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Introduction

• Optimization algorithms lie at the heart of modern artificial intelligence and machine
learning techniques. In most applications, fast and efficient algorithms are desired
for solving the optimization problem. This is particularly true in machine learning
applications where large data sets lead to larger problem instances and potentially
larger computational time.

• As a result, stochastic gradient descent (SGD), its variants such as mini-batch SGD,
Adam, momentum-based, and accelerated stochastic methods have emerged as pop-
ular choices.

• In developing accelerated optimization algorithms, the discrete-time framework of-
ten proves non-intuitive and restrictive from an analytical standpoint. In contrast,
continuous-time algorithms provide better intuition, and simpler and elegant proofs
are often obtained by leveraging the tools of Lyapunov stability theory. Indeed, the
connection between ordinary differential equations and optimization has been recog-
nized for several decades
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Introduction

• Despite much progress, there remain two main limitations for continuous-time algo-
rithms: (1) most of the analysis has focused on asymptotic and exponential con-
vergence, i.e., convergence as time tends to infinity; and (2) there have been few
systematic studies on developing discrete-time implementations such that the acceler-
ated convergence properties of the continuous-time algorithm are preserved.

• This presentation focuses on continuous-time (accelerated) gradient flow dynamics
with finite/fixed-time convergence guarantees. The notion of finite-time stability
(FTS), which is a precursor to the notion of fixed-time stability, was proposed in
the seminal work ([Bhat and Bernstein, 2000]). A system is said to be finite-time sta-
ble if the trajectories converge to the equilibrium in a finite amount of time, called
the settling time. The settling time may depend on the initial conditions, and can
potentially grow unbounded as the initial conditions go farther away from the equi-
librium point. Fixed-time stability (FxTS), on the other hand, is a stronger notion,
which requires the settling time to be uniformly bounded for all initial conditions, i.e.,
convergence within a fixed time can be guaranteed ([Polyakov, 2011]).
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Introduction

• Recently, [Polyakov et al., 2019]) introduced the notion of consistent discretization for
finite, and fixed-time stable dynamical systems. In particular, they proposed an implicit
discretization scheme that preserves the convergence behavior of the continuous time
system. However, these results are of little use for the optimization community, since,
a) the requirement of the dynamics being homogeneous cannot be satisfied unless the
equilibrium point, in this case, the optimizer, is known, and b) implicit discretization
schemes are not easy to implement, thus, making it difficult to use these schemes for
iterative methods.

• The authors in [Benosman et al., ] showed that the FTS flow, re-scaled gradient flow,
and signed-gradient flow, all with a finite-time convergence, when discretized using
various explicit schemes, such as Euler discretization or Runge-Kutta method, preserve
the convergence behavior in the discrete-time, i.e., the minimizer could be computed
within a finite number of iterations for a class of convex optimization problems
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Preliminaries
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Preliminaries

In this section, the required definitions and stability analysis are introduced to highlight the
property of the proposed class of gradient flows that satisfies the prescribed or arbitrary
time of convergence.
Consider the nonautonomous nonlinear system defined as:

ẋ = f (t, x), x(t0) = x0 (1)

where x ∈ Rn is the state vector, and f : R≥0 × Rn → Rn is a nonlinear function satisifes
f (t, 0) = 0, that defines the origin x = 0 as an equilibrium point of the dynamical system.
t0 ∈ R≥0 is the initial time. The following definitions are introduced:
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Finite Time Stability

Definition [Polyakov, 2011]

The origin of system (1) is considered globally finite-time stable if it is globally
asymptotically stable and every solution x(t0,x0)(t) of (1) reaches the origin within a finite
time, i.e.,

x(t0,x0)(t) = 0, ∀t ≥ t0 + T (t0, x0) (2)

where T : R≥0 × Rn → R≥0 is a time function that measures the time of convergence to
the origin starting from some initial condition (t0, x0).
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Finite Time Stability- Lyapunov definition

The system is finite-time stable if there exists a continuously differentiable,
positive-definite function V (x), known as a Lyapunov function, such that:

V̇ (x) ≤ −cV (x)p, 0 < p < 1, c > 0. (3)

