARIES

A. Notations

The notations used in this paper are fairly standard. R+

denotes the set of positive real numbers. sgn(·) and sat(·) re-
spectively indicate the sign and saturation functions. sym{X},
where X is a real square matrix, denotes the symmetric matrix
XT+X . diag {c1, c2, . . . , cn} specifies a diagonal matrix with
diagonal entries c1, c2, . . . , and cn. If z ∈ C, arg(z) denotes
the argument of z. Also, Im and ⊗ respectively indicate the
m × m identity matrix and the kronecker product operator.
eig(A) denotes eigenvalue of the square matrix A. Nu(M)
and Ra(M) are respectively the null space and the range
space of matrix M . ‖ · ‖ and ‖ · ‖∞ specify respectively
2-norm and infinity-norm functions. The distance between
vector e = [e1, e2, . . . , en] ∈ Rn and the non-empty set S is
defined by D(e, S) := infs∈S ||e−s||. Moreover, A(i) denotes
the i-th row of matrix A ∈ Rm×n. Finally for the vectors
A1, A2, A3 ∈ Rn, the vector inequality A1 ≤ A2 ≤ A3 means
A1(i) ≤ A2(i) ≤ A3(i) , i = 1, . . . n.

B. Fractional Order Linear Time Invariant Swarm Systems

A fractional order linear time invariant swarm system of N
agents can be described by[16]

Dα
t xi = Axi + F

N∑

j=1

wij(xj − xi) + Bui,

i = 1, 2, . . . , N. (1)

where A ∈ Rd×d, F ∈ Rd×d, B ∈ Rd×m, xi ∈
Rd, ui ∈ Rm, wij ≥ 0, and α ∈ (0, 1]. Also, in (1) Dα

t

denotes the Caputo fractional derivative operator defined as
follows[37].

Dα
t f(t) =

1
Γ(dαe − α)

∫ T

0

f (dαe)(τ)
(t− τ)α−dαe+1

dτ ,

0 < α /∈ Z. (2)

In this swarm system, the communication among agents is
described by a weighted graph of order N , denoted by G, such
that each agent is corresponding to a vertex of G. This graph
may either be directed or undirected. wij in (1) indicates the
weight of the edge between i-th and j-th agents and can be

considered as a measure of data transmission between these
two agents[38]. The adjacency matrix of graph G is as follows:

WG =




w11 . . . w1N

...
. . .

...
wN1 · · · wNN




The concept of asymptotic swarm stability in a swarm system
is defined on the basis of the relative distances between the
agents[38].

Definition 1 (Asymptotic swarm stability)[38]. The frac-
tional order linear time invariant swarm system in (1) is
asymptotically swarm stable if for each ε̄ > 0 there exists T̄ >
0 such that ‖xi(t)− xj(t)‖ < ε̄ for all i, j ∈ {1, 2, . . . , N}
and t > T̄ .

Considering the pseudo state vector of agents as x =
[xT

1 , . . . , xT
N ]T, the swarm system in (1) can be rewritten as[38]

Dα
t x = (IN ⊗A− L⊗ F )x + (IN ⊗B)U, (3)

where U = [uT
1 , . . . , uT

N ]T is the input vector and L = L(G)
is the Laplacian matrix of graph G[39]. In this paper, the
following assumption is considered on communication graph
G.

Assumption 1. Graph G in swarm system (1) is in one of
the following forms:

1) G is an undirected connected graph.
2) G is a directed graph which includes a spanning tree and

the eigenvalues of its Laplacian matrix are real numbers.
Let λ1 = 0, λ2, . . . , λN ∈ R+ be the eigenvalues

of the Laplacian matrix L of fractional order linear time
invariant swarm system in (1) (Considering Assumption 1, the
Laplacian matrix L has exactly one zero eigenvalue and its
other eigenvalues are positive real[5]). Also, assume that the
Jordan canonical form of L is denoted by J . This means that
there exists a non-singular matrix T such that

J = TLT−1 =




0 0 0 · · · 0
0 λ2 ∗ · · · 0
...

...
...

. . .
...

0 0 . . . . . . ∗
0 0 · · · 0 λN




,

where “*” may either be 1 or 0. By defining
x̃ = [x̃T

1 , x̃T
2 , . . . , x̃T

N ]T = (T ⊗ Id)x and Ũ =
[ũT

1 , ũT
2 , . . . , ũT

N ]T = (T ⊗ Im)U , the swarm system in (3) is
rewritten as

Dα
t x̃ = (IN ⊗A− J ⊗ F )x̃ + (IN ⊗B)Ũ , (4)

where matrix IN ⊗A− J ⊗ F is of the form

IN ⊗A− J ⊗ F

=




A 0 0 · · · 0
0 A− λ2F × · · · 0

0
...

...
. . .

...
... 0 · · · · · · ×
0 0 · · · 0 A− λNF



∈ RNd×Nd,

(5)
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and each “×” represents a block in Rd×d that may either be
−F or 0[16, 38]. Also, matrix IN ⊗ B in (4) is expressed as
follows.

IN ⊗B =




B 0 0 · · · 0
0 B 0 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 0
0 0 · · · 0 B



∈ RNd×Nm. (6)

The following lemma presents the necessary and sufficient
conditions for asymptotic swarm stability of the fractional
order swarm system (1) by checking the asymptotic stability
of a fractional order linear time invariant system.

