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Preface

These are the keynote and invited talks of the International Conference on
Fractional Differentiation and its Applications (ICFDA-2018), which was held at
the Amman Marriot Hotel, Sheissani in Amman, The Hashemite Kingdom of
Jordan from July 16 to July 18, 2018. The ICFDA18 is a specialized conference on
fractional-order calculus and its applications. It is a generalization of the
integer-order ones. The fractional-order differentiation of arbitrary orders takes into
account the memory effect of most systems. The order of the derivatives may also
be variable, distributed, or complex. Recently, fractional-order calculus became a
more accurate tool to describe systems in various fields in mathematics, biology,
chemistry, medicine, mechanics, electricity, control theory, economics, and signal
and image processing.

For this edition, we were happy to have 23 invited speakers who gave talks on a
subject for which they are internationally known experts. Thirteen of these talks are
collected in this volume. Throughout this book, the fractional calculus concepts have
been explained very carefully in the simplest possible terms, and illustrated by a
number of complete solved examples. This book contains some theorems and their
proofs.

The book is organized as follows. In chapter “Closed-Form Discretization of
Fractional-Order Differential and Integral Operators”, a closed-form concretization
of fractional-order differential or integral Laplace operators is introduced. The pro-
posed method depends on extracting the necessary phase requirements from the
phase diagram. The magnitude frequency response follows directly due to the
symmetry of the poles and zeros of the finite z-transfer function. Unlike the con-
tinued fraction expansion technique, or the infinite impulse response of second-order
IIR-type filters, the proposed technique generalizes the Tustin operator to derive a
first-, second-, third-, and fourth-order discrete-time operators (DTO) that were
stable and of minimum phase. The proposed method depends only on the order
of the Laplace operator. The resulted discrete-time operators enjoy flat phase
response over a wide range of discrete-time frequency spectrum. The closed-form
DTO enables one to identify the stability regions of fractional-order discrete-time
systems or even to design discrete-time-fractional-order PIkDl controllers.
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The effectiveness of this work was demonstrated via several numerical simulations.
In chapter “On Fractional-Order Characteristics of Vegetable Tissues and Edible
Drinks”, we are concerned about frequency response techniques to characterize
vegetable tissues and edible drinks. In the first phase, the impedance of the distinct
samples is measured and fractional-order models are applied to the resulting data. In
the second phase, hierarchical clustering and multidimensional scaling tools are
adopted for comparing and visualizing the similarities between the specimen.

In chapter “Some Relations Between Bounded Below Elliptic Operators and
Stochastic Analysis”, we apply Malliavin calculus tools to the case of a bounded
below elliptic right-invariant pseudo-differential operators on a Lie group. We give
examples of bounded below pseudo-differential elliptic operators on R

d by using
the theory of the Poisson process and the Garding inequality. In the two cases, there
are no stochastic processes because the considered semi-groups do not preserve
positivity. In chapter “Discrete Geometrical Invariants: How to Differentiate the
Pattern Sequences from the Tested Ones?” based on the new method (defined
below as the discrete geometrical invariants—DGI(s)), one can show that it enables
to differentiate the statistical differences between random sequences that can be
presented in the form of 2D curves. We generalized and considered the
Weierstrass–Mandelbrot function and found the desired invariant of the fourth order
that connects the WM-functions with different fractal dimensions. Besides, we
consider an example based on real experimental data. A high correlation of the
statistically significant parameters of the DGI obtained from the measured data
(associated with reflection optical spectra of olive oil) with the sample temperature
is shown. This new methodology opens wide practical applications in the differ-
entiation of the hidden interconnections between measured by the environment and
external factors.

In chapter “Nonlocal Conditions for Semi-linear Fractional Differential
Equations with Hilfer Derivative”, we study the existence of solutions and some
topological proprieties of solution sets for nonlocal semi-linear fractional differ-
ential equations of Hilfer type in Banach space by using noncompact measure
method in the weighted space of continuous functions. The main result is illustrated
with the aid of an example. In chapter “Offshore Wind System in the Way of
Energy 4.0: Ride Through Fault Aided by Fractional PI Control and VRFB”, we
present a simulation about a study to improve the ability of an offshore wind system
to recover from a fault due to a rectifier converter malfunction. The system com-
prises: a semi-submersible platform; a variable speed wind turbine; a synchronous
generator with permanent magnets; a five-level multiple point diode clamped
converter; a fractional PI controller using the Carlson approximation. Recovery is
improved by shielding the DC link of the converter during the fault using as further
equipment a redox vanadium flow battery, aiding the system operation as desired in
the scope of Energy 4.0. Contributions are given for: (i) the fault influence on
the behavior of voltages and currents in the capacitor bank of the DC link; (ii) the
drivetrain modeling of the floating platform by a three-mass modeling; (iii) the
vanadium flow battery integration in the system.
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In chapter “Soft Numerical Algorithm with Convergence Analysis for Time-
Fractional Partial IDEs Constrained by Neumann Conditions”, a soft numerical
algorithm is proposed and analyzed to fitted analytical solutions of PIDEs with
appropriate initial and Neumann conditions in Sobolev space. Meanwhile, the
solutions are represented in series form with accurately computable components.
By truncating the n-term approximate solutions of analytical solutions, the solution
methodology is discussed for both linear and nonlinear problems based on the
nonhomogeneous term. Analysis of convergence and smoothness is given under
certain assumptions to show the theoretical structures of the method. Dynamic
features of the approximate solutions are studied through an illustrated example.
The yield of numerical results indicates the accuracy, clarity, and effectiveness
of the proposed algorithm as well as provide a proper methodology in handling
such fractional issues. Chapter “Approximation of Fractional-Order Operators”
deals with the several comparisons in the time response and Bode results between
four well-known methods; Oustaloup’s method, Matsuda’s method, AbdelAty’s
method, and El-Khazali’s method are made for the rational approximation of
fractional-order operator (fractional Laplace operator). The various methods along
with their advantages and limitations are described in this chapter. Simulation
results are shown for different orders of the fractional operator. It has been shown in
several numerical examples that the El-Khazali’s method is very successful in
comparison with Oustaloup’s, Matsuda’s, and AbdelAty’s methods.

In chapter “Multistep Approach for Nonlinear Fractional Bloch System Using
Adomian Decomposition Techniques”, we discuss a superb multistep approach,
based on the Adomian decomposition method (ADM), which is successfully
implemented for solving nonlinear fractional Bolch system over a vast interval,
numerically. This approach is demonstrated by studying the dynamical behavior
of the fractional Bolch equations (FBEs) at different values of fractional order a in
the sense of Caputo concept over a sequence of the considerable domain. Further,
the numerical comparison between the proposed approach and implicit Runge–
Kutta method is discussed by providing an illustrated example. The gained results
reveal that the MADM is a systematic technique in obtaining a feasible solution for
many nonlinear systems of fractional order arising in natural sciences.

The chapter “Simulation of the Space–Time-Fractional Ultrasound Waves with
Attenuation in Fractal Media” deals with the simulation of the space–time-fractional
ultrasound waves with attenuation in fractal media. In chapter “Certain Properties of
Konhauser Polynomial via Generalized Mittag-Leffler Function”, we establish
several new properties of generalized Mittag-Leffler function via Konhauser
polynomials. Properties like mixed recurrence relations, differential equations, pure
recurrence relations, finite summation formulae, and Laplace transform have been
obtained. In chapter “An Effective Numerical Technique Based on the Tau Method
for the Eigenvalue Problems”, we consider the (presumably new) effective
numerical scheme based on the Legendre polynomials for approximate solution of
eigenvalue problems. First, a new operational matrix, which can be represented by
sparse matrix is defined by using the Tau method and orthogonal functions. Sparse
data is by nature more compressed and thus require significantly less storage.
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A comparison of the results for some examples reveals that the presented method is
convenient and effective, also we consider the problem of column buckling to show
the validity of the proposed method. Finally, in chapter “On Hermite–Hadamard-
Type Inequalities for Coordinated Convex Mappings Utilizing Generalized
Fractional Integrals”, we obtain the Hermite–Hadamard-type inequalities for
coordinated convex function via generalized fractional integrals, which generalize
some important fractional integrals such as the Riemann–Liouville fractional
integrals, the Hadamard fractional integrals, and Katugampola fractional integrals.
The results given in this chapter provide a generalization of several inequalities
obtained in earlier studies.

Jaipur, India Praveen Agarwal
Ankara, Turkey Dumitru Baleanu
Merced, USA YangQuan Chen
Amman, Jordan Shaher Momani
Porto, Portugal José António Tenreiro Machado

viii Preface



Contents

Closed-Form Discretization of Fractional-Order Differential
and Integral Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Reyad El-Khazali and J. A. Tenreiro Machado

On Fractional-Order Characteristics of Vegetable Tissues
and Edible Drinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
J. A. Tenreiro Machado and António M. Lopes

Some Relations Between Bounded Below Elliptic Operators
and Stochastic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Rémi Léandre

Discrete Geometrical Invariants: How to Differentiate the Pattern
Sequences from the Tested Ones? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Raoul R. Nigmatullin and Artem S. Vorobev

Nonlocal Conditions for Semi-linear Fractional Differential Equations
with Hilfer Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Benaouda Hedia

Offshore Wind System in the Way of Energy 4.0: Ride Through Fault
Aided by Fractional PI Control and VRFB . . . . . . . . . . . . . . . . . . . . . . 85
Rui Melicio, Duarte Valério and V. M. F. Mendes

Soft Numerical Algorithm with Convergence Analysis
for Time-Fractional Partial IDEs Constrained
by Neumann Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Omar Abu Arqub, Mohammed Al-Smadi and Shaher Momani

Approximation of Fractional-Order Operators . . . . . . . . . . . . . . . . . . . 121
Reyad El-Khazali, Iqbal M. Batiha and Shaher Momani

ix



Multistep Approach for Nonlinear Fractional Bloch System Using
Adomian Decomposition Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Asad Freihat, Shatha Hasan, Mohammed Al-Smadi, Omar Abu Arqub
and Shaher Momani

Simulation of the Space–Time-Fractional Ultrasound Waves
with Attenuation in Fractal Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
E. A. Abdel-Rehim and A. S. Hashem

Certain Properties of Konhauser Polynomial via Generalized
Mittag-Leffler Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
J. C. Prajapati, N. K. Ajudia, Shilpi Jain, Anjali Goswami
and Praveen Agarwal

An Effective Numerical Technique Based on the Tau Method
for the Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Maryam Attary and Praveen Agarwal

On Hermite–Hadamard-Type Inequalities for Coordinated Convex
Mappings Utilizing Generalized Fractional Integrals . . . . . . . . . . . . . . . 227
Hüseyin Budak and Praveen Agarwal

x Contents



Closed-Form Discretization of
Fractional-Order Differential
and Integral Operators

Reyad El-Khazali and J. A. Tenreiro Machado

Abstract This paper introduces a closed-form discretization of fractional-order dif-
ferential or integral Laplace operators. The proposed method depends on extracting
the necessary phase requirements from the phase diagram. The magnitude frequency
response follows directly due to the symmetry of the poles and zeros of the finite
z-transfer function. Unlike the continued fraction expansion technique, or the infinite
impulse response of second-order IIR-type filters, the proposed technique general-
izes the Tustin operator to derive a first-, second-, third-, and fourth-order discrete-
time operators (DTO) that are stable and of minimum phase. The proposed method
depends only on the order of the Laplace operator. The resulted discrete-time opera-
tors enjoy flat-phase response over awide range of discrete-time frequency spectrum.
The closed-form DTO enables one to identify the stability regions of fractional-
order discrete-time systems or even to design discrete-time fractional-order P I λDμ

controllers. The effectiveness of this work is demonstrated via several numerical
simulations.

Keywords Fractional calculus · Transfer function · Discrete-time operator ·
Discrete-time integro-differential operators · Frequency response

1 Introduction

Fractional calculus is a generalization of the integer-order one. Most practical sys-
tems exhibit fractional-order dynamics, which could be of real or complex values.
Fractional-order systems enjoy the hereditary effect that is approximated by infinite-
dimensional models [8, 20]. It is used in many fields such as in economy, physics,

R. El-Khazali (B)
ECE Department, Khalifa University, Abu Dhabi, United Arab Emirates
e-mail: reyad.elkhazali@ku.ac.ae

J. A. T. Machado
Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Porto,
Portugal
e-mail: jtm@isep.ipp.pt

© Springer Nature Singapore Pte Ltd. 2019
P. Agarwal et al. (eds.), Fractional Calculus, Springer Proceedings
in Mathematics & Statistics 303, https://doi.org/10.1007/978-981-15-0430-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0430-3_1&domain=pdf
mailto:reyad.elkhazali@ku.ac.ae
mailto:jtm@isep.ipp.pt
https://doi.org/10.1007/978-981-15-0430-3_1


2 R. El-Khazali and J. A. T. Machado

biology, chemistry,medicine, social sciences, and engineering. To analyze fractional-
order systems, one has to look for finite-dimensional and realizable models that
approximate such systems [11, 12, 19, 21–25].