Under this condition, the time required for the system state to reach equilibrium can be
estimated as:

Tf ≤ V (x0)1−p

c(1 − p)
, (4)

demonstrating explicit dependence on the initial condition x0.
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Fixed Time Stability

Definition [Polyakov, 2011]

The origin of the system (1) is defined to be fixed time stable if it is globally finite time
stable and the time function T has an upper bound, say, τmax > 0 such that:

T (t0, x0) ≤ τmax , ∀x0 ∈ Rn, ∀t0 ∈ R≥0 (5)
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Fixed Time Stability- Lyapunov definition

FXTS Lyapunov definition

A system achieves fixed-time stability if there exists a Lyapunov function satisfying:

V̇ (x) ≤ −c1V (x)p1 − c2V (x)p2 , 0 < p1 < 1, p2 > 1, (6)

where c1, c2 > 0 are positive constants. The guaranteed upper bound for convergence
time is given by:

Tf ≤ 1

c1(1 − p1)
+

1

c2(p2 − 1)
. (7)

This property makes fixed-time approaches particularly useful for control applications
requiring robust, uniform performance regardless of initial conditions.
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Prescribed Time Stability

Definition [Polyakov, 2011]

The origin of the system (1) is said to be a prescribed/arbitrary time stable if it is fixed
time stable, and ∃τp ∈ R≥0, with no dependence on any system parameters or initial
conditions and can be predefined or designed in advance. If T (t0, x0) = τp, then the
origin is strictly prescribed-time convergent, while T (t0, x0) < τp indicates weakly
prescribed-time convergence.
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Prescribed Time Stability- Lyapunov definition

A control law achieves prescribed-time convergence if the Lyapunov function satisfies:

V̇ (x , t) ≤ − V (x)

Tp − t
, (8)

ensuring that V (x) reaches zero precisely at t = Tp. Unlike fixed-time methods, this
approach allows precise timing control, making it particularly suitable for real-time
optimization and scheduling problems.
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From Exponential Stability to Finite/Fixed Time
Stability
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Exponential Stability

We consider time-invariant dynamical systems,

ẋ = F (x) (9)

with an equilibrium point at the origin, F (0) = 0.

Definition

The origin is the globally exponentially stable equilibrium point of 9 if there are positive
constants M and ρ that are independent of x(0) such that the solution x(t) to system (9)
satisfies,

∥x(t)∥ ≤ Me−ρt∥x(0)∥, ∀t ≥ 0. (10)
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Exponential Stability

Lemma 1 characterizes a necessary and sufficient condition for the exponential stability.

Lemma 1

The origin is the globally exponentially stable equilibrium point of system (9) if and only
if there exists a continuously differentiable Lyapunov function V that satisfies,

k1∥x∥2 ≤ V (x) ≤ k2∥x∥2

V̇ (t) ≤ −k3∥x(t)∥2, ∀t ≥ 0
(11)

along the solutions of system 9.
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From Exponential to Finite/Fixed-Time Stability: Applications to
Optimization [Ozaslan and Jovanović, 2024]

Consider a globally Lipschitz continuous function F , i.e., ∥F (x)−F (y)∥ ≤ L∥x−y∥, ∀x , y ∈
Rn, then, the equilibrium point of the modified system:

ẋ = σ(x)F (x), (12)

is globally finite-time stable, where σ : Rn → R+ ∪ {0} is a scaling factor defined as:

σ(x) =

{
0, F (x) = 0,

η∥F (x)∥−λ, otherwise,
(13)

with η > 0 and λ ∈ (0, 1).
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From Exponential to Finite/Fixed-Time Stability: Applications to
Optimization [Ozaslan and Jovanović, 2024]

Furthermore, the global fixed-time stability under two additional conditions: in addition to
being Lipschitz continuous, the vector field F satisfies

∥F (x)∥ ≥ m∥x∥β, ∀x ∈ Rn, (14)

for some positive parameters m and β. The scaling factor is then modified to:

σ(x) =

{
0, F (x) = 0,

η1∥F (x)∥−λ1 + η2∥F (x)∥λ2 , otherwise,
(15)

where η1, η2, λ2 are positive parameters and λ1 ∈ (0, 1). When these hold, a uniform upper
bound on the settling time of the system can be obtained for all initial conditions.
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From Exponential to Finite/Fixed-Time Stability: Applications to
Optimization

Finite-time stability.

