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ABSTRACT

Behavior matching is a critical process in aligning the dy-
namics of a physical system with those of its virtual replica. It
plays a key role in the development of digital twins, as it di-
rectly impacts their accuracy and overall quality. In this study,
we propose an online behavior matching framework based on
simultaneous perturbation stochastic approximation (SPSA). By
integrating an SPSA layer between the physical system and the
digital twin model, the framework enables adaptive, real-time
(or near real-time) tuning of the model parameters to improve
matching accuracy. The feasibility and effectiveness of the pro-
posed method are demonstrated through two case studies: be-
havior matching of a Simscape mass-spring-damper system and
behavior matching of a DC motor. In both cases, the digital
twin models successfully track the system’s output, validating the
proposed approach.
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1. INTRODUCTION

Digital twins, defined as a virtual representation of the real
system[ 1], have garnered significant attention from both academia
and industry. More than just high-fidelity simulations, digital
twins can interact with their physical assets and are capable of
reflecting any changes that occur to those assets[2]. As sophisti-
cated computational frameworks, digital twins integrate data from
sensors and other inputs to create accurate and adaptive simula-
tions of complex systems [3, 4]. Due to these properties, Digital
twins hold immense potential across a wide range of fields. In
smart agriculture, digital twin frameworks have been proposed
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to enhance monitoring, productivity, and operational efficiency
[5-7]. In mechatronic systems, digital twin models can be uti-
lized for lifecycle analysis, predictive maintenance, and controller
design [8-10]. In [11], a comprehensive five-step Digital Twin
development framework is introduced. Within this framework, a
key process known as behavioral matching (BM) is performed to
tune the parameters of each subsystem that comprises the digital
twin. This process ensures that the digital twin accurately mirrors
the system’s static and dynamic behaviors, maintaining alignment
with its physical asset in the real world [10]. A description of
the behavioral matching is presented in Fig. 1. As shown, the
input and output data of the real system are fed into the digital
model. An optimization loop is then implemented to identify the
optimal parameters that minimize the mismatch error between
the physical and digital systems. = However, the conventional
approach for behavioral matching still relies on collecting offline
data and solving optimization problems based on various criteria,
such as ISE, IAE, and ITAE [10-12]. In real-world scenarios,
the dynamics of physical systems often vary during operation,
while digital twins are expected to operate simultaneously with
their physical counterparts in real time. Therefore, it is essential
to develop a behavioral matching framework that can be executed
in real or near-real time.

In this work, we present an operational behavioral matching
method by introducing a Simultaneous Perturbation Stochastic
Approximation (SPSA) layer between the physical systems and
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FIGURE 1: BEHAVIORAL MATCHING [11]
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FIGURE 2: SPSA-BASED BEHAVIOR MATCHING FRAME-
WORK

the digital twin models. Within this layer, the SPSA algorithm
applies perturbations to the digital twin models and estimates
the gradient of the matching error with respect to the parameters
designated for tuning. Using the estimated gradient, the param-
eters of the digital twin models are iteratively updated at each
time window, without affecting the continuous operation of the
physical system or the digital twins.

2. SIMULTANEOUS PERTURBATION STOCHASTIC
APPROXIMATION (SPSA) OPTIMIZATION

Simultaneous Perturbation  Stochastic ~Approximation
(SPSA) is a widely used zero-order optimization method that
does not require explicit gradient information. It is partic-
ularly well-suited for scenarios where the objective function
is computationally expensive or analytically intractable. Due
to its efficiency in estimating/approximating the gradient, the
SPSA technique is effective for high-dimensional optimization
problems [13, 14]. SPSA has been successfully applied in
various fields, including control systems, machine learning,
and parameter estimation [15-17]. These characteristics make
SPSA appropriate for behavioral matching frameworks in digital
twins, where numerous parameters must be optimized to align
the digital model’s behavior with that of the physical system. An
additional advantage of SPSA is its robustness to noise in the
cost function, which further enhances its practical applicability.

In the SPSA framework, the gradient is approximated using
only two evaluations of the defined cost function, denoted as
J(0) per iteration, regardless of the dimensionality of the system
parameter 6 being optimized. The iterative update rule is given
as:

Orx+1 = Ok — axgi, )]

where 6y, is the parameter vector in iteration k, ay is the step size
sequence, and gy is the gradient estimate. The approximate gradi-
ent g is calculated using a simultaneous perturbation approach.
Let Ay be arandom perturbation vector, where each element Ay ;
is independently drawn from a symmetric Bernoulli distribution
(1 with equal probability). The gradient estimate is given by:

_ SOk + crAx) = J (O — cAx)

gk = AL 2)

ch

where ¢y is the perturbation size, and A,:l represents element-
wise inversion of Ag. The convergence of SPSA depends on
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FIGURE 3: SIMSCAP MODEL OF THE MSD SYSTEM

properly choosing the sequences ay and cg, which typically follow
the forms [14]:
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where a,c,A,a,y are positive constants, and @ € (0.5,1],
v € (0.5,1]. Under standard conditions on the step size and
perturbation sequences, SPSA converges to a local minimum of
the objective function [13, 18]. The asymptotic convergence rate
is comparable to that of other stochastic gradient-based methods
while maintaining significant computational advantages.