The use ofmicroprocessors nowadays are necessary for signal processing and sys-
tem analysis. Thus, a straightforward method is required to discretize a continuous-
time fractional-order system into a discrete-time one. This can be accomplished by
discretizing the fractional-order Laplacian operator sα and replacing it with a finite-
order DTO. In general, there are two methods that are used to discretize sα; i.e., a
direct and an indirect one. In the indirect discretizationmethod, a rational continuous-
time operator (CTO) is first obtained and then discretized using techniques such as
the bilinear transformation, the Al-Alaoui operator, the Euler’s backward method, or
the stable Simpson’s method [1–3].The direct method, however, allows one to gen-
erate discrete-time operators that converts a continuous-time operator (CTO) into a
DTO [4, 5, 17].

The indirect discretization method is achieved in two steps; the first one is to
approximate the Laplacian operator sα by a rational transfer function in the s-domain,
which is then simplified using the continued fraction expansion (CFE), and the sec-
ond step is to discretize the expanded form using either the bilinear transformation,
Simpson’s method, Euler’s method, or a linear combination of them or other exist-
ing forms [6, 24]. It is important to realize that the CFE method could yield an
unstable non-minimum phase discrete-time operator. An alternative approach to the
CFE was discussed in [19], where infinite impulse response (IIR) autoregressive
moving-average (ARMA) models are used to develop DTO operators, which may
result in developing higher order approximation. Notice that the Al-Alaoui operator
is obtained as a linear combination of the trapezoidal and the rectangular integration
rules [2, 14, 15, 26]. The interpolation and inversion processes may induce, in some
cases, unstable fractional-order operators.

This work introduces a straightforward discretization direct method to discretize
continuous differential and/or integral operators. It can be considered as a dynamic
(or adaptive) discretization technique, where the poles and the zeros of the generated
z-transfer function are all located inside the unit disc and their values depend only on
the fractional-order α. The proposed method yields finite-order DTO that exhibits a
competitive frequency response to higher order operators developed in [2, 6, 16].

The paper is organized as follows. Section2 summarizes some preliminary con-
cepts and background. Section3 introduces the main results of first-, second-, third-,
and fourth-order operators, while Sect. 4 summarizes the numerical simulation and
a comparison between different operators. Section5 outlines the main conclusions.

2 Preliminary Concepts and Background

The general fractional-order differential (integral) operator is denoted by a D±α
t (a I α

t ),
respectively [18], where a and t represent the starting time and α ∈ R is the order
of the operator. For example, if one wishes to implement a discrete-time fractional-
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order controller, then it is necessary to look for a stable non-minimum phase DTO
operator of low order. The design and implementation of fractional-order discrete-
time controllers cannot accommodate higher order operators since this will increase
the complexity of the controlled system, and could yield unstable ones. Therefore, the
proposed technique provides a competitive DTO that benefits from the IIR structure
of such operators; i.e., a second-order DTO is competitive to that of a ninth-order
one introduced in [6, 19, 20].

As mentioned in Sect. 1, the indirect discretization method starts by develop-
ing a rational finite-order transfer functions, that is, s±α ≈ N (s,α)

D(s,α)
[10, 13, 21], and

it is followed by using any existing discretization technique, or a linear combina-
tion of such methods. For example, the Al-Alaoui discrete-time integral operator is
simply a linear interpolation of the backward rectangular rule and the trapezoidal
rule, namely H (z) = aHRect (z) + (1 − a) HTrap (z), where 0 < a < 1 [1–3]. A
similar approach was used to derive a hybrid digital integrator using a linear com-
bination of Trapezoidal and Simpson integrator [6, 10]. Such interpolation reduces
the frequency warping over a limited frequency band, and their phase frequency
response is not constant. For comparison, Fig. 1 displays the frequency response of the
Tustin operator, s = H (z) = 2

T
1−z−1

1+z−1 , Al-Alaoui operator, s = H (z) = 8
7T

1−z−1

1+ 1
7 z

−1 ,

and Chen discrete-time operator [5]. Another discrete-time operator that approx-
imates an integer-order integrator was also introduced in [6] and given here for
completeness:

H (z) = 6
(
z2 − 1

)

T (3 − a) (z + p1) (z + p2)
, (1a)

p1 = 3 + a + 2
√
3a

3 − a
, (1b)

p2 = 3 + a − 2
√
3a

3 − a
, (1c)

where T is the sampling time and 0 < a < 1 is a scaling factor. Equation (1) can
then be used to generate several quadratic forms that discretize s±1.

Figure1 shows the frequency response of the aforementioned three DTO opera-
tors that approximate s1 for T = 0.001. The magnitude response of Tustin operator
exhibits large errors at both ends of the frequency spectrum. The magnitude response
of the Al-Alaoui operator, however, is almost identical to that of the Tustin operator
at low frequency, but provides a better response at high frequency.Moreover, it yields
a linear phase response due to the asymmetric pole-zero location, while the hybrid
ninth-order operator reported in [6] yields a perfect phase behavior. However, one
cannot afford this size of an operator since a discrete-time fractional-order phase-
locked loop, for example, will be modeled by an 18th-order discrete-time z-transfer
function.

Since the goal is to look for a closed-form discrete-time model for s±α , the
direct approach is adopted here to develop a straightforward discretization method.
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Fig. 1 Frequency response of Tustin, Al-Alaoui, and the DTO of Eq. (1) for a = 1

In all direct methods, the continuous frequency operator is replaced by a generat-
ing function, that is, s±α = (

ω
(
z−1

))±α
. To gain more insight, one may start with

the Grünwald–Letnikov (GL) definition of the fractional-order differential (integral)
operator [7, 13, 14, 21, 22]:

aD
±α
t f (t) = lim

h→0

1

h±α

∞∑

j=0

C±α
j f ((t − j) h). (2)

where

C±α
j = (−1) j

(±α

j

)
=

(
1 − 1 ± α

j

)
C±α

j−1, j = 1, . . . , n, (3a)

C±α
0 = 1. (3b)

Taking the Z-transform of (2) and using the short memory principle [14], the
following generating function may discretize s±α:

(
ω

(
z−1

))±α = T∓α

⎛

⎝
[ L
T ]∑

j=0

C±α
j z− j

⎞

⎠ , (4)

where T = h is the sampling time, and L
T = [

nh−a
h

]
is an increasing memory size

L − nh − a.
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Fig. 2 Frequency response of a FIR-type discrete-time differentiator for s0.5 with T = 0.001 s,
and L = 0.011

Equation (4) defines a transfer function of a finite impulse response (FIR) discrete-
time system of s±α . The memory size, L , determines the accuracy of the approxi-
mation. Hence, a compromise has to be made between the accuracy and the size of
the operator. Figure2 shows the frequency response of (4) for α = 0.5, T = 0.001,
and L = 11. Clearly, the phase diagram is close to the expected angle of π

4 over a
very narrow frequency band ω ∈ (0.06, 0.08) rad/s, which may not be suitable for
realization techniques.

Obviously, in spite of its large size, the frequency response of the FIRdiscrete-time
form of Eq. (4) does not provide the expected constant phase response. Therefore,
an alternative discrete-time IIR-type rational z-transfer function, of lower size than
the FIR form, to discretize s±α will be the choice to overcome such problem.

Since, the CFE approach does not always yield a minimum phase and stable
system, or a flat-phase response [2, 6, 7, 11, 13], a compromise has to be made
between the size of the expansion and the type of the generating functions used for
approximation. The following generating functions can be used to discretize s±α and
replace it with DTO operators [5, 6, 14, 17]:

(a) Backward-Euler method:
(
ω

(
z−1

))±α =
(
1−z−1

T

)±α

(b) Trapezoidal (Tustin) discretization rule:
(
ω

(
z−1

))±α =
(

2
T

1−z−1

1+z−1

)±α

(c) Al-Alaoui Operator:
(
ω

(
z−1

))±α =
(

8
7T

1−z−1

1+ 1
7 z

−1

)±α
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(d) A Hybrid interpolation of Simpson and Trapezoidal discrete-time integrators:

H (z) = aHS (z) + (1 − a) HT (z) , 0 < a < 1, (5)

where HS (z) = T
3
1+4z−1+z−2

1−z−2 and HT (z) = T
2
1+z−1

1−z−1 .
The interpolation in (5) represents a generalization of the first three methods.

Since the magnitude frequency response of the integer-order integrator, s−1, lies
between the Simpson rule and that of the Trapezoidal discrete-time integrator [2, 3],
the linear combination in (5) for 0 < a < 1 can be used to generate a typical IIR-type
discrete-time operator as follows [6]:

(
ω

(
z−1

))±α = k0

(
1 − z−2

(
1 + bz−1

)2

)α

, (6)

where α ∈ [0, 1], k0 =
(

6z2
T (3−a)

)α

and b = z2 = 3+a−2
√
3a

3−a .

Several transfer functions of different sizes can be obtained to approximate(
ω

(
z−1

))±α
. For example, when α = 0.5 and T = 0.001, Eq. (6), yields the fol-

lowing z-transfer functions, G(n,a) (z), that discretize s0.5, where n and a represent
the order and the weighting factor of the approximation, respectively [6]:

G(2,0,5)
(
z−1

) = 127 + 41.26z−1 − 112.6z−2

4 + 2.98z−1 − z−2
, (7a)

G(3,0,5)
(
z−1

) = 1501 − 503.6z−1 − 1298z−2 + 446.5z−3

47.26 + 4z−1 − 23.63z−2 − z−3
, (7b)

G(4,0,5)
(
z−1) = 508.1 − 1501z−1 − 4.478z−2 + 1298z−3 − 382.9z−4

16 − 40.54z−1 − 12z−2 + 20.27z−3 + z−4
. (7c)

Figure3 shows the frequency response of (7) for ω ∈ (−π, π). The magnitude
frequency response of the second-order approximation yields a warping effect at
high frequency, while the phase diagram of the three forms exhibit a decreasing
phase value over most of the spectrum.

Remark 1 The approximation given by (7c), reported in [6], represents an unstable
non-minimum phase DTO since it has a pole and a zero outside the unit circle at
p = 2.6298, and z = 2.6328, respectively. Even though p ≈ z, that almost cancel
each other, implementing such an operator would cause system instability. Further-
more, according to [6], one must improve the phase performance of G(4,0,5) (z) by
cascading a causal lead compensator z0.5 = z−0.5

z−1 , which requires the implementation
of a fractional-order sampler.
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Fig. 3 Frequency response of s0.5 using (7a), (7b), (7c)

3 New Fractional-Order Discrete-Time Operators

As discussed in Sect. 2, the discretization technique of generating functions using the
CFE yields high order and an unstable non-minimum phase discrete-time approx-
imation. The aim of this work is to avoid such subtleties by developing an adap-
tive closed-form DTO that effectively discretizes the fractional-order operators, s±α ,
which only depend on its order ±α. Furthermore, one can also define the stability
region of the discrete form of s±α .

3.1 First-Order Operators

The following first-order operator based on a closed-form solution was first intro-
duced in [8, 9]. It represents an approximation of a first-order discrete-time differ-
ential operator (DTDO), where its reciprocal also defines a discrete-time integral
operator (DTIO):

s±α ≈ H1K (z) =
(
2

T

)±α z ∓ z1 (α)

z ∓ p1 (α)
, (8)

where

z1 (α) = −p1 (α) = 1

tan
(
(2 − α) π

4

) , 0 < α < 1, (9)

and where z1 (α) = −p1 (α) ∈ R.
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Obviously, for 0 < α < 1, |z1 (α)| = |p1 (α)| < 1 are located inside the unit
circle.

3.2 Second-Order Operator

The second-order discrete-time operator was also introduced in [8, 9]. It yields a
normalized biquadratic discrete-time transfer function that approximates s±α and is
given by (Fig. 4):

s±α ≈ H2K (z) =
(
2

T

)±α
(z ∓ z1 (α)) (z ∓ z2 (α))

(z ∓ p1 (α)) (z ∓ p2 (α))
, (10)

where

z1 (α) =
η2 − 2 +

√
5η2

2 + 4

2η2
, η2 = tan

(
α

π

4

)
, (11)

and ⎧
⎨

⎩

z2 (α) = z1 (α) − 1
p1 (α) = −z2 (α)

p2 (α) = −z1 (α)

. (12)

Clearly, for large values of α, the first-order DTO yields a competitive frequency
response to that of the second-order DTO as shown in Fig. 5.
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Fig. 4 Frequency response of discrete-time first- and second-order operators for s0.5
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Fig. 5 Frequency response of (8) and (10) for s0.95

3.3 Third-Order Operator

The third-order operator is developed to improve the accuracy of the discrete-time
approximation over a wider frequency range. Similar to (10), the third-order operator
is given by

s±α ≈ H3K (z) =
(
2

T

)±α
(z ∓ z1 (α)) (z ∓ z2 (α)) (z ∓ z3 (α))

(z ∓ p1 (α)) (z ∓ p2 (α)) (z ∓ p3 (α))
, (13)

where ⎧
⎪⎪⎨

⎪⎪⎩

p3 (α) = −z1 (α)

z2 (α) = 1 − z1 (α)

p2 (α) = −z2 (α)

z3 (α) = −p1 (α)

(14)

The pole-zero map of (14) is shown in Fig. 6, which represents a distribution of
alternating real poles and zeros.
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Fig. 6 Pole-zero map of
third-order DTO operator

Due to the symmetry of the poles and zeros and since zi (α) = −pi (α), i =
1, 2, 3, the phase requirement is assumed to meet the phase contribution of the
fractional-order operator at the discrete-time frequency � = α π

2 :

(
ϕz1 + ϕz2 + ϕz3

) − (
ϕp1 + ϕp2 + ϕp3

) = α
π

2
(15)

Substituting (14) into (15) yields

z1 = max
(
roots

(
z21 − z1 + q(α)

))
, (16)

where

q(α) = 2 − α (1 + η3)

1 + η3 (1 − α)
(17)

and
η3 = tan

(
α

π

4

)
. (18)

Hence z1 is found, the rest of poles and zeros are determined from (17) and
(15). For example, for α = 0.5 Eq. (19) gives z1 = 0.8425, z2 = 0.1575, and z3 =
−0.5, while p1 = −z3, p2 = −z2 and p3 = −z1. Therefore, the third-order DTO
that discretizes s0.5 for T = 2 is given by

s0.5 ≈ H3K (z) = z3 − 0.5z2 − 0.3673z + 0.06635

z3 + 0.5z2 − 0.3673z − 0.06635
. (19)
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Fig. 7 Pole-zero map of the
fourth-order DTO operator

Remark 2 When α = 1, then from (17), q(1) = 0, and Eq. (16) reduces to z21 − z1 =
0, which yields a nontrivial solution z1 = 1, and the third-order DTO operator given
by (13) and (14) for this case reduces to the well-known bilinear transformation
H3K = 2

T
1−z−1

1+z−1 .