Lemma 1[38]. The fractional order linear time invariant
swarm system (1) with Assumption 1 is asymptotically swarm
stable if and only if the following system

Dα
t x̂ = Âx̂ + B̂Û , (7)

is asymptotically stable where x̂ = [x̃T
2 , x̃T

3 , . . . , x̃T
N ]T ∈

R(N−1)d, Û = [ũT
2 , ũT

3 , . . . , ũT
N ]T ∈ R(N−1)m and matrices

Â and B̂ are defined as follows:

Â =




A− λ2F × 0 · · · 0
0 A− λ3F × · · · 0

0
...

...
. . .

...
... 0 · · · · · · ×
0 0 · · · 0 A− λNF




∈ R(N−1)d×(N−1)d (8)

B̂ =




B 0 0 · · · 0
0 B 0 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 0
0 0 · · · 0 B




∈ R(N−1)d×(N−1)m

Although Lemma 1 has been presented in [38] for integer order
case (i.e. where α = 1), its proof can be easily extended to
the fractional order case[16]. On the other hand, system (7) is
asymptotically stable (or equivalently the swarm system (1)
with Assumption 1 is asymptotically swarm stable) if and
only if the condition |arg(λ)| > απ/2 is satisfied for each
eigenvalue λ of matrix Â[40]. In such a case, matrix Â is
called an α-Hurwitz matrix

C. Problem Statement

In this paper, the aim is asymptotic swarm stabilization of
fractional order linear time invariant swarm system (1) under
the following constraints:

Constraint 1. The control inputs ui, i = 1, 2, . . . , N, in (1)
should be bounded as

∣∣ui(l)

∣∣ ≤ ūi(l), i = 1, 2, . . . , N, l =
1, 2, . . .m, where ūi(l) ∈ R+ denotes the allowable upper
bound for the l-th control input of i-th agent.

Constraint 2. The distance between x(t) =
[xT

1 (t), . . . , xT
N (t)]T ∈ RNd and the set {x ∈ RNd|x =

[xT
1 , . . . , xT

N ]T, x1 = x2 = · · · = xN , xi ∈ Rd (i =

1, . . . , N)} in the Nd-dimensional space should be less than
µ ∈ R+ for each t ≥ 0.

Constraint 1 specifies the input saturation constraints in the
fractional order swarm system (1). Actually, this constraint
will bound the input signals in (1) similar to the virtual
saturation function sat(ui) : Rm → Rm where

sat(ui) = [sat(ui(1)), sat(ui(2)), . . . , sat(ui(m))]T (9)

and sat(ui(l)), i = 1, 2, . . . , N, l = 1, 2, . . . , m is defined as
follows[36].

sat(ui(l)) = sgn(ui(l))min(ūi(l),
∣∣ui(l)

∣∣). (10)

Also, Constraint 2 states that during reaching consensus
the pseudo state vector of agents (x(t)) should be inside a
specified region. Note that the line x1 = x2 = · · · = xN

expresses a situation in which the pseudo states of all agents
are the same. This situation can be interpreted as the “final
destination” in the problem of swarm stabilization. In fact,
Constraint 2 enforces that during reaching consensus, the
distance between agents and this final destination is less than
a desired value specified by µ.

III. SOME PROPERTIES OF x → (QT ⊗ Id)x
According to the definitions of pseudo-state variables x =

[xT
1 , . . . , xT

N ]T ∈ RNd, x̃ = [x̃T
1 , x̃T

2 , . . . , x̃T
N ]T = (T ⊗ Id)x,

and x̂ = [x̃T
2 , x̃T

3 , . . . , x̃T
N ]T ∈ R(N−1)d in the previous

section, one can easily obtain the vector x̂

x̂ = (Q⊗ Id)(T ⊗ Id)x = (QT ⊗ Id)x, (11)

where

Q =




0 1 0 · · · 0
... 0

...
. . .

...

0
...

... · · · 0
0 0 · · · 0 1




(N−1)×N.

(12)

In this section, the linear transformation x ∈ RNd → x̂ =
(QT ⊗ Id)x ∈ R(N−1)d is studied from the viewpoint of
geometric properties. We will use these geometric properties
to solve the main problem in the next section. At first, consider
the following lemma.

Lemma 2. By the linear transformation x → x̂ = Px,
where P = QT ⊗ Id, T is the transition matrix introduced
in Section II-B and Q is defined as in (12), the closed ball
βε := {x̂ ∈ R(N−1)d|x̂Tx̂ ≤ ε} transforms to the region
β′ε := {x ∈ RNd|xTzx ≤ ε} with z = PTP .

Proof. By substituting x̂ from (11) in the definition of the
closed ball βε, the region β′ε is easily obtained. ¤

It is clear that the center of the closed ball βε in Lemma 2 is
the origin. According to Lemma 2, the set {x ∈ RNd|xTzx =
0} specifies all the vectors which are transformed by the
aforementioned transformation to the origin. The geometric
interpretation of this set is revealed in Lemma 3.

Lemma 3. If P = QT ⊗ Id, z = PTP , and matrices T
and Q are as in Lemma 2, then {x ∈ RNd|x1 = x2 = · · · =
xN} = {x ∈ RNd|xTzx = 0}.

Proof. To prove this lemma, we show that the set {x ∈
RNd|x1 = x2 = · · · = xN} is the only solution of the
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equation xTzx = 0. The equation xTzx = 0 can be written
as

xTzx = xTPTPx = ‖Px‖2 = 0, (13)

which is equivalent to

Px = (QT ⊗ Id)x = 0. (14)

For simplicity, assume that d = 1 which results in Id = 1 (The
proof can be easily extended for d > 1). Assuming Id = 1
and using(12), (14) can be written as

QTx =




t2,1 · · · t2,N

...
. . .