V̇ = ⟨∇xV (x), ẋ⟩ = σ(x)⟨∇xV (x),F (x)⟩.

≤ −k3σ(x)∥x∥2 = − k3η∥x∥2

∥F (x)∥λ
.

(16)

By the Lipschitz continuity condition, we get:V̇ ≤ −k3η
Lλ

∥x∥2−λ. Applying the quadratic
upper bound on the Lyapunov function, we obtain:

V̇ ≤ − k3η

Lλk
1−λ/2
2

V 1−λ/2. (17)

Setting α = 1 − λ/2 and c = k3η
Lλkα

2
yields V̇ ≤ −cV α with c > 0 and α ∈ (1/2, 1). The

settling-time upper bound T (x(0)) ≤ 2k2Lλ

k3ηλ
∥x(0)∥λ. 19 / 51



From Exponential to Finite/Fixed-Time Stability: Applications to
Optimization

Taking the scaling factor:σ(x) =

{
0, F (x) = 0,

η1∥F (x)∥−λ1 + η2∥F (x)∥λ2 , otherwise,

Fixed-time stability.

V̇ = ⟨∇xV (x), ẋ⟩ = σ(x)⟨∇xV (x),F (x)⟩
≤ −k3σ(x)∥x∥2

= −k3

(
η1

∥x∥2

∥F (x)∥λ1
+ η2∥x∥2∥F (x)∥λ2

)
≤ −k3η1

Lλ1
∥x∥2 − λ1 − k3η2m

λ2∥x∥2 + βλ2

≤ − k3η1

Lλ1k
1−λ1/2
2

V 1−λ1/2 − k3η2m
λ2

k
1+βλ2/2
2

V 1+βλ2/2.
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Asymptotic Convergence of Classical Gradient
Flows
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The Proposed Control-theoretic Approach

Consider the unconstrained optimization problem below, aim to minimize a cost function
J : Rn → R,

min
θ∈Rn

J(θ). (18)

A necessary condition for the convergence of the GF in (18) to an optimal solution is given
in Assumption (22) below,

Assumption 1

The function J has its minimum value J∗ = J(θ∗) = min J(θ) > −∞ at θ∗ ∈ Rn, i.e.,
J∗ > −∞.

An important tool in the theory of optimization is the Polyak- Lojasiewicz (PL) inequality
describing the gradient dominance property. The following is the formal definition of PL
inequality.
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Asymptotic Convergence of Gradient Descent

Continuous-time optimization dynamics provide a foundational framework for analyzing
and designing gradient-based optimization methods [Boyd and Vandenberghe, 2004]. This
section presents a comparative study of classical continuous-time gradient descent (GD)
and its accelerated counterpart, focusing on their convergence properties and asymptotic
behavior in convex optimization.
The continuous-time gradient flow is given as:

θ̇(t) = −∇f (θ(t)), (19)

where f : Rn → R is a continuously differentiable convex function and θ(t) ∈ Rn denotes
the optimization variable.
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Asymptotic Convergence of Gradient Descent

Theorem (Convergence of Gradient Flow)

Consider the differentiable function f . Let be convex with Lipschitz continuous gradient
∇f . Then the gradient flow dynamics in (19) has the convergence rate:

f (θ(t)) − f ⋆ ≤ m1

t
, (20)

for some constant m1 > 0, where f ⋆ = minθ f (θ).

This result implies that classical gradient flow achieves a sublinear O(1/t) convergence
rate. The dynamics are asymptotically stable, with convergence to the minimizer occurring
as t → ∞.
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Asymptotic Convergence of Accelerated Methods

The accelerated gradient descent method, inspired by Nesterov’s discrete-time algorithm
(NAG) [Nesterov, 2013], can be expressed in continuous time by the second-order ODE
[Su et al., 2016]:

θ̈(t) +
r

t
θ̇(t) + ∇f (θ(t)) = 0, (21)

where r ≥ 3 is a damping term.