3.4 Fourth-Order Operator

The fourth-order z-transfer function that discretizes the fractional-order operators is
similarly developed as the previous three operators and given by the following finite
z-transfer function:

s±α ≈ H4K (z) =
(
2

T

)±α
(z ∓ z1 (α)) (z ∓ z2 (α)) (z ∓ z3 (α)) (z ∓ z4 (α))

(z ∓ p1 (α)) (z ∓ p2 (α)) (z ∓ p3 (α)) (z ∓ p4 (α))
,

(20)
where ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p4 (α) = −z1 (α)

p2 (α) = 1 − z1 (α)

z3 (α) = −p2 (α)

z4 (α) = −p1 (α)

p3 (α) = −z2 (α)

(21)

The pole-zero map of (21) is shown in Fig. 7, which also represents a distribution
of alternating real poles and zeros of (20).

The phase contribution of (20) is given by
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(
ϕz1 + ϕz2 + ϕz3 + ϕz4

) − (
ϕp1 + ϕp2 + ϕp3 + ϕp4

) = α
π

2
(22)

Since there is a symmetry between the poles and zeros as depicted in Fig. 7, one
may focus on the phase contribution of the poles and zeros that lie on the positive
real axis. By other words, from the symmetry, and without loss of generality, one
may conclude from (22), that,

(
ϕz1 + ϕz2

) − (
ϕp1 + ϕp2

) = α
π

4
(23)

where

ϕzi = π − arctan

(
1

zi (α)

)
, ϕpi = π − arctan

(
1

pi (α)

)
, i = 1, 2. (24)

Assumption 2 Let p1 (α) and z2 (α) lie in the geometric mean of their adjacent
zeros and poles, respectively,

p1 (α) = √
z1 (α) z2 (α), (25a)

z2 (α) = √
p1 (α) p2 (α). (25b)

Substituting (24) and (25) into (23) yields the following nonlinear function in
z1 (α):

f (z) = ηz41 + 2 (1 − η) z31 − (η + 3) z21 + (2η − 1) z1 + (η + 1)

+ η
[
z

5
3
1 (1 − z1)

1
3 + z

1
3
1 (1 − z1)

5
3 − z

4
3
1 (1 − z1)

2
3 − z

2
3
1 (1 − z1)

4
3

]

+ z
5
3
1 (1 − z1)

4
3 − z

4
3
1 (1 − z1)

5
3 + z

2
3
1 (1 − z1)

1
3 − z

1
3
1 (1 − z1)

2
3 = 0,

(26)

where η = tan
(
α π

4

)
.

Obviously, the nonlinearities in (26) are due to placing the inner pole/zero at
the geometric mean of its surrounding zeros/poles. Solving (26) numerically with
an accuracy | f (z)| < ε, for small ε > 0 yields a desired solution 0 < z1 < 1. For
α = 0.5, the fourth- order operator that discretizes s0.5 is found to be

s0.5 ≈ H4k (z) =
(
2

T

)α z4 − 0.5295z3 − 0.3835z2 + 0.05843z + 0.01218

z4 + 0.5295z3 − 0.3835z2 − 0.05843z + 0.01218
. (27)
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Fig. 8 Frequency response of the second-, third-, and fourth-order operators for α = 0.5, α = 0.7
and α = 0.9
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Fig. 8 (continued)

4 Numerical Simulation

Figure8a–c shows the frequency response of the second-, third-, and the fourth-order
operators forα = 0.5,α = 0.7, andα = 0.9, respectively.As noted, the second-order
operator is a good competitor to the third-order one, especially for α > 0.7, while
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Fig. 9 Frequency response of (27) and (28) for s0.5
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the fourth-order operator exhibits a much better frequency response with a constant
phase at the middle frequency with some overshoot at both ends of the spectrum.

To appreciate the proposed DTO, the frequency response of the second- order
operator described by (10) is compared with other forms of DTO reported in [2, 6].
The case when α = 0.5 for T = 0.001 is taken as a benchmark. Equations (10)–(12)
then yield

s0.5 ≈ 44.7214 − 22.0313z−1 − 8.4670z−2

1.0 + 0.4926z−1 − 0.1893z−2
. (28)

The following ninth-order DTO that discretizes s0.5 using the CFE and reported
in [6] is investigated against the one given by (28)

G9 (z) = 44.72
z9 − 0.5z8 − 2z7 + 0.875z6 + 1.313z5 − 0.4688z4

z9 + 0.5z8 − 2z7 − 0.875z6 + 1.313z5 + 0.4688z4
· · ·

−0.3125z3 + 0.07813z2 + 0.01953z − 0.001953

−0.3125z3 − 0.07813z2 + 0.01953z − 0.001953
. (29)
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Fig. 10 Comparison between the approximations of (27) and (29) for s0.5
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Figure9 displays the frequency response of both (28) and (29). Both forms exhibit
similar magnitude and phase responses. However, the proposed second-order oper-
ator of (28) has a better magnitude response at low frequency than the ninth-order
one given by (29), while the phase response of (29) at low frequency is better than
that of (28). However, the significant improvement of (28) over the one in (29) is
evident by the order reduction. For example, if one wishes to discretize a system
with Laplace operators of two different orders, one would need an 18th-order model,
while a second-orderDTOgiven by (10) is faster and requires less hardware (Fig. 10).

The appealing factor in the proposed techniques lies in the fact that in all cases
and for different fractional orders, the reciprocals of all proposed operators yield
stable minimum phase discrete-time integrators.

5 Conclusion

A closed-form discrete-time first-, second-, third-, and fourth-order operators (DTO)
are introduced to discretize the fractional-order Laplacian operator, s±α . Each opera-
tor is described by finite-dimensional rational z-transfer function. The discretization
method is straightforward and depends on the order of the operator. The proposed
methodgenerates an adaptive, symmetrical real poles, and zeros thatmigrate to differ-
ent locations inside the unit disc. The corresponding z−transfer functions represent
stable non-minimum phase IIR-filters that exhibit constant phase and gain frequency
responses over a wide frequency spectrum. As α approaches 1, the poles and zeros
of all four operators converge to±1 and they reduce to the well-known discrete-time
bilinear transformation. It is worth noting that the first and the second-order opera-
tors will be sufficient to discretize s±α for high fractional orders; (say 0.8 ≤ α ≤ 1).
The proposed DTO operators exhibit competitive frequency responses to those ones
obtained by different discretization methods.
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On Fractional-Order Characteristics
of Vegetable Tissues and Edible Drinks

J. A. Tenreiro Machado and António M. Lopes

Abstract This chapter uses frequency response techniques to characterize vegetable
tissues and edible drinks. In the first phase, the impedance of the distinct samples is
measured and fractional-order models are applied to the resulting data. In a second
phase, hierarchical clustering and multidimensional scaling tools are adopted for
comparing and visualizing the similarities between the specimens.

Keywords Frequency response · Fractional-order models · Clustering ·
Visualization

1 Introduction

The frequency response technique with electrical signals, often referred to as electri-
cal impedance spectroscopy (EIS), measures the electrical impedance of a specimen
across a given range of frequencies [5, 17, 22, 23, 25]. This technique has the
advantage of being nondestructive, while avoiding complex and time-consuming
experimental or laboratory procedures. The EIS has been widely used for studying
vegetable tissues [4, 36], animal, and human samples [1, 13], beverages [30, 39],
nonbiological materials [18, 37], and devices [2, 14].

This chapter addresses the application of the EIS for characterizing different
products, namely plant leaves, vegetables, wine, and milk [22–24, 26]. In the first
phase, the impedance Z( jω) is measured and fractional calculus (FC) is applied to
model the samples with a reduced number of parameters. In a second phase, the
EIS experimental data are processed by means of hierarchical clustering (HC) and
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multidimensional scaling (MDS) algorithms for visualizing similarities between the
specimen.

The chapter is organized as follows. Section2 introduces the tools and meth-
ods adopted in the follow-up. Section3 describes the impedance spectra, Z( jω),
by means of FC models. Section4 applies the MDS for clustering and visualizing
similarities between the specimens. Finally, Sect. 5 draws the main conclusions.

2 Tools and Methods

2.1 The Canberra Distance

The Canberra distance was proposed, and later modified, by Lance and Williams
[19, 20]. Given 2 points in a K -dimensional space, X = (x1, . . . , xK ) and Y =
(y1, . . . , yK ), the Canberra distance between X and Y is given by

dC(X,Y ) =
K∑

k=1

|xk − yk |
|xk | + |yk | . (1)

Equation (1) is a metric widely used for quantifying data scattered around an
origin. The Canberra distance has several interesting properties, namely it is unitary
when the arguments are symmetric, biased formeasures around the origin, and highly
sensitive for values close to zero.

2.2 Electrical Impedance Spectroscopy

In practical terms, the EIS method involves exciting a specimen with frequency-
variable electric sinusoidal signals and registering the system response. The voltage
v(t) and current i(t) across the specimen at steady state are sinusoidal functions of
time given by {

v(t) = V cos(ωt + θV )

i(t) = I cos(ωt + θI )
, (2)

where {V, I } are the amplitudes of the voltage and current, {θV , θI } denote their
phase shifts, ω = 2π f represents the angular frequency, and f is the frequency.

The voltage and current can be represented in the frequency domain by

{
V( jω) = V · e jθV

I( jω) = I · e jθI
, (3)
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where j = √−1. The experimental complex impedance Ze( jω) is defined as the
ratio of phasors:

Ze( jω) = V( jω)

I( jω)
= V

I
· e j (θV −θI ) = |Ze( jω)| · e j arg [Ze( jω)]. (4)

Given an impedance spectrumZe( jω), it is often necessary to find amathematical
description, that is, a heuristic model, Zm( jω), that fits well into the experimental
data, and has a reduced number of parameters [28, 29].

Different empirical models in the scope of the dielectric relaxation phenomenon
were proposed [12], namely the Debye, Cole-Cole, Cole-Davidson, and Havriliak-
Negami models [7–10, 16, 21, 34, 35]:

ZD( jω) = 1

1 + jωτ
, (5)

ZCC( jω) = 1

1 + ( jωτ)α
, (6)

ZCD( jω) = 1

(1 + jωτ)β
, (7)

ZHN ( jω) = 1

[1 + ( jωτ)α]β , (8)

where 0 < α, β ≤ 1, and τ denotes a relaxation time.
These empirical models are, in fact, particular cases of FC, and represent the fun-

damental bricks of any more complex fractional-order expressions, that may include
further poles and zeros.

In this chapter, the Bode diagrams of the electrical impedanceZe( jω) are approxi-
mated using fractional-order (FO) basedmodels, whileminimizing a fitness function,
J , based on the Canberra distance [6] between the experimental, Ze, and model, Zm ,
impedances:

J = 1

L

L∑

k=1

( |�[Ze( jωk)] − �[Zm( jωk)]|
|�[Ze( jωk)]| + |�[Zm( jωk)]| + |�[Ze( jωk)] − �[Zm( jωk)]|

|�[Ze( jωk)]| + |�[Zm( jωk)]|
)

,

(9)

where L denotes the number of frequencies, ωk , used for measuring the electrical
impedance Ze( jω), and �(·) and �(·) represent the real and imaginary parts of a
complex number [22, 24].

The function, J , leads to good results because it calculates the ratio between the
difference and the sum of two values. Therefore, it is possible to capture the relative
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error of the adjustment, avoiding saturation-like effects, that occurs when using the
standard Euclidean norm due to the simultaneous presence of large and small values.

2.3 Experimental Setup for EIS Measurements

ThediagramofFig. 1 represents schematically the experimental arrangement adopted
for the measurements [22–24, 26]. The specimens are connected in series with an
adaptation resistance, Rs = 15 k�, for signal measurement, while yielding a good
signal/noise ratio. A Hewlett Packard/Agilent 33220A function generator applies a
sinusoidal 5 V AC voltage to the circuit (i.e., a voltage divider). A Tektronix TDS
2002C two- channel oscilloscopemeasures the voltagesVab andVcb. The impedance
Z( jω) is obtained for the frequency range2π × 10 ≤ ω ≤ 2π × 105 rad/s, at L = 25
logarithmically spaced points, using the expression:

Z( jω) = Rs ·
(
Vab( jω)

Vcb( jω)
− 1

)
. (10)

Several experimental tests demonstrated good stability in what concerns the oxi-
dation of the copper electrodes, while different electrode geometries revealed a neg-
ligible influence on the results. Moreover, experiments with various amplitudes of
the excitation signal showed good linearity, allowing data treatment using transfer
function concepts.