...
tN,1 · · · tN,N







x1

x2

...
xN


 = 0, (15)

where ti,k (i = 2, 3, . . . , N, k = 1, 2, . . . , N) denotes the
elements of similarity matrix T . On the other hand,

T




t̂11
t̂11
...

t̂11


 =




1
0
...
0


 , (16)

where [t̂11, . . . , t̂11]T is the first column of matrix T−1[16, 18].
Equation (16) means that the sum of all entries in each
row (except the first row) of matrix T is zero, i.e.∑N

k=1 ti,k = 0, i = 2, 3, . . . , N . As a result, according to
(15), it is easy to conclude that each member of the set
{x ∈ RNd|x1 = x2 = · · · = xN} is a solution for equation
(13). Also, according to the independent linearity of the rows
of the matrix T , the rank of matrix QT in (15) is N − 1. So,
the set {x ∈ RNd|x1 = x2 = · · · = xN} specifies all of the
solutions of equation (13). ¤

To express a geometric property for the region β′ε introduced
in Lemma 2, some preliminary lemmas are needed. These
lemmas (Lemmas 4-6) are as follows.

Lemma 4[41]. Let Ḡ ∈ Rn×n and H̄ ∈ Rm×m be
two arbitrary matrices and have singular values (eigenvalues)
σi, i = 1, 2, . . . , n and µj , j = 1, 2, . . . , m respectively. Then,
the mn singular values (eigenvalues) of matrix Ḡ⊗ H̄ are as
follows.

σ1µ1, . . . , σ1µm, σ2µ1, . . . , σ2µm, . . . , σnµ1, . . . , σnµm.
(17)

Lemma 5. If S := S′ ⊗ Id, where matrix S′ is defined as

S′ =




N − 1 −1 · · · −1

−1 N − 1
. . .

...
...

... · · · −1
−1 · · · −1 N − 1



∈ RN×N , (18)

then

‖S‖ = N. (19)

Proof. It can be verified that the characteristic polynomial
of matrix S′ is

det(λI − S′) = λ(λ−N)N−1. (20)

From (20), S′ has one zero eigenvalue, and the other eigen-
values of this matrix are equal to N . Therefore, the maximum
singular value of real symmetric matrix S′ or equivalently its
2-norm is N . ¤

Lemma 6. Let ρmin denote the minimum singular value
of matrix QT where T is the transition matrix introduced in
Section II-B and Q is defined by (12). In this case,

‖Sx‖ ≤ N

ρmin
‖Px‖ , ∀x ∈ RNd, (21)

where matrices P and S are respectively defined in Lemmas
2 and 5.

Proof. In the proof of Lemma 3, it is verified that Nu(P ) =
{x ∈ RNd|x1 = x2 = · · · = xN}. On the other hand,
by considering the structure of matrix S′ in (18) and noting
S = S′ ⊗ Id it is deduced that Nu(S) = {x ∈ RNd|x1 =
x2 = · · · = xN}. Therefore, subspaces Nu(S) and Nu(P )
are identical, and consequently, the orthogonal complements of
these subspaces (i.e., Ra(ST) and Ra(PT)) are also identical.
Now, by the range-null space decomposition of RNd[42], each
x ∈ RNd can be uniquely written as x = xNu + xRa where
xNu ∈ Nu(S) = Nu(P ) = {x ∈ RNd|x1 = x2 = · · · =
xN} and xRa ∈ Ra(ST) = Ra(PT). Since SxNu = 0, for
each x ∈ RNd decomposed in the form x = xNu + xRa we
have

‖Sx‖ = ‖SxRa‖ . (22)

Let us define the new matrix P̂ as follows:

P̂ = (QTQT )⊗ Id. (23)

Considering the structures of matrices Q and QT from (12)
and (15), it is deduced that matrix QTQT is in the form

QTQT =




0 · · · 0
t2,1 · · · t2,N

...
. . .

...
tN,1 · · · tN,N


 . (24)

As discussed in the proof of Lemma 3, we know that∑N
k=1 ti,k = 0, i = 2, 3, . . . , N . According to this equality,

nonsingularity of matrix T, and structure of matrix QTQT in
(24), it is found that P̂ xNu = 0 if and only if xNu ∈ {x ∈
RNd|x1 = x2 = · · · = xN}. Hence, Nu(P̂ ) = Nu(S) =
Nu(P ), Ra(P̂ ) = Ra(S) = Ra(P ), and for each x ∈ RNd

decomposed as x = xNu + xRa, we have
∥∥∥P̂ x

∥∥∥ =
∥∥∥P̂ xRa

∥∥∥ . (25)

It can be easily verified that matrix Q in (12) has the
property QTQ =

(
QTQ

)2
. This property enforces that

xTPTPx = xTP̂TP̂ x, for each x ∈ RNd, and consequently
‖Px‖ =

∥∥∥P̂ x
∥∥∥. From this equality and (25),

‖Px‖ =
∥∥∥P̂ xRa

∥∥∥ . (26)

Since T is an invertible matrix, the rank of matrix QTQT
equals N − 1. This means that matrix QTQT has one zero
singular value (namely ρ1 = 0 ) and N − 1 nonzero singular
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values denoted by ρ2, ρ3, . . . , ρN . Hence, according to Lemma
4 the singular values of matrix P̂ are