Theorem (Convergence of NAG [Su et al., 2016])

assume f ∈ C1 be a convex function, and the gradient ∇f is Lipschitz continuous. Then
the rate of convergence of the accelerated dynamics given in (21) is characterized by:

f (θ(t)) − f ⋆ ≤ m2

t2
, (22)

for some constant m2 > 0.
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Asymptotic Convergence of Accelerated Methods

Proof.

We define the following storage function:

E(t) = t2 (f (θ(t)) − f ∗) +

1

2

∥∥∥(r − 1)(θ(t) − θ⋆) + t θ̇(t)
∥∥∥2

.
(23)

Upon computing the derivative of E(t), one gets:

Ė(t) = −(r − 1)t⟨∇f (θ(t)), θ(t) − θ⋆⟩
+ 2t(f (θ(t)) − f ⋆)

≤ (3 − r)t(f (θ(t)) − f ⋆).

(24)
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Asymptotic Convergence of Accelerated Methods

Proof.

where the convexity implies ⟨∇f (θ(t)), θ(t) − θ⋆⟩ ≥ f (θ(t)) − f ∗.
If r ≥ 3, then E(t) is descresing and

t2(f (θ(t)) − f ⋆) ≤ E(t0), ∀t ≥ t0. (25)

and in the case r > 3: ∫ ∞

t0

(r − 3)t(f (θ(t)) − f ⋆) dt ≤ E(t0). (26)

Thus, if f is convex and r ≥ 3, the solution of (21) satisfies:

f (θ(t)) − f ⋆ = O
(

1

t2

)
. (27)
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Asymptotic Convergence of Accelerated Methods

1. This improved rate O(1/t2) is asymptotic, meaning that while the method is faster
in theory, it still requires infinite time to exactly reach the optimizer. Moreover, the
second-order dynamics can introduce oscillations near the minimum, potentially
affecting stability.

2. From a dynamical systems perspective, gradient flow (19) represents a first-order,
monotone dissipation process, whereas accelerated dynamics ((21)) mimic inertial
systems with vanishing damping, allowing faster energy dissipation
[Attouch et al., 2016, Adly and Attouch, 2020].

3. While both systems converge asymptotically, accelerated dynamics exhibit a provably
faster convergence rate under convexity assumptions. However, they may also exhibit
overshoot or sensitivity to initial conditions, particularly in non-smooth or
ill-conditioned settings.

4. Recent works explore modified gradient dynamics that ensure finite-time convergence.
These typically involve nonlinear rescaling or discontinuous vector fields and achieve
convergence to the optimizer in finite time [Romero and Benosman, 2020], as
opposed to the asymptotic nature of (19) and (21), such methods present an
important direction for optimization theory and control design.
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Newtons Gradient Flow

The classical Newtons method is given by:

θ̇(t) = −
(
∇2J(θ)

)−1 ∇J(θ). (28)

It is well established that, under certain conditions on the function J, the method in (28)
achieves exponential convergence [Beck, 2014]. We now introduce the following assumption
regarding the objective function J:

Assumption

The function J ∈ C 2(Rn,R) is strictly convex. Additionally, its Hessian ∇2J(θ) is
invertible for all θ ∈ Rn, and the gradient norm ∥∇J(θ)∥ is radially unbounded.
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Newtons Gradient Flow

Theorem

If J satisfies Assumptions (22) and (29), then the trajectories of (28) converge
exponantially to the optimal point θ∗.

Proof.

Consider the unbounded Lyapunov function V = 1
2∥∇J(θ)∥2, one can prove the

exponential convergence of (28):

V̇ = (∇J)T (∇2J)θ̇

= −(∇J)T (ρ∇J(θ))

= −ρ∥∇J(θ)∥2

≤ −2ρV(t),

(29)
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Constrained Optimization Problems