2.4 Hierarchichal Clustering

Clustering is a data analysis technique [15] that groups similar items. In HC, two
possible iterative strategies generate a hierarchy of clusters, namely the (i) agglom-
erative and the (ii) divisive clustering. With (i) each item starts in its own cluster and
the algorithm merges the two most similar clusters until there is one single cluster.
With (ii) all items start in a single cluster and the algorithm removes the outsiders
from the least cohesive cluster, until each item is in its own cluster. In both cases,
it is required a linkage criterion, that is a function of the distances between pairs of
items, for quantifying the dissimilarity between clusters. For 2 clusters, R and S, the
distance d(xR, xS) between items xR ∈ R and xS ∈ S is based on metrics such as the
maximum, minimum, and average linkages given by [3]

dmax (R, S) = max
xR∈R,xS∈S

d (xR, xS) , (11)

dmin (R, S) = min
xR∈R,xS∈S

d (xR, xS) , (12)
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Fig. 1 Experimental EIS setup for measuring impedance Z( jω)

dave (R, S) = 1

‖ R ‖‖ S ‖
∑

xR∈R,xS∈S
d (xR, xS) . (13)

After using one of the algorithms, the results of HC are presented in a graphical
object such as a dendrogram or a hierarchical tree.

To assess the quality of the clustering, the cophenetic correlation (CC) coefficient
is used [33]. The CC gives a measure of how well the generated graphical object
preserves the original pairwise distances. If the clustering is successful, the links
between items in the graphical object have a strong correlation with those in the
original dataset. The closer the CC value to 1, the better the clustering result. The
quality assessment is plotted in a Shepard diagram that compares the original and
the cophenetic distances. A good clustering leads to a layout of points close to the
45-degree line.
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2.5 Multidimensional Scaling

MDS is a computational technique for clustering and visualizing data [31]. In the
first phase, given s items and a measure of dissimilarity, a s × s symmetric matrix,
C = [ci j ], (i, j) = 1, . . . , s, of item-to-item dissimilarities is calculated. The matrix
C represents the input information for starting the MDS computational scheme. The
MDS rational is to assign points for representing items in a multidimensional space
and to try to reproduce the measured dissimilarities, ci j . In a second phase, MDS
evaluates different configurations for maximizing some fitness function, arriving
at a set of point coordinates (and, therefore, to a symmetric matrix of distances
D = [di j ]) with the reproduced dissimilarities that best approximates ci j . A common
fitness function for measuring the difference between ci j and di j is the raw stress:

S = [
di j − f (ci j )

]2
, (14)

where f (·) indicates some types of transformation.
The MDS interpretation is based on the patterns of points that can be visualized

in the generated map. Similar (dissimilar) objects are represented by points that are
close to (far from) each other. So, the information retrieval is not based on the point
coordinates, or the geometrical form of the clusters. Indeed, we can rotate, translate,
or magnify the map (for better visualization) because the distances remain identical.
The MDS axes have neither special meaning nor units.

The quality of the MDS mat can be assessed by means of the stress and Shepard
plots. The stress plot represents S versus the number of dimensions m of the MDS
map. The plot S(m) is a monotonic decreasing chart and choosing the value of m
is a compromise between achieving low values of S or m. Often the values m = 2
or m = 3 are adopted since they allow direct visualization. On the other hand, the
Shepard diagram compares di j and ci j for a particular value m. A narrow scatter
around the 45-degree line represents a good fit between di j and ci j .

3 Modeling Vegetable Tissues and Edible Drinks

3.1 EIS Analysis of Vegetable Tissues

A total of Nl = 6 angiosperm leaves and Nv = 4 vegetables are studied, as summa-
rized in Tables1 and 2, respectively [22, 23].

Each leaf (vegetable) is submerged in salted water, with except ion of its peti-
ole (base). Two copper electrodes of 0.5mm diameter connect the specimen to the
measurement circuit. One electrode is inserted into the leaf petiole (vegetable base),
aligned with its longitudinal axis, and the other one is placed in the water (see Fig. 1,
setup A).
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Fig. 2 The Bode diagram of the experimental,Ze, and model,Zm impedance of the Ilex aquifolium
(IA)

For the leaves, several numerical tests proved that the 4-parameter FO model

Zm( jω) = R + K

1 +
(

jω
p

)β
(15)

leads to a good approximation to the experimental data (see details in [22]). Figure2
depicts the Bode diagram of the experimental, Ze, and model, Zm impedance of the
Ilex aquifolium (IA), illustrating the fit. Table1 summarizes the values of the model
parameters that approximate the spectra of all leaves.

For the vegetables, the following 5-parameter FOmodel is needed to fit the exper-
imental data:

Zm( jω) = R + K
[
1 +

(
jω
p

)α]β
. (16)

An example of the experimental and model Bode diagram is depicted in Fig. 3
for the Cauliflower. The model parameters of the four specimens are summarized in
Table2 (see details in [23]).
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Table 1 Parameters of the FO-based model for Nl = 6 leaves

i Species Tag R K p α J

1 Citrus limon CL 8.9 × 103 5.6 × 104 2 × 103 0.59 0.035

2 Ilex aquifolium IA 7.2 × 103 8.4 × 104 2.5 × 103 0.72 0.288

3 Ficus elastica FE 7.5 × 103 7.8 × 104 6 × 102 0.55 0.338

4 Hydrangea macrophylla HM 2 × 103 6.6 × 104 5 × 102 0.48 0.493

5 Acacia dealbata AD 7 × 103 4.9 × 105 1.2 × 101 0.37 0.398

6 Acer pseudoplatanus AC 1.5 × 104 5.5 × 105 1 × 102 0.47 0.581
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Fig. 3 The Bode diagram of the experimental, Ze, and model, Zm impedances for the Cauliflower

Table 2 Parameters of the FO-based model for the Nv = 4 vegetables

i Designation Tag R K p α β J

1 Cauliflower CF 1.8 × 104 4.8 × 105 5.5 × 101 0.470 1.046 0.0026

2 Broccoli BR 0.1 × 104 4.0 × 105 5.5 × 101 0.859 0.897 0.0027

3 Round cabbage RC 5.2 × 104 0.6 × 105 1.7 × 103 0.444 1.470 0.0002

4 Brussels sprout BS 5.9 × 104 7.2 × 105 1.7 × 103 0.354 1.292 0.0008
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Table 3 The set of Nw = 16 wine samples analyzed

i Tag Wine region Wine style

1 W1 Alentejo White

2 W2 Alentejo White

3 W3 Alentejo White

4 W4 Península de Setúbal White

5 W5 Tejo White

6 W6 Douro White

7 W7 Vinhos Verdes Green white

8 W8 Vinhos Verdes Green white

9 R1 Alentejo Red

10 R2 Alentejo Red

11 R3 Península de Setúbal Red

12 R4 Península de Setúbal Red

13 R5 Bairrada Red

14 R6 Douro Red

15 R7 Vinhos Verdes Green red

16 R8 Vinhos Verdes Green red

These results demonstrate that FO empirical formulae constitute simple, yet reli-
able models to characterize vegetable structures.

3.2 EIS Analysis of Edible Drinks

In this Section, Nw = 16 wine types and Nm = 12 UHT milk varieties are studied.
The wine set includes samples from distinct Portuguese regions [11], and involves a
mix of ripe and green, both red and white, styles (Table3). The milk set comprises
samples from distinct brands, with different fat contents, and includes a mix of
normal, reduced, and fortified milk varieties (Table4).

The experimental setup for EIS measurements is depicted in setup B of Fig. 1.
A parallelepipedic container with dimensions (l × w × h) = (120 × 100 × 55)mm
is filled with 200 ml of wine. Two 0.5mm diameter copper electrodes connect the
samples to the measurement circuit. The electrodes are immersed at 5 mm from the
bottom of the container, and are placed diametrically opposed to each other.

For both wine and milk, several numerical tests revealed that a good fit between
the experimental, Ze, and model, Zm , impedance occurs for the 6-parameter FO
model:

Z( jω) = K ·
(
1 + jω

z1

)α1 ·
(
1 + jω

z2

)α2

( jω)β
. (17)
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Table 4 The set of Nm = 12 milk samples analyzed

i Tag Milk type

1 M1 Skimmed

2 M2 Skimmed

3 M3 Skimmed

4 M4 Semi-skimmed

5 M5 Semi-skimmed

6 M6 Semi-skimmed

7 M7 Whole

8 M8 Whole

9 M9 Whole

10 M10 Organic semi-skimmed

11 M11 Reduced skimmed

12 M12 Fortified skimmed

Table 5 Impedance parameters of the Nw = 16 wine samples

i Tag Impedance parameters

K z1 α1 z2 α2 β J

1 W1 6700 1000 0.33 24 × 104 0.88 0.29 0.2298

2 W2 5000 1000 0.32 19 × 104 0.87 0.32 0.2372

3 W3 5800 1300 0.40 22 × 104 0.88 0.31 0.2678

4 W4 7000 1000 0.35 22 × 104 0.86 0.31 0.2639

5 W5 5500 1000 0.32 19 × 104 0.87 0.33 0.2885

6 W6 6000 900 0.32 20 × 104 0.88 0.29 0.2888

7 W7 7500 1600 0.40 15 × 104 0.75 0.36 0.2667

8 W8 7500 1600 0.40 17 × 104 0.75 0.36 0.2339

9 R1 5500 950 0.33 19 × 104 0.87 0.32 0.2859

10 R2 6800 1100 0.33 23 × 104 0.92 0.33 0.2936

11 R3 5000 1000 0.33 23 × 104 0.86 0.31 0.2731

12 R4 6000 1000 0.34 22 × 104 0.88 0.33 0.2941

13 R5 7500 1600 0.39 15 × 104 0.75 0.35 0.2644

14 R6 5000 1000 0.32 20 × 104 0.88 0.32 0.2977

15 R7 6500 1100 0.30 20 × 104 0.89 0.35 0.3651

16 R8 7200 1700 0.41 19 × 104 0.88 0.38 0.2985

Figures 4 and 5 depict the Bode diagrams ofZe andZm for the wine andmilk sam-
ples W5 and M2, respectively, illustrating the adequacy of expression (17). Tables5
and 6 summarize the impedance parameters for all wine and milk specimens (see
details in [24, 26]).
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W5

Table 6 Impedance parameters for the Nm = 12 milk samples

i Tag Impedance parameters

K z1 α1 z2 α2 β J

1 M1 33325 5340 0.68 5606 0.57 0.7 0.735

2 M2 36563 8840 0.67 8233 0.65 0.7 0.693

3 M3 45133 3844 0.72 15813 0.64 0.72 0.71

4 M4 29400 9880 0.67 8906 0.59 0.67 0.726

5 M5 35150 4290 0.72 8190 0.56 0.73 0.772

6 M6 34380 9172 0.76 7717 0.54 0.68 0.69

7 M7 59463 2600 0.72 16225 0.68 0.8 0.691

8 M8 35750 7150 0.66 8450 0.61 0.69 0.763

9 M9 31859 4572 0.68 5999 0.62 0.76 0.71

10 M10 32626 9667 0.76 6656 0.57 0.72 0.72

11 M11 27300 3500 0.72 65000 0.53 0.64 0.717

12 M12 34613 3500 0.85 65000 0.53 0.72 0.747
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Fig. 5 The Bode diagram of the experimental, Ze, and model, Zm , impedances for the milk sample
M2

The results demonstrate that FOmodels yield a convincing description and reliable
characterization of the samples, and that the EIS technique leads to a simple and
straightforward procedure to characterize the specimen.

In conclusion, analyzing the results of Sects. 3.1 and 3.2 we verify the emergence
of FO effects that are not captured by classical integer-order models.

4 Clustering and Visualization of Vegetable Tissues
and Edible Drinks

4.1 HC of Vegetable Tissues and Edible Drinks

The HC processes a matrix C = [ci j ] based on the distance:

ci j = 1

L

L∑

k=1

∣∣�[Zei ( jωk)] − �[Ze j ( jωk)]
∣∣

∣∣�[Zei ( jωk)]
∣∣ + ∣∣�[Ze j ( jωk)]

∣∣ +
∣∣�[Zei ( jωk)] − �[Ze j ( jωk)]

∣∣
∣∣�[Zei ( jωk)]

∣∣ + ∣∣�[Ze j ( jωk)]
∣∣ ,

(18)
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Fig. 6 Dendrogram generated by the HC for the s = 38 samples and matrix C

where the indices i, j = 1, . . . , s, so that s denotes the number of samples, and Ze

represents the impedances measured by means of EIS.
One must note that trying other alternative measures is a common procedure.

In fact, one can choose distinct distances, and the corresponding charts, to obtain
the best visualization. Nevertheless, several tests demonstrated that the Canberra
distance leads to relevant results.

The successive (agglomerative) clustering and average-linkage method are used.
Figure6 depicts the dendrogram generated by the HC, with input C = [ci j ] and s =
Nl + Nv + Nw + Nm = 38. One can note the emergence of patterns for vegetables,
wine, and milk.