0, . . . , 0︸ ︷︷ ︸
d times

, ρ2, . . . , ρ2︸ ︷︷ ︸
d times

, ρ3, . . . , ρ3︸ ︷︷ ︸
d times

, . . . , ρN , . . . , ρN︸ ︷︷ ︸
d times

. (27)

Now, consider the following two matrix inequalities

‖SxRa‖ ≤ ‖S‖ ‖xRa‖ , (28)

and

ρmin ‖xRa‖ ≤
∥∥∥P̂ xRa

∥∥∥ , (29)

for each xRa ∈ Ra(P̂ ) = Ra(S) = Ra(P ), where ρmin

indicates the minimum nonzero singular value of matrix P̂ .
From (15) and (24), it is found that the only difference between
matrices QTQT and QT is an extra zero row. Hence, these
two matrices have the same nonzero singular values (i.e.
ρ2, ρ3, . . . , ρN ). This means that ρmin is the minimum singular
value of matrix QT . According to (28) and (29), it is obtained
that

‖SxRa‖ ≤ ‖S‖

∥∥∥P̂ xRa

∥∥∥
ρmin

. (30)

By substituting ‖SxRa‖ and
∥∥∥P̂ xRa

∥∥∥ respectively from (22)
and (26) in (30), and noting that ‖S‖ = N (Lemma 5),
inequality (21) is deduced. ¤

Finally, a geometric property for the region β′ε is revealed in
the following lemma. Actually this lemma helps us to satisfy
Constraint 2 in the controller design procedure of the next
section.

Lemma 7. Define the set in Lemma 3 as M̄ := {x ∈
RNd|x1 = x2 = · · · = xN}. Also, assume that the positive
constant ε satisfies the condition

ε ≤ µ2ρ2
min, (31)

where µ ∈ R+, ρmin is the minimum singular value of
matrix QT , T is the transition matrix introduced in Section
II. B and Q is defined by (12). In this case D(x, M̄) ≤ µ,
∀x ∈ β′ε = {x ∈ RNd|xTzx ≤ ε}.

Proof. Consider m̄ = [m̂, m̂, . . . , m̂]T ∈ RNd as a member
of the set M̄ . Then for each x ∈ β′ε, D(x, M̄) is defined as

D(x, M̄) = inf
m̄∈M̄

‖x− m̄‖

= inf
m̂∈Rd

√
‖x1 − m̂‖2 + ‖x2 − m̂‖2 + · · ·+ ‖xN − m̂‖2

(32)

By setting the gradient of ‖x1 − m̂‖2 + ‖x2 − m̂‖2 + . . . +
‖xN − m̂‖2 with respect to m̂ equal to zero, it is found that
the minimum of this function occurs at m̂ = m̂∗ where

m̂∗ =
1
N

N∑

i=1

xi. (33)

Hence, the distance of x from M̄ is equal to ‖x− m̄∗‖ where
m̄∗ = [m̂∗, m̂∗, . . . , m̂∗]T. Consequently, (34) is concluded.

According to the definition of matrix S in Lemma 5, (34)
can be written as

D(x, M̄) =
‖Sx‖
N

. (35)

As we know, the set β′ε = {x ∈ RNd|xTzx ≤ ε} indicates all
the points placed inside the surface xTzx = ε. According to
the definition of z, i.e. z = PTP , we have

‖Px‖2 ≤ ε, (36)

for each x in the set β′ε = {x ∈ RNd|xTzx ≤ ε}. Inequalities
(31) and (36) result in

‖Px‖ ≤ µρmin. (37)

Finally, (21) and (37) yield in the following inequality for the
distance indicated by (35).

D(x, M̄) =
‖Sx‖
N

≤ µ (38)

¤

IV. DESIGN OF THE STABILIZING CONTROLLER

In this section, the aim is to design a controller for the
swarm system (1) such that asymptotic swarm stability is
guaranteed and the Constraints 1 and 2 are simultaneously
met. To this end, at first in Section IV-A two useful theorems
from [36] have been restated. Then, the control law is proposed
in Section IV-B.

A. Two Useful Theorems

At first, let us restate a theorem related to the asymptotic
stability of fractional order linear time invariant systems sub-
ject to input saturation.

Theorem 1[36]. Consider the following fractional order
linear time invariant system

Dα
t x(t) = Āx(t) + B̄sat(u(t)), x(0) = x0, (39)

where 0 < α < 1, x(t) ∈ Rn , u(t) ∈ Rm, Ā ∈ Rn×n
, B̄ ∈

Rn×m and the saturation function sat(u(t)) : Rm → Rm is
of the form

sat(u(t)) = [sat(u(t)(1)), sat(u(t)(2)), . . . , sat(u(t)(m))]T,
(40)

where sat(u(t)(l)), l = 1, 2, . . . , m is defined as follows.

sat(u(t)(l)) = sgn(u(t)(l))min(ū(t)(l),
∣∣u(t)(l)

∣∣). (41)

D(x, M̄) =

√
‖(N − 1)x1 − x2 − · · · − xN‖2 + · · ·+ ‖(N − 1)xN − x1 − · · · − xN−1‖2

N
. (34)
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Also, assume that u(t) = Kx(t), where K ∈ Rm×n.
If there exists a diagonal matrix γ = diag{γ1, γ2, . . . , γm}
such that 0 < γi ≤ 1 for all i = 1, . . . , m and∣∣arg(eig(Ā + B̄γK))