3. BEHAVIOR MATCHING FRAMEWORK AND
RESULTS

The proposed behavior matching framework is illustrated in
Fig. 2. During system operation, the total time period is divided
into multiple segments or time windows. In each time window,
a cost function is evaluated to quantify the difference in response
between the real system and a set of perturbed digital twin (DT)
models. At the end of each window, this information is sent to the
SPSA optimizer, which approximates the gradient and generates
updated parameters to refine the main DT model and create new
perturbed DT models for the next iteration. This process enables
continuous refinement of the DT in real or near-real time.

3.1. Case Study: Mass-Spring-Damper System

In this section, a physical modeling example is discussed.
Figure 3 illustrates the block diagram of the mass-spring-damper
(MSD) system. The system is governed by the following second-
order differential equation:

mi+cx+kx=F,

where x denotes the displacement, F is the external force, and m,
¢, and k represent the mass, damping coefficient, and stiffness,
respectively. In this case study, the stiffness k and damping
coefficient ¢ are treated as tunable parameters and are adjusted
through the SPSA layer to match the behavior of the digital twin
model with that of the physical system.

In the simulation, the input reference position r(¢) is a square
wave ranging from 2 to —2, with a period of 7 = 20s and a duty
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FIGURE 4: TRAJECTORIES OF THE MSD SYSTEM’S PARAM-
ETERS

cycle of 50%. According to [14], the parameters of the SPSA
layer are set as a = 200,c¢ = 90,a = 0.602,y = 0.101, and
A = 1. The initial stiffness and damping coefficient are set to
390 and 85, respectively, while the true values are 400 and 100.
The SPSA layer updates the parameters within a time window of
T = 10s. To quantify the behavior matching performance, the
residual error rate is defined as

(n+1)T
|ym — yldt
e(n) = Jur " x 100%,
(n+l)T| |d[
nT y

where n € Ny, and y,,, y are the outputs from the DT model and
the real system, respectively. The SPSA layer terminates when the
residual error rate reaches or falls below the threshold of 0.05%.
To accelerate the learning speed, the iteration count is reset to 1 if
itexceeds 100 iterations. As shown in Fig. 4, the estimated values
of stiffness k£ and damping coefficient ¢ gradually approach the
true values. The results in Figure 5 further demonstrate that the
residual error decreases successfully to the specified threshold,
and the digital twin model’s output closely matches that of the
physical system.

3.2. Case Study: DC Motor
This section presents a case study on the velocity behavior
matching for a DC motor. As illustrated in Fig. 6, the system
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FIGURE 5: RESULTS OF THE BEHAVIOR MATCHING

consists of a 12V, 130RPM DC motor equipped with a Hall-
effect encoder, a motor shield, and a microcontroller that sends
control commands and communicates with the DT model. The
DT model representing the motor’s angular velocity w(t), given
an input voltage v(¢), is modeled using a second-order transfer
function:

C

G(s)= ———,
() s2+as+b

where a, b, and ¢ are system parameters tuned to match the DT
model’s velocity behavior with that of the physical system. To
reduce measurement noise, the output velocity is processed using

FIGURE 6: BLOCK DIAGRAM OF BEHAVIOR MATCHING OF
THE DC MOTOR
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FIGURE 7: EXPERIMENT RESULTS IN THE DC MOTOR CASE STUDY.

a first-order low-pass filter:

B 1
Tors+ 10

H(s)

where 7 is the time constant, set to 0.5s.

In the first experiment, the input u(t) is a square wave rang-
ing from 2 to —2 (with the negative value indicating a reversal
in direction), having a period of 10s and a 50% duty cycle. The
parameters of the SPSA layer are set as a = 2,c¢ = 0.1,
0.602,y = 0.101, and A = 100. The initial parameters are
perturbed by 10% from the values obtained through system iden-
tification, and the SPSA layer updates the parameters over a time
window of 7 = 10s. From Fig. 7a, the output from the DT model
initially deviates from the system output but gradually converges
toward it. After approximately 140 seconds, the DT model output
closely matches the filtered output of the physical motor.

In the second experiment, external disturbances are intro-
duced during motor operation. As shown in Fig. 7b, a payload
is applied to the motor at r = 325s. Despite the disturbance,
the DT model continues to track the motor’s output. After the
load is removed at t+ = 350s, the DT model maintains tracking
accuracy and gradually recovers to reflect the system’s original
output behavior. This demonstrates the model’s ability to adapt
to varying conditions during operation.

4. CONCLUSION AND FUTURE WORK

The proposed online behavior matching framework enables
real-time adjustment of the digital twin (DT) model’s parame-
ters during system operation. This allows the DT to accurately
track the physical system, which is inherently time-varying and
subject to environmental disturbances. Two case studies have
demonstrated the effectiveness of the framework. In particular,
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the second case study shows that the DT model can successfully
adapt its parameters in response to changes in the operating con-
ditions of the physical system. This adaptive capability suggests
the potential for using DT parameter updates to infer the condition
of the physical system, enabling applications such as predictive
maintenance and system health monitoring. In future work, the
framework will be extended to more complex systems with mul-
tiple interacting subsystems and tested under a broader range of
real-world operating conditions.
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