4.2 MDS of Vegetable Tissues and Edible Drinks

Figure7 depicts the 2- and 3-dimensional maps of items obtained by the MDS, with
input C = [ci j ] and s = Nl + Nv + Nw + Nm = 38, where three clusters composed
of vegetables, wine, and milk emerge. Moreover, the s = Nl + Nv = 10 vegetable
tissues and s = Nw + Nm = 28 edible drinks are compared apart from each other,
and the corresponding 3-dimensional MDS maps are depicted in Fig. 8. The charts
reveal blurred and clear clusters, respectively, confirming that leaves and vegetables
are quite similar, while milk and wine have strong dissimilarities.
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Fig. 7 The 2- and
3-dimensional MDS maps
for the s = 38 samples and
matrix C
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In conclusion, the dendrogram and MDS charts are alternatives with different
characteristics, both leading to identical clusters, namely with a clear separation
between the 3 groups, but somemixing between leaves and vegetables. Nevertheless,
from the point of view of visualization, the 3-dimensional MDS is superior to the
dendrogram technique.

5 Conclusions

In this chapter, the EIS technique was used to determine the electrical impedance
spectra of different materials, and FO models were adopted to describe the experi-
mental data. It was shown that FO transfer functions describe adequately the data.
The potential use of simple, nonintrusive, and economical techniques in food pro-
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Fig. 8 The 3-dimensional
MDS maps for the s = 10
vegetable tissues and s = 28
edible drinks with matrix C
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duction, biology, and medicine reveals possible directions to be further explored [27,
32, 38].
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Some Relations Between Bounded
Below Elliptic Operators and Stochastic
Analysis

Rémi Léandre

Abstract We apply Malliavin Calculus tools to the case of a bounded below elliptic
right-invariant pseudo-differential operators on a Lie group. We give examples of
bounded below pseudo-differential elliptic operators on R

d by using the theory of
Poisson process and the Garding inequality. In the two cases, there are no stochastic
processes because the considered semi-groups do not preserve positivity.

Keywords Malliavin calculus · Pseudo-differential operators · Generalized
Poisson processes · Garding inequality

1 Introduction

Let G be a compact connected Lie group, with generic element g endowed with its
biinvariant Riemannian structure and with its normalized Haar measure dg. e is the
unit element of G.

Let f i be a basis of TeG. We can consider as right-invariant vector fields. This
means that if we consider the action Rg0 h → (g → h(gg0)) on smooth function h
on G, we have

Rg0( f
i h) = f i (Rg0h) (1)

We consider a right-invariant elliptic pseudo-differential bounded below operator
L of order larger than 2k on G. It generates by elliptic theory a semi-group Pt on
L2(dg) and even on Cb(G) the space of continuous functions on G endowed with
the uniform norm.
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Theorem 1 If t > 0,

Pth(g0) =
∫
G
pt (g0, g)h(g)dg (2)

where g → pt (g0, g) is smooth if h is continuous.

This theorem is classical in analysis, but it enters in our general program to
implement stochastic analysis tools in the theory of non-Markovian semi-group. See
the review [7, 13] for that. See [10, 11] for another presentation where the Malliavin
Matrix plays a key role. Here we don’t use the Malliavin matrix. See [12] for the
case of right-invariant differential operators.

Jump processes are generated by pseudo-differential operators, which satisfy the
maximum principle. Unlike the Malliavin Calculus for jump processes [1, 5, 6],
there is no limitation here on the size of jumps.

This theorem can be applied to any positive power of a right invariant strictly
positive differential operator on G [14].

2 Pseudo-differential Operators

Let us recall what is a pseudo-differential operator on R
d [3, 5, 6, 15]. Let be a

smooth function from R
d × R

d into C a(x, ξ). We suppose that for all x

|Dr
x D

l
ξa(x, ξ)| ≤ C |ξ|m−l + C (3)

We suppose that for all x
|a(x, ξ)| ≥ C |ξ|m ′

(4)

for |ξ| > C for a suitable m ′ > 0. Let ĥ be the Fourier transform of the continuous
function h. We consider the operator L defines on smooth function h by

L̂h(x) =
∫

a(x, ξ)ĥ(ξ)dξ (5)

L is said to be a pseudo-differential operator elliptic of order larger than m ′ with
symbol a. This property is invariant if we do a diffeomorphism on Rd with bounded
derivatives at each order. This remark allows to define by using charts a pseudo-
differential operator elliptic of order larger than m ′ on a compact manifold M .

On a compact Riemannian manifold, we can consider the Riemannian measure.
In local coordinates, the Riemannian metric is given by a smooth map

x → gi, j (x) (6)

in the set of strictly positive matrix and the Riemannian measure is given by
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dx = det (g.,.)
−1/2dx1 ⊗ .. ⊗ dxd (7)

We can normalize the Riemannian measure to be of total mass 1.
The fact that L is symmetric on L2(M) means that

∫
M

< h1(x), Lh2(x) > dx =
∫
M

< Lh1(x), h2(x) > dx (8)

The fact that L is bounded below means that for some C > 0:
∫
M

< h(x), Lh(x) > dx ≥ −C
∫
M

< h(x), h(x) > dx (9)

In such a case L has a self-adjoint extension. This generates a semi-group of bounded
operators Pt on L2(M) satisfying the heat equation

∂

∂t
Pth = −LPth (10)

for h ∈ L2(M) and t > 0.Moreover,we suppose that P0h = h. It generatesmoreover
a semi-group on Cb(M) by ellipticity.

An example can be given on R
d if we use the Garding inequality [15]. Suppose

that we consider the Lebesgue measure on Rd and that for |ξ| > C0 we have

Re(a(x, ξ)) > C |ξ|m ′
(11)

for some C > 0. In such a case if we suppose L symmetric, it is bounded below.

3 Proof of the Theorem

3.1 Algebraic Scheme of the Proof: Malliavin Integration
by Parts

We consider the family of operators on C∞(G × R
n):

L̃n
t = L +

n∑
i=1

f ji
∂

∂ui
αi
t +

n∑
i=1

∂2k

∂u2ki
(12)

αi
t are smooth function fromR

+ intoR. By elliptic theory, L̃n
t generates a semi-group

P̃n
t on Cb(G × Rn). This semi-group is time inhomogeneous.
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P̃n+1
t [h(g)hn(u)v](., ., 0) =

∫ t

0
P̃n
t,s[ f j+1αn+1

s P̃n
s [h(g)hn(u)]](., .) (13)

Moreover

P̃n+1
t [uh(.)hn(.)](., ., un+1) = P̃n+1

t [uh(.)hn(.)](., ., 0) + P̃n
t [h(.)hn(.)](., .)un+1

(14)

h is a function of g, hn a function of u1, ..., un . This comes from the fact that ∂
∂un+1

commutes with L̃n+1
t .

Therefore, the two sides of (13) satisfy the same parabolic equation with second
member. We deduce that

P̃n+1
t [un+1

n∏
j=1

u jh(.)](., ., 0) =
∫ t

0
ds P̃n

t,s[ f jn+1αn+1
s P̃n

s [h
n∏
j=1

u j ]](., .) (15)

This is an integration by parts formula. We would like to present this formula in a
more appropriate way for our object.

We consider the operator

L
n = L +

n∑
j=1

∂2k

∂u2kj
(16)

It generates a semi-group P
n
t . In the sequel, we will skip the problem of sign coming

if k is even or not. Since
∏n

j=1 u j is a polynomial, the Volterra expansion associated

to P̃s[h ∏n
j=1 u j ] is finite and converge. We get

P̃s[h
n∏
j=1

u j ](., .) =
∑

(−1)l
∫
s>s1>..>sl>0

I ls1,..,sl ds1..dsl (17)

where

I ls1,..,sl = P
n
s−s1 [

n∑
i=1

f ji αi
s1

∂

∂ui
[Pn

s1−s2 [
n∑

i=1

f ji αi
s2

∂

∂ui
[Pn

s3−s2 [[
n∑

i=1

f ji αi
s2

∂

∂ui
[...[Pn

sl [h
n∏
j=1

u j ]..](., .) (18)

Moreover

P
n
s [h

n∏
j=1

u j ](g0, .) = P
n
s [h(.g0)

n∏
j=1

u j ](e, .) (19)
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such that

f i j P
n
s [h

n∏
j=1

u j ](g0, .) =

P
n
s [ f i j h(.g0)

n∏
j=1

u j ](e, .) = P
n
s [ f i j h(.)

n∏
j=1

u j ](g0, .) (20)

We remark that in (17) the series is finite and stops at n because we consider a
polynomial in vi and because ∂

∂ui
commute with Pt . If we consider Pt (h1(g)h2(v))

it is a product of the Pt (h1)Qt (h2(v)), where Qt is generated by
∑n

j=1
∂2k

∂u2kj
. We

deduce that in the term of the Volterra expansion of length l smaller than n, we get
(Pt−s( f lh(g))Qt−s(h1(v) where h1(v) is an homogeneous polynomial with coeffi-
cient independent of g of degree n − l.

We do the following recursion hypothesis on l:

Hypothesis 1 There exists a positive real rl such that if (α) = (i(α), .., i(α)). is a
multi-index of length smaller than l constituted of |(α)| with the same element

|Pt [ f (α)h
n∏

i=n

ui ](g, v.)| ≤ Ct−rl‖h‖∞(1 +
n∏

i=n

|vi |) (21)

where ‖.‖∞ is the uniform norm of h.

It is true for l = 1 by (13) and the next part.
If it is true for l, it is still true for l + 1, by using (15) and the Volterra expansion

above for f (α)h and taking αn+1
s = srl .

By choosing suitable α
j
t , we have accordingly the framework of the Malliavin

Calculus for any basis of the Lie algebra f i , for any l

|Pt [
∑
i

( f i )l h](g0)| ≤ C(α)‖h‖∞ (22)

in order to conclude, because the operator
∑

i ( f
i )l is an elliptic operator whose

degree tends to infinity when l → ∞.

3.2 Estimates: the Davies Gauge Transform

We do as in [12] (16). The problem is that in P̃n
t [h ∏n

j=1 u j ](., .) the test function u j

is not bounded and that P̃n
t acts only on Cb(G × R

n). We do as in [12] the Davies
gauge transform

∏n
I g(ui ) where
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g(u) = (|u|) (23)

if u is big and g is smooth strictly positive.
This gauge transform acts on the original operator by the simple formula

(
∏n

i=1 g(ui ))−1 L̃n
1((

∏n
i=1 g(ui ).). On the semi-group it acts as

(

n∏
i=1

g(.))−1 P̃n
t [(

n∏
i=1

g(ui )h(.)hn(.)](., .) (24)

But

(g(ui ))
−1 ∂

∂ui
(g(ui ).) = ∂

∂ui
+ C(ui ) (25)

where the potential C(ui ) is smooth with bounded derivatives at each order. There-
fore, the transformed semi-group act on Cb(G × Rn). It remains to choose

hn(u.) =
n∏
j=1

u j

g(u j )
(26)

in order to conclude. We deduce the bound:

|P̃n
t |[h

n∏
j=1

|u j |](.; v.) ≤ C(‖h‖∞(1 +
n∏

i=n

|vi |) (27)

where |P̃n
t | is the absolute value of the semi-group P̃n

t .

4 Study of an Example on the Linear Space

We give in this part a big category of examples on Rd of symmetric bounded below
pseudo-differential operators which takes its origin in the theory of Poisson process
[5, 6].

We consider the space C∞(Rd) of smooth functions h with bounded derivatives
at each order.

We introduce a smooth function from R
d × R

d into R (x, y) → g(x, y) which
equals to 0 for |y| > C > 0 for a smallC and with bounded derivatives at each order.
This allows us to introduce the integro-differential operator on C∞(Rd):

Lh(x) = (−1)l+1
∫
Rd

(h(x + y) − h(x)

−
2l∑
i=1

1/ i ! < y⊗i , h(i)(x))g(x, y)|y|−(2l+d+α)dy (28)

for α ∈ ] − 1, 0[.
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We do the following hypothesis: for all x ∈ R
d , h(x, 0) > C > 0.

In such a case, we have shown [8, 9] that L is a pseudo-differential elliptic operator
with symbol

a(x, ξ) = (−1)l+1
∫
Rd

(exp[√−1 < y, ξ >]−
2l∑
i=1

1/ i !(√−1 < y, ξ >)i )g(x, y)|y|−(2l+d+α)dy (29)

L is elliptic and satisfies Garding assumption (11) with m ′ → ∞ when l → ∞. We
produce a large class of examples of such operators which are moreover symmetric
in L2(dx).

Let be X j (x) , j = 1, .., d be somevector fieldswithout divergence,with bounded
derivatives of each order and which are uniformly in x in Rd a basis of Rd .

Let φt (y)(x) be the dynamical system generated by the vector field X (y, x) =∑d
j=1 y j X j (x); φ0(y)(x) = x and

dφt (y)(x) = X (y,φt (y))dt (30)

We suppose g(x, y) = g(y) = g(−y). We introduce the operator

L1h(x) = (−1)l+1
∫
Rd

(h(φ1(y)(x)) − h(x)−
l∑

i=1

1/(2i !)(X (y, x))(2i)h(x))g(y)|y|−(2l+d+α)dy (31)

In the previous formula, the vector field X (y, x) is considered as a one-order
differential operator in x .