We consider the optimization problem given as:

min
θ∈Rn

J(θ), s.t. Aθ = b, (30)

where A ∈ Rm×n,b ∈ Rm, and J(θ) is a strongly convex and smooth function.
The existing work in the literature considers the exponential asymptotic convergence of the
PDGD problem; the work presented in [Qu and Li, 2019] rigorously investigated the expo-
nential stability of the PDGD dynamics under the assumption of strongly convex and smooth
objective functions subject to linear equality constraints. In [Ding and Jovanović, 2019,
Ding and Jovanović, 2020], a Lyapunov-based method was employed to demonstrate the
global exponential stability of the PDGD dynamics derived from the proximal augmented La-
grangian framework. Furthermore, the work in [Cerone et al., 2025, Centorrino et al., 2025,
Cerone et al., 2024], aimed to design a new exponentially convergent PDGD algorithm via
a feedback control approach where the Lagrange multipliers that serve as the control inputs
are tuned via a PI controller. [Garg and Panagou, 2021] designed a fixed-time convergent
PDGD using the classical fractional power scaling approach.
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Constrained Optimization Problems

Assumption

The function J is twice differentiable, µ-strongly convex and ℓ-smooth, i.e., for all
θ, θ′ ∈ Rn,

µ∥θ − θ′∥2 ≤ ⟨∇J(θ) −∇J(θ′), θ − θ′⟩ ≤ ℓ∥θ − θ′∥2. (31)

Assumption

The matrix A is assumed to be of full row rank and
γ1I ⪯ AAT ⪯ γ2I for some γ1, γ2 > 0.

Remark

Assumption (32) is a standard condition in the analysis of constrained optimization
problems. The full row rank property of the matrix A ensures that the feasible set is
nonempty and closed. Under this condition, the coercivity of the convex objective
function J guarantees the existence of a solution to problem (30).
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Constrained Optimization Problems

Let L(θ, β) be the augmented Lagrangian associated with problem (30) defined as:

L(θ, β) = J(θ) + β⊤(Aθ − b), (32)

where β ∈ Rm is the Lagrangian multiplier. The primal-dual GF dynamics can be used to
compute the saddle points associated with the Lagrangian L(θ, β) in (32). The dynamical
system is given by:

θ̇ = −∇θL(θ, β)

β̇ = κ∇βL(θ, β),
(33)

where κ > 0 is constant. Let’s define ω = [θ⊤, β⊤]⊤, and similarly define ω∗ = [(θ∗)⊤, (β∗)⊤]⊤

as the equilibrium point of (33), then the adopted PDGD problem can be written as:

ω̇ = F (ω), (34)

where

F (ω) :=

[
−∇θL(θ, β)
κ∇βL(θ, β)

]
=

[
−
(
∇J(θ) + A⊤β

)
κ (Aθ − b)

]
(35)
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Exponenetial Convergence of PDGD

Theorem

The equality constrained optimization problem in (30) converge to its optimal point
(θ∗, λ∗) exponentially.

Proof.

See [Qu and Li, 2019, Appendix A].
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A survey of Existing Methods
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Literature Review

Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent Flows
[Budhraja et al., 2022]

ẋ = −c1
∇f (x)

∥∇f (x)∥
p1−2
p1−1

− c2
∇f (x)

∥∇f (x)∥
p2−2
p2−1

(36)

where c1; c2 > 0, p1 > 2 and p2 ∈ (1, 2).the function f satisfies the Polyak-Lojaseiwicz
inequality; the Lyapunov method was used to prove FXTC. Robustness is also studied.
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Literature Review

Definition: [Polyak- Lojasiewicz inequality]

Let f : Rn → R be a differentiable function with S ≠ ∅. Then, f satisfies the
Polyak- Lojasiewicz (P L) inequality on S, if there exists r > min f and µ > 0 such that:

2µ[f (x) − min f ] ≤ ∥∇f (x)∥2 , ∀x ∈ [min f < f < r ] (37)

we then describe the function to be f ∈ P  Lµ(S). This inequality simply requires that the
gradient grows faster than a quadratic function as we move away from the optimal function
value. Note that this inequality implies that every stationary point is a global minimum.
But unlike Strong Convexity, it does not imply that there is a unique solution, so this
condition is that it is some weakening of strong convexity. Recall, that when we discussed
the linear convergence of GD we highlighted the key property that strong convexity gave us,
if we are far away from optimal then strong convexity will ensure that the gradient is large.
The PL condition is a more direct statement of that desirable property (but highlights the
crucial fact that this is all we need for linear rates, i.e. we do not need convexity itself).
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Literature Review