∣∣ > απ/2, then there exists a sufficiently
small closed ball, denoted by βδ := {x ∈ Rn| ‖x‖ ≤ δ},
such that system (39) is asymptotically stable for any x0 ∈
βδ ⊂ S(γK, u0), where uo = [uo(1), uo(1), . . . , uo(m)]

T,
uo(i) ∈ R+ denotes the saturation level for the i-th input
(i = 1, . . . , m), and S(γK, u0) is defined by

S(γK, u0) = {x(t) ∈ Rn| − u0 ≤ γKx(t) ≤ u0}. (42)

As mentioned in [36], asymptotic stability of (39) means that
for every ε > 0, there exists δ > 0 such that for every initial
condition x0 ∈ βδ = {x0 ∈ Rn| ‖x0‖ ≤ δ} the solution
x(t, x0) remains in the closed ball βε := {x ∈ Rn| ‖x‖ ≤ ε}.
In [36], it has been shown that the region βε, can be used to
estimate S(γK, u0) in (42). Also, the following theorem has
been proved which presents a procedure to determine the state
feedback control gain K.

Theorem 2[36]. Consider system (39) with the state feed-
back controller u(t) = Kx(t), K ∈ Rm×n. If there ex-
ists matrix X ∈ Rm×n, symmetric positive definite matrix
H ∈ Rn×n, diagonal matrix γ = diag{γ1, γ2, . . . , γm}
(0 < γi ≤ 1 for all i = 1, . . . , m), and positive constant ε
such that

2∑

i=1

sym{Θi1 ⊗ (ĀH + B̄X)} < 0, (43)

2∑

i=1

sym{Θi1 ⊗ (ĀH + B̄γX)} < 0, (44)

[
2H − εI γiX

T
(i)

γiX(i) u2
0(i)

]
≥ 0, (45)

where

Θ11 = ΘT
21 =

[
sin(απ

2 ) − cos(απ
2 )

cos(απ
2 ) sin(απ

2 )

]
, (46)

then the fractional order system (39) is asymptotically sta-
bilizable for any x0 ∈ βδ by using the state feedback
controller u(t) = Kx(t) with the state feedback control gain
K = XH−1. Also, the trajectory x(t, x0) is placed in the
closed ball βε = {x ∈ Rn| ‖x‖ ≤ ε}.

B. Constraint Swarm Stabilization

In this subsection, a controller for swarm stabilization
of fractional order linear time invariant swarm systems is
proposed which simultaneously satisfies Constraints 1 and 2.
Before presenting this control law, consider the following as-
sumption that is necessary for designing the swarm stabilizing
controller in this subsection. It is assumed that the swarm
system (1) satisfies the following assumption.

Assumption 2. In the fractional order linear time invariant
swarm system (1), all the pairs of matrices (A− λiF, B) for
all i = 2, . . . , N are stabilizable, where λ2, . . . , λN ∈ R+

denote the nonzero eigenvalues of the Laplacian matrix L.

Now, the proposed swarm stabilizing controller is presented
in the following theorem which simultaneously satisfies Con-
straints 1 and 2.

Theorem 3. Consider the fractional order linear time in-
variant swarm system (1) which satisfies Assumptions 1 and
2. Also, assume that the positive constant ε satisfies condition
(31). Let U = [uT

1 , . . . , uT
N ]T be given by

U = (T−1QT ⊗ Im)sat(K̂(QT ⊗ Id)x), (47)

where the matrix K̂ = XH−1 ∈ R(N−1)m×(N−1)d is chosen
such that the following matrix inequalities

2∑

i=1

sym{Θi1 ⊗ (ÂH + B̂X)} < 0, (48)

and [
2H − εI XT

(i)

X(i) u2
0(i)

]
≥ 0, (49)

are satisfied for matrix X ∈ R(N−1)m×(N−1)d and sym-
metric positive definite matrix H ∈ R(N−1)d×(N−1)d, and
uo i(l) = ūi(l)/

∥∥T−1
∥∥
∞, i = 1, 2, . . . , N, l = 1, 2, . . . , m

where uo i(j) ∈ R+ denotes the saturation level for the
saturation function used in (47) and T is the transition matrix
introduced in Section II-B. In this case, there is a region
β′δ := {x0 ∈ RNd|xT

0 zx0 ≤ δ} ⊂ Ŝ(K̂, ū) (δ > 0) such that
the aforementioned swarm system is asymptotically swarm
stable for any x0 ∈ β′δ , where ū = [ū(1), ū(2), . . . , ū(N)]

T,
ū(i) = [ūi (1), ūi (2), . . . , ūi (m)]T (i = 1, 2, . . . N), and the
region Ŝ(K̂, ū) is defined by

Ŝ(K̂, ū) =

{x(t) ∈ RNd| − ū ≤ ∥∥T−1
∥∥
∞ K̂(QT ⊗ Id)x(t) ≤ ū}. (50)

Also, in such a case the Constraints 1 and 2 are simultaneously
satisfied for all x0 ∈ β′δ .