Lemma 2 Under the symmetry condition on g, L1 is symmetric and is defined on
C∞(Rd).

Proof The fact that L1 is defined onC∞(Rd) comes from the fact that the asymptotic
expansion of y → h(φ1(y)(x)) near 0 is

h(x) +
2l∑
i=1

1/ i !X (y, x)(i)h(x) (32)

and from the fact that g(y) = g(−y) such that only even integers remain in the sum
(31).

The fact that L1 is symmetric comes from two fact: the vector field X (y, x) is
divergence free such that
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∫
Rd

h1(x)X (y, x)(2i)h2(x)dx =
∫
Rd

h2(x)X (y, x)(2i)h1(x)dx (33)

by integrating by parts. Moreover, x → φ1(y)(x) preserves the Lebesgue measure
such that ∫

Rd

h1(x)h2(φ1(y)(x))dx =
∫
Rd

h1(φ1(−y)(x))h2(x)dx (34)

and the result arises from the equality g(y) = g(−y). ♦
Theorem 3 L1 is an operator of the type (28) which is symmetric bounded below.

Proof It remains only to show that L1 is an operator of the type (28). For that we
remark that the map

y → φ1(y)(x) − x (35)

is a local diffeomorphism at every point y and a local diffeomorphism of a neigh-
borhood of 0 in Rd onto a neighborhood of 0 in R

d . ♦
Remark Let us give some heuristic explanation which explains this part. Let us
consider a formal path measure dQ on a “space” of paths yt with jumps starting
from 0 which represents the semi-group Pt associated to the operator

Lh(x) = (−1)l+1
∫
Rd

(h(x + y) − h(x)−
l∑

i=1

1/(2i !) < y⊗2i , h(2i)(x) >)g(y)|y|−(2l+d+α)dy (36)

such that formally

Pth(x) =
∫

h(yt + x) “dQ(y.)” (37)

We consider the “formal stochastic differential with jumps” whose solution (start-
ing from x) y1,t (x) satisfies

�y1,t (x) = φ1((�yt ))(y1,t−(x)) − y1,t−(x) (38)

where yt− = lims→t− ys and �yt = yt − yt−. We should get

P1,t h(x) =
∫

f (y1,t (x) “dQ(y.)” (39)

Moreover, a lot of compensation should appear in the formal equation giving y1,t .
We refer to [5] in the case where the path integrals are rigorously defined (In such a
case only one compensation appears!).
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Discrete Geometrical Invariants:
How to Differentiate the Pattern
Sequences from the Tested Ones?

Raoul R. Nigmatullin and Artem S. Vorobev

Abstract Based on the new method (defined below as the discrete geometrical
invariants—DGI(s)), one can show that it enables to find the statistical differences
between random sequences that can be presented in the form of 2D curves. We gen-
eralized and considered the Weierstrass–Mandelbrot function and found the desired
invariant of the fourth order that connects the WM-functions with different fractal
dimensions. Besides, we consider an example based on real experimental data. A
high correlation of the statistically significant parameters of the DGI obtained from
the measured data (associated with reflection optical spectra of olive oil) with the
sample temperature is shown. This new methodology opens wide practical appli-
cations in differentiation of the hidden interconnections between measured by the
environment and external factors.

Keywords Weerstrass–Mandelbrot function · Discrete geometrical invariants ·
Equipment calibration · Nano-noise “reading”
2010 AMS Math. Subject Classification. Primary 40A05, 40A25; Secondary
45G05.

1 Introduction and Formulation of the Problem

If we follow for the modern tendencies in the applied sciences, one can notice that
the efforts of many types of research were concentrated presumably on the analysis
of complex systems. It implies the usage of methodology of many natural sciences as
physics, chemistry, biology, economy, and improvement of the mathematical meth-
ods that should be more general and enables to describe the hierarchy of interactions,
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intermittency between the structural organization levels of the considered complex
systems. One of the main obstacles is the “invisible” boundary determination that
divides the chaotic and deterministic behaviors of the complex systems. For better
understanding of its behavior, a potential researcher needs to increase the determin-
istic part and decrease the part related to its chaotic and unpredictable behavior. If it
is possible to solve this task then as a “reward” a researcher pulls apart the forecast-
ing boundaries for prediction of the complex system behavior in the time evolution
process. Many new features came from the fractal geometry with appearance of the
B. Mandelbrot book [1] and its successful interpretation [2] that helps to consider
and describe mathematically many new complex systems with self-similar/fractal
geometry. This specific understanding helped to attract the mathematical tool as the
fractional calculus [3, 4] and find for it its proper place inmany practical applications.
Now this powerful combination of the fractal geometry with the fractional calculus
gives a new impact in the development of many natural sciences unifying them in
one perfect instrument for knowledge and establishing new relationships that exist
in the Mother Nature.

In this paper, we want to attract the attention of experts and many researches
working in this “hot” spot as the fractal geometry and fractional calculus to “a dis-
covery” made by Prof. Yu. I. Babenko in his books [5, 6]. Actually, he was able to
generalize the well-known Pythagoras theorem and find new mathematical relation-
ships between the lengths of many symmetrical sets/polyhedrons located in 2D and
3D spaces. After reading this instructive book, one of us (RRN) formulated the fol-
lowing problem: is it possible to find some deterministic mathematical relationships
between random sequences at least in 2D space and apply them for a more detailed
comparison of the measured data?

The obtained results showed that these DGI(s) really exist. Therefore, one can
state that at least any two arbitrary random sets located in 2D space can relate with
each other by means of their inter-correlations and integer moments. This gener-
alization opens quite new possibilities in the reduced identification of different 2D
curves (images) and comparison of various random curves with each other without
the knowledge of a “true” fitting function, which, for many complex systems studied,
it is absent. The preliminary results related to the application of the DGI in electro-
chemistry was published in paper [7]. In this paper, we present the complete invariant
of the 4th order and show its possibilities for comparison of the WM-curves with
different fractal dimensions and in finding of the hidden deterministic relationships
between the measured data (reflectance optical olive oils spectra) and temperature
changes during the experiment.

2 Basic Relationships and Description of the Algorithm

As it was reminded in the first section in the books [5, 6], it was shown that the well-
known Pythagoras theorem can be generalized and propagated for a set of random
points having coordinates (xk, yk) (k = 1, 2, ..., n). Really, one can consider the
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square of the distance connecting an arbitrary point M(x, y) with the kth point
(xk, yk) belonging to the given set:

l2k = (x − xk)
2 − (y − yk)

2, (2.1)

one requires that
1

n

n∑

k=1

l2k = I 2 ≡ const. (2.2)

Inserting expression (2.1) into (2.2), one obtains

(x − 〈x〉)2 + (y − 〈y〉)2 = I 2 − R2,

〈
x p

〉 = 1

n

n∑

k=1

xkp,
〈
y p

〉 = 1

n

n∑

k=1

ykp, R
2 = 〈

�x2
〉 + 〈

�y2
〉
,

〈
�V 2〉 de f= 〈

V 2〉 − 〈V 〉2 , V = x, y.

(2.3)

As one can notice from (2.3) that the set of circles can exist if the desired invariant
I 2 ≥ R2, the equality sign corresponds to the circle with the zeroth radius. It is
convenient to consider the invariant circle with radius I 2 = 2R2. From another point
of view, the requirement (2.2) corresponds to the reduction of the given set of points to
the continuous circle with 4 statistical parameters (〈x p〉, 〈y p〉, p = 1, 2). However,
for practical purposes, this simplest requirement (2.2) is not sufficient and therefore,
it has sense to consider other combinations.

2.1 The DGI of the Second Order (General Form)

In order to have reduction to the deterministic curve with sufficient number of sta-
tistical parameters we consider another combination that is a little complicated in
comparison with the definition of the Euclidean distance (2.1):

L2
k = C2(y − yk)

2 − 2B(x − xk) · (y − yk) + A2(x − xk)
2, k = 1, 2, ..., n. (2.4)

The quadratic form (2.4) contains 5 statistical parameters (〈x p〉, 〈y p〉, p = 1, 2),
〈xy〉 and 3 unknown parameters (A, B,C) figuring in (2.4). We subject this combi-
nation to the requirement:

1

n

n∑

k=1

L2
k = I 2 ≡ const. (2.5)
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Inserting (2.4) into (2.5) after simple algebraic manipulations one can obtain

C2(y − 〈y〉)2 − 2B(y − 〈y〉) · (x − 〈x〉) + A2(x − 〈x〉)2 + E2 ≡ I 2,

E2 = C2
〈
�y2

〉 − 2B〈�x�y〉 + A2
〈
�x2

〉
.

(2.6)

As before, we put I 2 = 2E2. In order to find three unknown parameters (A, B,C),
it is convenient to use the obvious parameterization for the variables (x, y) relatively
the angle ϕ:

y = 〈y〉 + A cos(ϕ − α),

x = 〈x〉 + C cos(ϕ), 0 ≤ ϕ ≤ 2π.
(2.7)

Excluding the parameter ϕ from (2.7) and identifying expression (2.6) with rela-
tionship:

C2
〈
(�y)2

〉 − 2AC cosα 〈(�x) · (�y)〉 + A2
〈
(�x)2

〉 = A2C2 − B2,

E2 = C2
〈
�y2

〉 − 2AC cosα〈�x�y〉 + A2
〈
�x2

〉 = A2C2 sin2 α,
(2.8)

one obtains

cosα = B

AC
, E2 = A2C2 − B2. (2.9)

In order to decrease the number of unknown parameters, we find from (2.7) the
values A and C from the obvious conditions:

ymax = 〈y〉 + A, ymin = 〈y〉 − A,→ A = 1

2
(ymax − ymin),

xmax = 〈x〉 + C, xmin = 〈x〉 − C,→ C = 1

2
(xmax − xmin).

(2.10)

Parameter B is found from relationships (2.8) and (2.9) as a positive root of the
quadratic equation written relatively B

B2 − 2 〈�x�y〉 B − [A2C2 − 〈
�x2

〉
A2 − 〈

�y2
〉
C2] = 0,

B = 〈�x�y〉 + [(〈�x�y〉)2 + A2C2 − 〈
�x2

〉
A2 − 〈

�y2
〉
C2]1/2. (2.11)

This single root is chosen from the comparisonof two identity sequences (xk = yk)
that follows from the obvious requirement B = A2, (α = 0). Therefore, one can say
that with the help of the rotated counterclockwise ellipse (2.7) we reduced 2n random
points figuring in (2.4) to 8 statistical parameters (〈x p〉, 〈y p〉, p = 1, 2), 〈xy〉, α,

A, C). If it is necessary to include the higher moments 〈x p ys〉, (p = 0, 1, 2, ...;
s = 0, 1, 2...) then other combinations of the type (2.4) should be considered.

Some generalizations for the invariant of the fourth order are considered below.
It is easy to notice that the invariant (2.7) of the second order is not sufficient for a
detailed comparison of two random sequences. Expression (2.9) is equivalent to the
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conventional Pearson Correlation Coefficient (PCC) that is related to the correlation
of the second order 〈�x�y〉. Actually, we found the geometrical interpretation of
the PCC and showed that the closed curve as an ellipse can be used for pictorial
interpretation of the quadratic correlations between two random sequences. There-
fore, it has a sense to consider the invariants of the higher orders for a more detailed
and reliable comparison of a couple of random sequences with each other. Below,
we want to consider the complete invariant of the fourth order. It is instructive also to
give the basis of the proposed theory that will be useful for quantitative comparison
of any two random sets located in 2D plane.

2.2 The General Theory of the Geometrical Invariants Based
on the Higher Order Curves and the GDI of the Fourth
Order

Unifying the ideas expressed in books [5, 6], one can consider the following combi-
nation:

L(m)
k =

m∑

q=0,p=0

Aq,p(x − xk)
q(y − yk)

p. (2.12)

This combination can be considered as the most general form that can be used
for comparison of two random sets having coordinates (xk, yk) (k = 1, 2, 3 . . . , n).
If one requires that

1

n

n∑

k=1

L(m)
k = I nv, (2.13)

then this form can be used for comparison of two random sequences of an arbi-
trary order in terms of different combinations of the integer moments. If we insert
(2.12) into (2.13) and open the corresponding terms then one can obtain possible
combinations of the integer moments of the type:

Mq,p = 〈
(�x)q(�y)p

〉 ≡ 1

n

n∑

k=1

(x − 〈x〉 − �xk)
q(y − 〈y〉 − �yk)

p,

〈A〉 = 1

n

n∑

k=1

Ak,�Ak = Ak − 〈A〉 .

(2.14)

In this section, having in mind its practical application for comparison of the
different experimental data with each other we consider the complete invariant of
the fourth order that will be helpful for a more fine comparison of two sets.
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2.3 The Complete Invariant of the Fourth-Order Admitting
the Separation of Variables

A possible combination allowing to express the desired invariant in the analytical
form can be written as

L(4)
k = A40(x − xk)

4 + A31(x − xk)
3(y − yk) − 2A22(x − xk)

2(y − yk)
2+

+A13(x − xk)(y − yk)
3 + A04(y − yk)

4.