Proof

Consider the Lyapunov candidate function:

V (x) = f (x) − f ∗. (38)

As f ∗ is the minimum value of f and x∗ is the unique minimizer, it holds that V (x) > 0
for all x ̸= x∗. The time derivative of V (x) is given by:

V̇ (x) = ∇f (x)T ẋ . (39)

Substituting (36) into (39), we get:

V̇ (x) = −c1∥∇f (x)∥
p1

p1−1 − c2∥∇f (x)∥
p2

p2−1 . (40)
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Literature Review

Using the Polyak- Lojasiewicz inequality:

1

2
∥∇f (x)∥2 ≥ µ(f (x) − f ∗), (41)

we obtain:
V̇ ≤ −c1(2µV )

p1
2(p1−1) − c2(2µV )

p2
2(p2−1) . (42)

Define p := c1(2µ)
p1

2(p1−1) and q := c2(2µ)
p2

2(p2−1) . Since p1 > 2 and p2 ∈ (1, 2), we have
α := p1

2(p1−1) ∈ (0, 1) and β := p2

2(p2−1) > 1. Thus, the conditions for fixed-time stability
are satisfied, and the settling time T is bounded by:

T ≤ 1

p(1 − α)
+

1

q(β − 1)
. (43)

This completes the proof. □
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Literature Review

Examples

Figure: Minimization of Rosenbrock function, Comparison of various optimization algorithms for the initial
condition (0.3, 0.8).
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Literature Review

FIRST-ORDER OPTIMIZATION INSPIRED FROM FINITETIME CONVERGENT
FLOWS [Zhang et al., 2020]

ẋ = Fq−RGF (x) = −c
∇f (x)

∥∇f (x)∥
q−2
q−1

(44)

ẋ = FSGF (x) = −c
∇f (x)

∥∇f (x)∥
1

q−1

sign(∇f (x)) (45)

where c > 0, q > 1. the function f is -gradient dominated of order p, In this paper, the
convergence behavior of an Euler discretization for the q-RGF and q-SGF was investigated.
Convergence guarantees were provided in terms of closeness of solutions

Fillipov framework

See [Cortes, 2006, Moulay et al., 2019, Li and Wang, 2022]
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Literature Review

Fixed-Time Stable Gradient Flows: Applications to Continuous-Time Optimization
[Garg and Panagou, 2020]

The paper designed FXTC-GFs for four different optimization problems:

1. Unconstrained Optimization: FxTS-GF Scheme

ẋ = −c1
∇f (x)

∥∇f (x)∥
p1−2
p1−1

− c2
∇f (x)

∥∇f (x)∥
p2−2
p2−1

, (46)

where c1, c2 > 0, p1 > 2, and 1 < p2 < 2.

2. Newton’s Method: FxTC Scheme

x = −(∇2f (x))−1

c1
∇f (x)

∥∇f (x)∥
p1−2
p1−1

+ c2
∇f (x)

∥∇f (x)∥
p2−2
p2−1

 , (47)

where c1, c2 > 0, p1 > 2, and 1 < p2 < 2.
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Literature Review

Fixed-Time Stable Gradient Flows: Applications to Continuous-Time Optimization
[Garg and Panagou, 2020]

1. Convex Optimization With Linear Equality Constraints

min
x∈Rn

f (x) subject to Ax = b, (48)

where A ∈ Rm×n is full row rank, and f is a coercive function.

2. FXTS OF SADDLE-POINT DYNAMICS

max
z∈Rm

min
x∈Rn

F (x , z), (49)

where F (x , z) satisfies local strict convexity–concavity conditions.
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Continued

Assumption: The function f ∈ C 2(Rn,R) is strictly convex. Furthermore, the Hessian
∇2f invertible for all x ∈ Rn and the norm of the gradient, ∇f is radially unbounded.