Proof. Consider the system

Dα
t x̂ = Âx̂ + B̂sat(Û), (51)

which is a fractional order linear time invariant system
subject to input saturation. Also, assume that matrices Â
and B̂ in system (51) are in the forms introduced in (8).
According to Theorem 1, if there exists diagonal matrix
γ = diag{γ1, γ2, . . . , γ(N−1)m} such that 0 < γi ≤ 1 for
all i = 1, . . . , (N − 1)m and

∣∣∣arg(eig(Â + B̂γK̂))
∣∣∣ > απ/2

for some K̂ ∈ R(N−1)d×(N−1)m, then by using Û = K̂x̂ the
system in (51) is asymptotically stable for any x̂0 ∈ βδ ⊂
S(γK̂, uo), where uo ∈ R(N−1)m denotes the saturation level
vector for the control input and S(γK̂, u0) is defined as

S(γK̂, u0) = {x̂(t) ∈ R(N−1)m| − u0 ≤ γK̂x̂(t) ≤ u0}.
(52)

Consider matrix γ as an identity matrix, i.e.
γ = I(N−1)m×(N−1)m. Hence, the condition∣∣∣arg(eig(Â + B̂γK̂))

∣∣∣ > απ/2 can be written as
∣∣∣arg(eig(Â + B̂K̂))

∣∣∣ > α
π

2
. (53)
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K̂ can be found for satisfying condition (53) if the pair
(Â, B̂) is stabilizable. According to the block diagonal form
of matrices Â and B̂ (See (8)), the stabilizability of the
pair (Â, B̂) is deduced from the stabilizability of the pair
matrices (A − λiF, B) for all i = 2, . . . , N . This means
that if Assumption 2 holds, K̂ can be found for satisfying
condition (53). On the other hand, based on Theorem 2 and
considering matrix γ as an identity matrix, Equations (48) and
(49) can be used to find K̂ in order to guarantee the asymptotic
stability of system (51). Asymptotic stability of this system
results in limt→∞ x̂(t) = 0, which is equivalent to asymptotic
swarm stability of system (1) provided that Assumption 1
holds (Lemma 1).

Now, we are faced with four problems that need to be
answered for completing the proof. First, obtaining the control
signal U ∈ RNm in the form (47) to guarantee asymptotic
stability of swarm system (1) according to the above-described
control signal Û = K̂x̂ ∈ R(N−1)m. Second, finding the
upper bound of input controls in (3) (i.e., ū) according to
the saturation level of the saturation function in (47) (i.e., uo)
in order to show that Constraint 1 is met by using control
signal (47). Third, obtaining the region Ŝ(K̂, ū) based on the
region S(γK̂, u0), and fourth, finding the positive constant ε
such that Constraint 2 is satisfied. The latter problem has been
answered in Lemma 7. According to this lemma, to achieve
the Constraint 2 the positive constant ε in the region β′ε should
satisfy (31).

The other issues will be answered in the following parts:
1) Finding the control signal U ∈ RNm: Note that U =

[uT
1 , . . . , uT

N ]T ∈ RNm, Ũ = [ũT
1 , ũT

2 , . . . , ũT
N ]T ∈ RNmand

Û = [ũT
2 , ũT

3 , . . . , ũT
N ]T ∈ R(N−1)m. According to the

relation Ũ = (T ⊗ Im)U , we have

U = (T−1 ⊗ Im)Ũ , (54)

where Ũ = [ũT
1 , ÛT]T. Assuming Û = K̂x̂ and considering

the saturation function on Û results in

U = (T−1 ⊗ Im)
[

ũ1

sat(K̂x̂)

]
. (55)

Matrix (T−1 ⊗ Im) is in the following form [16,18]

(T−1 ⊗ Im) =




t̂11Im · · ·
t̂11Im · · ·

...
. . .

t̂11Im · · ·


 . (56)

By substituting x̂ from (11) and (T−1⊗ Im) from (56) into
(55), it is Obtained that

U =




t̂11Im · · ·
t̂11Im · · ·

...
. . .

t̂11Id · · ·




[
ũ1

sat(K̂(QT ⊗ Id)x)

]

= (1N ⊗ (t̂11ũ1)) + (T−1QT ⊗ Im)sat(K̂(QT ⊗ Id)x),
(57)

where 1N = [1, 1, . . . , 1︸ ︷︷ ︸
N

]T ∈ RN×1 and ũ1 ∈ Rm is an

arbitrary input vector. By considering ũ1 as a zero vector, the
input control (47) is achieved which yields asymptotic swarm
stability in swarm system (1).

2) Finding the upper bound of control signal i.e. ū: By sub-
stituting Ũ with sat(Ũ) in (54) and defining M = [mi,j ] :=
(T−1 ⊗ Im) ∈ RNm×Nm, one can obtain (58).

For simplicity, we redefine U = [u∗1, u
∗
2, . . . , u

∗
Nm]T and

Ũ = [ũ∗1, ũ
∗
2, . . . , ũ

∗
Nm]T. Hence, (58) can be rewritten as (59).







u1,1

...
u1,m







u2,1

...
u2,m




...


uN,1

...
uN,m







=




m1,1 m1,2 · · · m1,Nm

m2,1 · · · · · · m2,Nm

...
...

. . .
...

mNm,1 mNm,2 · · · mNm,Nm










sat(ũ1,1)
...

sat(ũ1,m)







sat(ũ2,1)
...

sat(ũ2,m)




...


sat(uN,1)
...

sat(uN,m)







. (58)




u∗1
u∗2
...

u∗Nm


 =




m1,1 m1,2 · · · m1,Nm

m2,1 · · · · · · m2,Nm

...
...

. . .
...

mNm,1 mNm,2 · · · mNm,Nm







sat(ũ∗1)
sat(ũ∗2)

...
sat(ũ∗Nm)


 . (59)
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From (59),

u∗i =
Nm∑

j=1

mi,jsat(ũ∗j ), i = 1, 2, . . . , Nm. (60)

Hence, the upper bound of control input u∗i is obtained as
follows.

|u∗i | ≤ uo(i)

Nm∑

j=1

mi,j ≤ uo(i)

Nm∑

j=1

|mi,j |, i = 1, 2, . . . , Nm.