(2.15)
Inserting expression (2.15) into (2.13) and equating the linear terms relatively the

variables
X ≡ x −

〈
x
〉
,Y ≡ y −

〈
y
〉
, (2.16)

to zero, we obtain the following combinations:

4A40

〈
(�x)3

〉
+ 3A31

〈
(�x)2�y

〉
+ A13

〈
(�y)3

〉
= 4A22

〈
(�y)2�x

〉
,

4A04

〈
(�y)3

〉
+ 3A13

〈
(�y)2�x〉 + A31

〈
(�x)3

〉
= 4A22

〈
(�x)2�y

〉
.

(2.17)

In order to decrease the number of the parameters entering in (2.15) we introduce
the following ratios:

A31 = σx A22, A13 = σy A22, A40 = θx A22, A04 = θy A22. (2.18)

These ratios help to cancel on an arbitrary constant A22 ( �= 0) and present system
(2.17) in the form:

4θx
〈
(�x)3

〉
+ 3σx

〈
(�x)2�y

〉
+ σy

〈
(�y)3

〉
= 4

〈
(�y)2�x

〉
,

4θy
〈
(�y)3

〉
+ σx

〈
(�x)3

〉
+ 3σy

〈
(�y)2�x

〉
= 4

〈
(�x)2�y

〉
.

(2.19)

In order to find these four unknown parameters, it is necessary to find some
additional relationships between them. One can notice that for identity relationships
(xk, yk) (k = 1, 2, 3 . . . , n), the following relationships from (2.19) are valid:

4θx + 3σx + σy = 4, 4θy + σx + 3σy = 4

or

θx = 1 − 3

4
σx − 1

4
σy, θy = 1 − 3

4
σy − 1

4
σx .

(2.20)

The systems (2.19), (2.20) allowfinding the unknownvariables (ratios) and rewrite
them by means of different correlations belonging of two compared sets.
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σx = 4

�

[
3 ·

(〈
�x(�y)2

〉
−

〈
(�y)3

〉)
·
(〈

�x(�y)2
〉
−

〈
(�x)3

〉)
+

+
(〈

(�x)3
〉
−

〈
(�y)3

〉)
·
(〈

�y(�x)2
〉
−

〈
(�y)3

〉)]
,

σy = 4

�

[
3 ·

(〈
�y(�x)2

〉
−

〈
(�x)3

〉)
·
(〈

�y(�x)2
〉
−

〈
(�y)3

〉)
+

+
(〈

(�y)3
〉
−

〈
(�x)3

〉)
·
(〈

�x(�y)2
〉
−

〈
(�x)3

〉)]
,

� = 9 ·
(〈

�y(�x)2
〉
−

〈
(�x)3

〉)
·
(〈

�x(�y)2
〉
−

〈
(�y)3

〉)
+

+
(〈

(�x)3
〉
−

〈
(�y)3

〉)2
.

(2.21)

Two other unknown parameters θx,y are found from (2.20).
Finally, we obtain the following invariant of the fourth order:

K (X,Y ) = K2(X,Y ) + K4(X,Y ) = I4,

K2(X,Y ) = Ax X
2 + B · X · Y + AyY

2,

K4(X,Y ) = θx X
4 + θyY

4 − 2X2Y 2 + σx X
3Y + σy XY

3.

(2.22)

The following combinations shown below define the constants figuring in the DGI
(2.22):

Ax = 6θx
〈
(�x)2

〉
− 2

〈
(�y)2

〉
+ 3σx

〈
�x�y

〉
,

Ay = 6θy
〈
(�y)2

〉
− 2

〈
(�x)2

〉
+ 3σy

〈
�x�y

〉
,

B = −8
〈
�x�y

〉
+ 3σx

〈
(�x)2

〉
+ 3σy

〈
(�y)2

〉
.

(2.23)

The constant I4 from (2.22) is defined by expression:

I4 = θx

〈
(�x)4

〉
+ θy

〈
(�y)4

〉
+

+σx

〈
(�x)3(�y)

〉
+ σy

〈
(�y)3(�x)

〉
− 2

〈
(�x)2(�y)2

〉
.

(2.24)

Finally, we obtain the eight parametric curve (2.22), which combines 6 correla-
tions and 8 moments up to the fourth order inclusive:

〈
x
〉
,
〈
y
〉
,
〈
(�x)2(�y)2

〉
,
〈
�x(�y)2

〉
,
〈
�y(�x)2

〉
,

〈
�x(�y)3

〉
,
〈
�y(�x)3

〉
,
〈
(�x)4(�y)4

〉
,
〈
(�x)2,3,4

〉
,
〈
(�y)2,3,4

〉
.

(2.25)

The curve K (X, Y ) in (2.22) can be separated in the polar coordinate system. We
present the desired curve in the form:
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x(ϕ) =
〈
x
〉
+ r(ϕ) cosϕ,

y(ϕ) =
〈
y
〉
+ r(ϕ) sinϕ,

r(ϕ) =
[
√
q2
2 (ϕ) + 4I4q4(ϕ) − q2(ϕ)

2q4(ϕ)

]1/2

.

(2.26)

The functions q2,4(ϕ) figuring in (2.26) are determined by expressions:

q2(ϕ) = Ax cos
2(ϕ) + B sinϕ cosϕ + Ay sin

2(ϕ),

q4(ϕ) = θx cos
4(ϕ) − 2 sin2(ϕ) cos2(ϕ) + θy sin

4(ϕ) + σx sinϕ cos3(ϕ) + σy sin
3(ϕ) cosϕ.

(2.27)

This curve determines statistical proximity/difference between 2D random
curves/sets located in the plane. What happens if two random curves are identi-
cal to each other (x j = y j ) for all numbers of the discrete points j = 1, 2, ..., N?. In
this case as it can be shown (the details are given in theMathematical Appendix) that
σx,y = 4/3, θx,y = −1/3, Ax = Ay , B = −2Ax and I4 = 0. Hence, from (2.26) it
follows that r(ϕ) = 0. In this case, expression (2.22) is degenerated into a point with
coordinates 〈x〉 = 〈y〉 located on the line y = x . In the Mathematical Appendix, it
was found the form of the simplified curve (2.22) when two discrete sets xk and yk
(k = 1, 2, ..., n) are becoming close to each other, i.e., �yk = �xk ± � fk(� fk =
fk − 〈 f 〉) - small factor distorting the set yk).
Concluding this section, one can say that we propose the complete invariant of the

fourth order (2.22), which enables to compare two random sets (sequences) located
on 2D plane. In general, this result shows that two random sequences have at least
the compact deterministic curve of the fourth order (2.22) combining 8 parameters
I4, Ax,y , B, σx,y , θx,y . These parameters, in turn, depend on 14 statistical parameters
(2.25) that help to compare one random set with another one. Therefore, we made a
next step and generalized the conventional Pearson correlation coefficient (2.9) that
is valid only for the correlations of the second order. A potential researcher receives
a new statistical tool for more “fine” analysis and comparison of a couple of random
sets with each other. In subsequent chapters, we want to show how to apply this new
tool for comparison of random sequences of different nature.

Finishing this section, it is necessary to remind about another important possibil-
ity of a new approach that makes this DGI-tool more significant and general. The
previous results (expression (2.15) and below) were obtained for vectors (xk, yk)
(k = 1, 2, 3 . . . , n). Are the previous results conserved if one replaces the vectors
for matrices (Mi, j , Li, j ) (i = 1, 2, ..., I ; j = 1, 2, ..., J )? Attentive analysis of the
results obtained above shows that one can obtain a positive answer. Really, for this
case the mean values for 〈x〉, 〈y〉 are rewritten in the following form:

〈x〉 = 1

I · J
I,J∑

i, j

Mi, j , 〈y〉 = 1

I · J
I,J∑

i, j

Li, j , (2.28)
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and different moments and inter-correlations keep formally their forms:

Qq,p =
〈
(�x)q(�y)p

〉
≡ 1

I · J
I,J∑

i, j=1

(
x − 〈x〉 − �xi, j

)q(
y − 〈y〉 − �yi, j

)p
,

〈A〉 = 1

I · J
I,J∑

i, j=1

Ai, j , �Ai, j = Ai, j − 〈A〉.
(2.29)

As it follows from last expression, the subsequent algebraic transformations
remained the same and, therefore the final result (2.26) and its simplified expression
(6.6) keep their structures, as well. This important generalization allows applying the
DGI-tool for analysis of different 2D-images and 3D-projections, especially in cases
when it is necessary to compare the random trajectories generated by unpredictable
movements of molecules, viruses, and other “small” objects. This new possibility,
undoubtedly, merits the separate research.

3 New “Reading” of the Weierstrass–Mandelbrot Function

As it is known [2], the WM-function is defined by the following relationship:

S(z) =
N∑

n=−N

bn · F(z · ξn), F(z) = 1 − cos(z), b = 1

ξv
,

v = 2 − D, N 	 1.

(3.1)

The dependencies of these parameters with respect to the chosen parameter D are
shown in Figs. 6, 7, and 8. We omit the dependence xc(D) which keeps its constant
value equal to −0.02444 for all values of D from [0.5, 2.0]. As one can notice
from (3.1), one can generalize the conventional definition of the WM-function and
propagate it for more wide class of the functions varying the function F(z). The sum
(3.1) has the obvious property:

S(zξ) = 1

b
+Up(z) − Dn(z),

Up(z) = bN f (zξN+1), Dn(z) = b−N−1 f (zξ−N ).

(3.2)

Expression (3.2) satisfies approximately the functional equation (3.3):

S(zξ) ∼= 1

b
S(z), S(z) = zvPr(ln(z)), v = ln(1/b)

ln(ξ)
= 2 − D,

Pr(ln(z) ± ln(ξ)) = Pr(ln(z)),
(3.3)
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Fig. 1 Verification of the
relationships (3.2) for the
WM-function for D = 0.6.
The contribution of the
functions Up(x) and Dn(x)
are negligible and therefore
they are not shown

Fig. 2 Verification of two
log-periodic functions
Pr(x) = Pr(zξ) entering in
expression (3.3) for D = 0.6

if contributions of the functions Up(z) and Dn(z) on the ends of the corresponding
intervals are negligible.Wewant to stress here that expressions (3.3) are more correct
in comparison with expression (2.16) given in the book [2] that was found in the
results of numerical calculations [8]. Now it has a sense to formulate a problem that
can be solved with the help of the DGI approach. Is it possible to relate the parameter
D from (3.3) with parameters (20), (21), (23), and (24) forming the desired curve (26)
and test the relationships (3.2) and (3.3) numerically? For the aim we chose N = 60
in (3.1) and select the interval for D as [0.5–2.0]. Then we compare successively the
curve corresponding to the D = 0.5 with other curves from the interval [0.6, 2.0]
with step h = 0.1. The verifications of relationships (3.1) and (3.2) for the limiting
cases D = 0.5 and D = 2.0 are given in Figs. 1, 2, 3 and 4, correspondingly.
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Fig. 3 Verification of the relationships (3.2) for theWM-function for D = 1.9. The contribution of
the functions Up(x) and Dn(x) are shown inside the small figure on the right. Their contributions
are small

Fig. 4 Verification of two
log-periodic functions
Pr(x) = Pr(zξ) entering in
expression (3.3) for D = 1.9

Figure5 shows that the deviation factor (6.6) for all selected ranges of D that do
not exceed the unit value. It allows to apply the simplified version of the DGI (6.5)
that contains only 4 parameters (xc, yc, ε/3Q0, B, I4).

Finishing this section, we want to stress one important point. As it has been men-
tioned at the end of the section two, the DGI-tool can be applied successfully for
comparison of different images having random fractal dimensions or their distribu-
tions. It helps to “read” quantitatively two sequences or 2D projections: one of them
can be considered as the pattern one and another image can be defined as tested. The
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Fig. 5 This dependence
demonstrates the criterion of
applicability of the simplified
version of the DGI shown in
the Mathematical Appendix.
It is calculated in accordance
with expression (6.6) and
signifies that for all values of
D from the interval [0.6–2.0]
the simplified version of the
DGI from (6.5) is applicable

Fig. 6 The behavior of the
mean value of the compared
curve relative to the
WM-function having
D = 0.5

new methodology helps to analyze two images in terms of the reduced number of
parameters (8 or 4) and express this comparison in the form of the DGI curves (2.26)
or (6.5), correspondingly.

This instructive example shows that the DGI can serve an additional source of
information that connects the fractal parameters of the WM function with the deter-
ministic curve as the DGI of the fourth order. It helps also to reduce the initial set of
data points (equaled 100) to some small number (4!) of significant parameters that
helps to compare the initial curves in terms of the integer moments and their mutual
cross-correlations defined by expression (2.25). Figure9 demonstrates the form of
the DGI for two limiting cases (D = 0.5, 2.0), including also the intermediate case
D = 1.5. The next section demonstrates the results of the DGI application to real
data.
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Fig. 7 In this plot, we show the dependence of two other parameters as ε/3Q0 (central plot) and
B(D) (small plot above) with respect to the parameter D from the interval [0.6–2.0]. One can notice
that these parameters keep their monotone behavior with respect to D

Fig. 8 Finally, this plot shows the behavior of the invariant I4(D) defined by expression (6.4). This
is the biggest parameter keeping its monotone behavior
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Fig. 9 In this plot, we show the parametric dependence of the function X (ϕ) and Y (ϕ) or three
values of D = 0.6 (small segment in the middle), D = 1.5 (two “hyperbolic” red branches) and
D = 2.0 (green ellipse-like curve). It is hard to imagine that these different curves are generated
by a monotone set of parameters shown on the previous figures

4 Some Examples Based on Real Data

The question of the finding of additional relationships between input predominant
factor and the measured response/output was raised in many papers [9–11].We faced
the same problem while studying the optical reflectance experiments associated with
changes in chemical properties of extra virgin olive oil with respect to some external
factor. One of the main input factors that can change the quality of the olive oil
studied is the influence of the surrounding temperature. The finding of the desired
olive oil parameter with the temperature is not new and was considered in some
papers [12–14]. The description of the experiment and the data processing algorithm
with the results obtained are described below.