Proof: FXT Newton’s Method

Consider the Lyapunov function V (x) = 1
2∥∇f (x)|2:

V̇ = ∇f T∇2f ẋ = −∇f T∇2f ẋ

= −∇f T
[
c1

∇f (x)

∥∇f (x)∥
p1−2
p1−1

+ c2
∇f (x)

∥∇f (x)∥
p2−2
p2−1

]
= −c1∥∇f ∥2− p1−2

p1−1 − c2∥∇f ∥2− p2−2
p2−1

≤ −c12
α1
2 V

α1
2 − c22

α2
2 V

α2
2 .

(50)

where α1 = p1−2
p1−1 , α2 = p2−2

p2−1 .
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Continued

Assumption: The function f ∈ C loc
1,1 (Rn,R) has a unique minimizer x = x∗ and satisfies

the Polyak-Lojasiewicz (PL) inequality or is dominated by gradients.dients. Under this
assumption of gradient dominance it was shown in ([Karimi et al., 2016], Theorem 2) that
the function f (x) has a quadratic growth, i.e.:

f (x) − f ∗ ≥ µ

2
∥x − x∗∥2 , ∀x ∈ Rn (51)

Proof: FXT Unconstrained optimization problem

Consider the Lyapunov function V (x) = 1
2 (f − f ∗)2:

V̇ = −c1(f − f ∗)∥∇f ∥α1 − c2(f − f ∗)∥∇f ∥α2

≤ −c1(2µf )
α1
2 (f − f ∗)1+

α1
2 − c2(2µf )

α2
2 (f − f ∗)1+

α2
2 .

(52)

where α1 = 2 − p1−2
p1−1 , α2 = 2 − p2−2

p2−1 .
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Definition 1. For a function f (x) whose gradient exists, if there exists a scalar L > 0
such that

⟨∇f (θ1) −∇f (θ2), θ1 − θ2⟩ ≤ L∥θ1 − θ2∥2, (53)

for any θ1 and θ2 belonging to the definition domain of f (x), then f (x) is said to have an
L-continuous gradient.
Definition 2. For a convex function f (x) whose gradient exists, if there exists a scalar
µ > 0 such that

⟨∇f (θ1) −∇f (θ2), θ1 − θ2⟩ ≥ µ∥θ1 − θ2∥2, (54)

for any θ1 and θ2 belonging to the definition domain of f (x), then f (x) is said to be
µ-strong convex.
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Consider the gradient method:

ẋ = −ρ
∇f (x)

∥∇f (x)∥2
, (55)

where ρ > 0 is the step size.
Theorem 1. If the convex function f (x) has an L-continuous gradient, then algorithm
(6) can reach the minimum point x∗ in a finite time.
Proof. Consider the Lyapunov function V = ∥x − x∗∥2. Taking the time derivative,

V̇ = 2(x − x∗)T ẋ = −2ρ
(x − x∗)T∇f (x)

∥∇f (x)∥2
≤ −2ρ

L
. (56)

proving the finite-time bound □.
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Now consider a more general case:

ẋ = −ρ
∇f (x)

∥∇f (x)∥α
, 0 < α < 2. (57)

Theorem 2. If the convex function f (x) has an L-continuous gradient and is µ-strong
convex, then algorithm (7) can reach the minimum point x∗ in a finite time.
Proof. Consider the Lyapunov function V = ∥x − x∗∥2. Taking the time derivative,

V̇ = −2ρ
(x − x∗)T∇f (x)

∥∇f (x)∥α
≤ −2ρµ2−α

L
V

2−α
2 . (58)

which gives a finite-time bound □.
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Concluding Remarks

1. The advancement from asymptotic convergence to finite-time, fixed-time or
prescribed-time shows a systematic improvement in optimization theory.

2. these convergence strategies provide effective frameworks for improving the efficiency
of optimization algorithms in ML and AI.

3. Several research directions can be extended: designing discretization schemes of the
continuous- time gradient flows while preserving the finite-time stability attracts the
attention of some researchers.

4. On the other hand, developing algorithms that is robust against noisy gradient
environments while maintaining finite-time convergence guarantees is a challenging
aspect.

5. Ongoing research continues to investigate and expand the applications of these
convergence concepts for the ML and AI techniques. Furthermore, experimental
validations of the aforementioned theoretical advancements for robotics, autonomous
systems, and industrial processes involving time-constrained problems will be valuable
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