(61)

According to the definition of infinity matrix norm, we have

‖M‖∞ = max
i=1,2,...,Nm

Nm∑

j=1

|mi,j | . (62)

Finally, (61) and (62) result in

|u∗i | ≤ uo(i) ‖M‖∞ i = 1, 2, . . . , Nm. (63)

Now, from the properties of infinity matrix norm, the matrix
norm ‖M‖∞ in (63) can be written as

‖M‖∞ =
∥∥T−1 ⊗ Id

∥∥
∞ =

∥∥T−1
∥∥
∞ . (64)

Hence, (63) is written as

|u∗i | ≤ uo(i)

∥∥T−1
∥∥
∞ , i = 1, 2, . . . , Nm. (65)

Choosing uo(i) , i = 1, 2, . . . , Nm as

uo(i) =
ūi

‖T−1‖∞
(66)

results in the following saturation level as the upper bound for
the i-th control input of input vector U in (47).

|u∗i | ≤ ūi, i = 1, 2, . . . , Nm. (67)

Consequently, if ūi(l) =
∥∥T−1

∥∥
∞ uo i(l) ∈ R+, i =

1, 2, . . . , N , l = 1, 2, . . . , m Constraint 1 is satisfied by using
control signal (47).

3) Obtaining the region Ŝ(K̂, ū): According to (66),

uo =
ū

‖T−1‖∞
, (68)

where uo ∈ R(N−1)m and ū ∈ RNm. By substituting
(11) and (68) into (52) and considering the assumption γ =
I(N−1)m×(N−1)m, the region Ŝ(K̂, ū) in (48) is obtained. ¤

V. NUMERICAL SIMULATIONS

In this section, the results of the previous section are verified
by two numerical examples. Numerical simulations of this
section have been done by using the Adams-type predictor-
corrector method introduced in [43] for solving fractional order
differential equations.

Fig. 1. (a) Graph Ga in Example 1; (b) Graph Gb in Example 2.

Example 1. Consider the following fractional order linear
time invariant swarm system:

D0.8
t xi = Axi + F

5∑

j=1

wij(xj − xi) + Bui,

i = 1, . . . , 5, (69)

where

A =
[

1.6 −0.9
3 1.2

]
, F =

[
3.2 −3
4 5

]
, B =

[
1
0

]
.

(70)

Graph Ga expressing the communication among these agents
is shown in Fig. 1(a). Also, the adjacency matrix of this graph
is considered as

WGa
=




0 0.4 0 0 0.7
0 0 0.2 0 0

0.3 0 0 0 0
0 0 0.6 0 0
0 0 1.2 0.8 0




.

In this case, the eigenvalues of the Laplacian
matrix for the mentioned graph are λ(Ga) =
{0, 0.2776, 0.8856, 1.1811, 1.8557}. According to (8),
matrices Â and B̂ are in the following forms:

Â =




A− λ2F 0 0 · · · 0
0 A− λ3F 0 · · · 0

0
...

...
. . .

...
... 0 · · · · · · 0
0 0 · · · 0 A− λ5F



∈ R8×8

where

A− λ2F =
[

0.7118 −0.0673
1.8897 −0.187

]
,

A− λ3F =
[ −1.2341 1.7569
−0.5426 −3.2282

]
,

A− λ4F =
[ −2.1794 2.6432
−1.7243 −4.7053

]
,

A− λ5F =
[ −4.3383 4.6671
−4.4228 −8.0786

]
,

and

B̂ =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0




T

.

It is worth noting that matrix Â is not α-Hurwitz with α = 0.8.
In this example, the aim is asymptotic swarm stabilization
of the above-described swarm system in the presence of
Constraint 1 with saturation level ū = [2; 2; 2; 2; 2]T and
Constraint 2 with µ = 1.8. To achieve this aim, from Theorem
3 the control can be chosen as

U = (T−1QT ⊗ I1)sat(K̂(QT ⊗ I2)x), (71)
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where the matrices T and Q have the following forms:

T =




0.2988 0.5976 1.0956 0.1394 0.1046
0.1977 −1.0194 0.5420 0.1994 0.0803
−1.3072 0.7626 −0.9340 2.2997 −0.8211
2.1783 −0.8881 −0.5886 −2.5635 1.8620
0.3645 −0.0881 −0.9182 −1.1266 1.7683




,

Q =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




4×5

.

Considering
∥∥T−1

∥∥
∞ = 2.657, the saturation level is chosen

as u0 = 0.7527 (See (68)). Moreover since µ = 1.8 and
ρmin = 0.6819, one can choose ε = 1.5 to satisfy (31). Solving
the matrix inequalities in (48) and (49) with ε = 1.5 results
in the matrix K̂ as follows.

K̂ = [K̂1 K̂2] ∈ R4×8, (72)

where

K̂1 =




−7.6211 −2.6937 0 0
0 0 −1.1352 −1.2980
0 0 0 0
0 0 0 0


 ∈ R4×4

K̂2 =




0 0 0 0
0 0 0 0

−1.1076 −2.2546 0 0
0 0 −2.3234 −4.5966


 ∈ R4×4

As shown in Fig. 2, the considered aim is achieved by applying
the control law (71). More precisely, Fig. 2 (a) confirms that
asymptotic swarm stability is achieved. Also, Figs. 2 (b) and
2 (c) respectively reveal that Constraint 1 with saturation level
ū = [2; 2; 2; 2; 2]T and Constraint 2 with µ = 1.8 are satisfied.

Example 2. Consider the following fractional order linear
time invariant swarm system with five agents

D0.8
t xi = Axi + F

5∑

j=1

wij(xj − xi) + Bui , i = 1, . . . , 5.

(73)

A =
[ −0.1 0.7
−5.2 1.8

]
, F =

[
2 −10
4 −6

]
, B =

[
2 0
0 1

]
.

(74)

The undirected graph Gb describing the communication among
these agents is shown in Fig. 1 (b). Also, the adjacency matrix
of this graph is considered as

WGb
=




0 1.2 0 0 0.8
1.2 0 0.4 0 0
0 0.4 0 0 0
0 0 0 0 0.9

0.8 0 0 0.9 0




.

The eigenvalues of the Laplacian matrix for the mentioned
graph are as follows:

λ(Gb) = {0, 0.2935, 0.8222, 2.1424, 3.3419}

The matrices Â and B̂ in this example are

Â =




A− λ2F 0 0 · · · 0
0 A− λ3F 0 · · · 0

0
...

...
. . .

...
... 0 · · · · · · 0
0 0 · · · 0 A− λ5F



∈ R8×8

where

A− λ2F =
[ −0.6871 3.6354
−6.3742 3.5613

]
,

A− λ3F =
[ −1.7444 8.9222
−8.4889 6.7333

]
,

A− λ4F =
[ −4.3848 22.1239
−13.7695 14.6543

]
,

A− λ5F =
[ −6.7837 34.1185
−18.5674 21.8511

]
,

and
B̂ = diag{2, 1, 2, 1, 2, 1, 2, 1}.

Matrix Â is not α-Hurwitz with α = 0.8. In this case, matrices
T and Q have the following forms:

T =




−0.447 −0.447 −0.447 −0.447 −0.447
−0.032 0.196 0.736 −0.537 −0.362
0.501 0.519 −0.492 −0.486 −0.042
0.181 −0.481 0.110 −0.499 0.689
−0.718 0.511 −0.069 −0.162 0.439




Q =




0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




4×5

Suppose that all the input control signals are subjected to con-
straint with upper bound 4, i.e. ū = [4; 4; 4; 4; 4; 4; 4; 4; 4; 4]T

in Constraint 1. Moreover, the aim is to achieve asymptotic
swarm stability in the considered swam system while Con-
straint 2 with µ = 1.5 is satisfied. To achieve asymptotic
swarm stability with considering the mentioned constraints,
according to Theorem 3 the control law is chosen in the
following form

U = (T−1QT ⊗ I2)sat(K̂(QT ⊗ I2)x). (75)

From equality
∥∥T−1

∥∥
∞ = 2.1538, the saturation level is

obtained as u0 = 1.8572. Also since ρmin = 1, we choose
ε = 1 to satisfy (31). Solving the matrix inequalities (48) and
(49) with ε = 1 yields

K̂ = diag{K̂1, K̂2, K̂3, K̂4} ∈ R8×8, (76)

where

K̂1 =

[−4.8508 2.3989
6.8251 −7.6845

]
, K̂2 =

[−5.6536 2.2859
9.8021 −16.0606

]
,

K̂3 =

[−9.2684 5.0800
19.4285 −44.1909

]
, K̂4 =

[−16.9353 21.5528
41.1281 −108.9224

]
.
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Numerical simulation results presented in Fig. 3 (a) confirm
that asymptotic swarm stability is achieved by applying the
control law (75) with the obtained specifications. Moreover,
Figs. 3 (b) and 3 (c) verify that the aforementioned constraints
are also satisfied in this case. For a comparison, simulation
results of the swarm system in (73) by applying control law
(75) and without considering saturation function in this law
(unsaturated control inputs) have been presented in Fig. 4. By
comparing the simulation results of Figs. 3 and 4, it can be seen
that without considering the input constraint, the convergence
rate of the agents to reach consensus increases. But in this case,
as a negative point the values of control inputs at the beginning

of the motion are too large which can cause practical problems
due to physical constraints of the actuators in the real-world
applications. This means that involving Constraint 1 in design
procedure can yield in more applicable control signals.

As it is confirmed by the above-mentioned numerical ex-
amples, by using the feedback control law (47) asymptotic
swarm stability is achieved in fractional order linear time
invariant swarm system (1) with a directed/undirected topology
graph satisfying Assumption 1. Applying this control law, the
distance of the agents from the final destination is less than a
desired value. In addition, the input signals do not exceed a
predetermined value.

Fig. 2. Numerical simulation results of Example 1 where x0 = [[0.3, 0.8], [−0.01,−0.8], [−0.4, 1.1], [0.36,−0.22], [−0.23, 0.7]]T.

Fig. 3. Numerical simulation results of Example 2 where x0 = [[0.29,−0.63], [0.43, 0.41], [−0.48,−0.59], [0.52,−0.65], [0.50,−0.58]]T.

Fig. 4. Numerical simulation results of Example 2 without considering input saturation constraint.
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VI. CONCLUSION

Constrained swarm stabilization of fractional order linear
time invariant swarm systems is studied in this paper. In this
study, a bounded state-feedback control law is proposed to
ensure asymptotic swarm stability in fractional order swarm
systems. This law enforces that the distance of agents from the
final destination is less than a desired value. Numerical sim-
ulation results demonstrated the effectiveness of the proposed
control law.
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