4.1 Details of Experiment

The testing of the DGI method was carried out on the measured data, which we
obtained in the process of olive oil temperature variations by nonchemical method.
The results of the experimentwere obtained in accordancewith optical characteristics
of the used equipment. The task was in measuring the reflectance optical spectra
intensity with respect to the measurement of the internal olive oil temperature and
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Fig. 10 a Schematic ensemble of the experimental setup and b photo of the cuvette with the optical
fiber (located on the right-hand side) and the temperature probe (located above and placed inside
the cuvette)

in finding their expected correlations in the frame of new approach. Figure10a, b
show the image and sketch of the experimental setup, respectively. The food olive
oil sample was chosen as a complex fluid. It has the Trade mark—“Desantis” (class:
“olio extra virgine di olive”, Italy).

Optical reflectance spectra in the wavelength range from 195nm to 1117 nmwere
obtained with the usage the commercial software “SpectraSuite” and the “MAT-
LAB” script that, in turn, were controlled by the optical spectrometer (Ocean Optics
HR4000CG-UV-NIR). The volume of 4 ml of the plastic (polystyrene) cuvette was
filledwith 3.5ml of the olive oil and thenwas illuminatedwith a light source (Edmund
MI150). The optical fiber (QR400-7-UV/BX) connected the optical source with
cuvette and then the reflected signal was transmitted to the spectrometer. Black card-
board was placed on the back of the cuvette to avoid undesirable optical reflection.
The temperature was monitored using a digital thermometer (Probe thermometer
TFA LT-101), its sensitive part was placed inside the olive oil (see Fig. 10b). All
optical absorptions were registered at the fixed temperature (T ) in the range from
9.3 to 21.8 ◦C in dark conditions. Each measurement took a time of 3 s, and the
time duration for the whole experiment occupied 3 · 301 = 903 s, i.e. 15min. The
measurement time for the thermometer consists of one second; therefore, the averag-
ing over 3 points was carried out. This temporal requirement creates a possibility to
“feel” possible changes in the structure of the olive oil in accordance with possible
temperature variations.

The “zone of interest” for our experiments was in the range up to 20 ◦C. This zone
determines some chemical processes that take place in extra virgin olive oil. One of
the temperature ranges where these chemical reactions take place corresponds to the
interval 5–15 ◦C [15].



62 R. R. Nigmatullin and A. S. Vorobev

4.2 The Data Treatment Procedure. Algorithm

In the frame of the new algorithm, we use the DGI approach to treat the measured
data. Without loss of generality, the proposed algorithm can be divided into the
following six steps:

(1) The intensity reflectance optical spectra were measured in the full wavelength
range (195.98–1117.05 nm) and for eachmeasuring cycle containing 3647wave-
length points were obtained. As a final result, we had 301 measurement cycles,
corresponding to the measured T (see Fig. 11). Taking into account the averag-
ing procedure over 3 points, i.e., 903 (duration of the whole experiment) → 301
(cycles), we obtain the desired plot T (number of cycle) shown in Fig. 12.

(2) Reduction to 12 measured data points. One of the aims of our measurements
was to increase the speed of measurements (number of repetitions/per time).
Therefore, we tried to avoid the measurement repetitions for each data point
several times. However, keeping the desired speed it is possible to improve
the quality of data through the reduction procedure. In this case, all data were
reduced to 12 points, i.e., every 12 points from each measurement were reduced
to one averaged point (this was done for all 301 measurement cycles). We
can do this due to the fact that we used a “food” thermometer with an error
of ±0.5 ◦C (Err .). The admissible temperature interval for our measurements
was 12.5 ◦C (from 9.3 to 21.8 ◦C), the number of measurement cycles was
301 (N ). Therefore, the number of reduced points (R.p.) can be calculated
as R.p = N/(Range/Err) ≈ 12. Therefore, we obtained finally the number of
the reduced cycles equal to 301/12 ≈ 25. In accordance with this requirement,
we obtained the same number of temperature and optical measurement cycles.
This reduction procedure helps to average the unwanted data fluctuations also.

(3) The DGI (x, ym) tool was used for data obtained by the optical method, where
x is the first reduced cycle (x = y1 = const), ym is the subsequent cycle (m =
2, 3, . . . , M). Therefore, 24 calculations of the desired DGI were obtained from
the total M = 25 ym reduced cycles. Each compared curve has four quantitative
parameters ( fq , I4, ε/3Q, B) depending on T .

(4) In order to decrease the number of plots, it is necessary to establish the maximal
correlations between the calculated parameters ( fq , I4, ε/3Q, B) with Tm . We
want to notice that all these parameters and temperature had the same number
of data points equal to 24. In order to obtain the reliable correlations of these
parameterswith temperature, we used the value of theComplete Correlation Fac-
tor (CCF(Pr, T ); Pr = ( fq , I4, ε/3Q, B)) that is calculated with the usage of
all admissible set of the fractional moments [16]. In the result of this evalua-
tion, the following values were obtained: CCFfq = 0.8623, CCFI4 = 0.8946,
CCFε/3Q = 0.8413, CCFB = 0.8563. The highest value of the CCF (in terms
of the correlation degree with temperature change) belongs to the parameter I4
(belowweuse for it the simplified abbreviation I ). Its variationswith temperature
is shown the Fig. 13 (black points).
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Fig. 11 The visually selected 6 curves (chosen from a set of 301 measurement cycles) of the
reflectance optical spectra covering the range [196, 1117] nm

(5) Using the Procedure of the Optimal Linear Smoothing (POLS), it becomes pos-
sible to obtain amonotone and smoothed curve I (T ) [17]. It is depicted in Fig. 13
by green points (CCF for IPOLS = 0.8964.)

(6) In order to test the reduction procedure, we realized the same calculation, how-
ever, for non-reduced data. In this case, we have 301 measurements cycles
including the same number of the temperature points with possible tempera-
ture deviations (�T = ±0.5%C). We realized the similar steps (4 and 5) and
after the application of the POLS we obtained two other curves that take into
account the limiting values of temperature fluctuations. These limiting curves
(maxI (+0.5%C),minI (−0.5%C)) are shown by red and blues points, accord-
ingly.

The obtained results demonstrate undoubtedly the effectiveness of the DGI
approach that can be applied as a new working tool for the quantitative finding
of the “hidden” relationships between the correlation parameters of the DGI with the
predominant input factor (T ). In addition, these relationships can be ordered with
the help of the CCF and smoothed by the POLS. Besides, one can confirm a similar
temperature trend found by researchers from Bulgaria [15] that discovered a quasi-
linear temperature dependence of the reflectance spectrum intensity with respect to
temperature in the range [9, 12–17] ◦C.
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Fig. 12 The temperature plot covering the given optical range and located in the interval [9.3, 21.8]
◦C

Fig. 13 This figure demonstrates the variations of the curves I (T ). Black points characterize a
“true” curve obtained with the help of reduction procedure. The green, red, and blue curves show
the temperature variations of the curve I (T ) obtained with the help of the POLS procedure. The red,
blue curves (maxI ,minI ) correspond to the limiting cases (obtained without reduction procedure)

5 Results and Discussion

In this paper, we showed possible applications of the DGI of the fourth order that
admits its separation and presentation in the parametric form (2.26), (2.27). Defi-
nitely, the frame of this paper does not allow demonstrating all possibilities of this
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new instrument. These new possibilities will be a subject of the further research.
However, based on the obtained results one can say the following:

1. The DGIs will help to compare two curves (including 2D random sets) with
each other. This comparison is universal and it will be useful especially in cases when
analytical expression for description of model/real data is absent.

2. The DGI helps to realize “automatically” the reduction procedure of 2N
data points to 8 statistical parameters: (I4, Ax,y, B,σx,y, θx,y). These parameters
are tightly related with 14 integer moments and inter-correlations (2.25) that signify
about the statistical proximity and differences of two compared random sets.

3. The simplified DGIs help to find the relationships between fractal dimension
D (3.2) and the reduced set of the statistical parameters (xc, yc, I4, ε/3Q, B) in the
case of statistical proximity of the compared initial curves. It will give an additional
possibility for better understanding the random fractal sets and relate their basic
parameters with the inter-correlations of two random sets compared.

4. The simplified DGIs can help in finding additional relationships between three
basic parameters (I4, ε/3Q, B) with respect to temperature T , which are in optical
measurements described above, it was used as the predominant input factor. The DGI
approach can take into account the temperature fluctuations and confirm indepen-
dently some specific peculiarities found by other researches [15].

6 Mathematical Appendix

Expression for the invariant of the fourth order in the case when two sets are close
to each other.

In this Appendix, we want to obtain an approximate expression for the general
invariant (2.22) when the first set xk is distorted by the function fk and the second set
yk is expressed in the form �yk = �xk ± � fk (� fk = fk − 〈 f 〉). The evaluation of
this curve is not trivial because we should open the limit 0/0 that appears in calcula-
tions of the parametersσx,y in expressions (2.21).We take into account that deviations
of the factor � fk in the both sides relates its mean value equal to zero and there-
fore the average value ±〈A� fk〉 ≈ 0 (where A represents some value). However,
the combination (±〈A� fk〉) · (±〈B� fk〉) = (〈A� fk〉) · (〈B� fk〉) �= 0 because the
positive and negative compensations in this product do not take place. Taking into
account this remark, one can evaluate the expressions for � and σx,y in expressions
(2.21). After some cumbersome and long calculations, one can obtain

σx = 4

�

[
3
〈
�x(� f )2

〉2 −
〈
(�x)2� f

〉
·
〈
(� f )3

〉
+

〈
(� f )3

〉2]
,

σy = 4

�

[
3
〈
�x(� f )2

〉2 −
〈
(�x)2� f

〉
·
〈
(� f )3

〉]
,

� ∼= 9
〈
�x(� f )2

〉2 − 3
〈
(�x)2� f

〉
·
〈
(� f )2

〉
+

〈
(� f )3

〉2
.

(6.1)
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Asone cannotice from (6.1)wekept the values proportional toO((� f )4, (� f )6),
inclusively. If we introduce the values:

Q0 = 3
〈
�x(� f )2

〉2 −
〈
(�x)2� f

〉〈
(� f )3

〉
,

ε =
〈
(� f )3

〉2
,

(6.2)

then the parameters σx,y , θx,y are expressed in the compact form:

σx
∼= 4

3
+ 8ε

9Q0
, σy

∼= 4

3
− 4ε

9Q0

θx ∼= −1

3
− 5ε

9Q0
, θy ∼= −1

3
+ ε

9Q0
.

(6.3)

The second terms in (6.3) are considered as corrections and have the order
O(� f )2. Based on (6.3), one can evaluate other parameters keeping the same accu-
racy:

Ax = Ay
∼= −2

〈
(� f )2

〉
− 2

3

ε

Q0

〈
(�x)2

〉
, B = −2Ax

I4 = 2

3

ε

Q0

〈
(�x)2(� f )2

〉
.

(6.4)

As one can notice from expressions (6.3) and (6.4), the simplified invariant curve
contains four parameters: 〈(�x)2〉, 〈(� f )2〉, 〈(�x)2(� f )2〉, ε/Q0.

Finally, the invariant curve of the fourth order takes the following form:

x =
〈
x
〉
+ X (ϕ), X (ϕ) = r(ϕ) cos(ϕ),

y =
〈
y
〉
+

〈
f
〉
+ Y (ϕ), Y (ϕ) = r(ϕ) sin(ϕ),

r(ϕ) =
[
√
P2
2 (ϕ) + 4I4P4(ϕ) − P2(ϕ)

2P4(ϕ)

]1/2

,

P2(ϕ) = 3B
(
cos(ϕ) − sin(ϕ)

)2
,

P4(ϕ) =
(
cos(ϕ) − sin(ϕ)

)4 + ε

3Q0

[
5
(
cos(ϕ)

)4 + 8
(
cos(ϕ)

)3
sin(ϕ)

]
+

+ ε

3Q0

[
4
(
sin(ϕ)

)3
cos(ϕ) −

(
sin(ϕ)

)4]
.

(6.5)
As it follows from these expressions, when two sets coincide with each other

they are reduced to the point x = y = 〈x〉. Finally, it is necessary to demonstrate the
criterion for application of the simplified invariant:
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R =
[
stdev(X − Y )

stdev(Y )

]
< 1. (6.6)

The functions X and Y are defined by expressions (2.16) and (6.5) and the oper-
ation “stdev” is defined by the conventional expression:

stdev(F) =
[
1

2

N∑

j=1

(Fj − 〈F〉)2
]1/2

. (6.7)

The model examples considered in section (3.2) satisfy to criterion (6.6).
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Nonlocal Conditions for Semi-linear
Fractional Differential Equations with
Hilfer Derivative

Benaouda Hedia

Abstract This paper studies the existence of solutions for nonlocal semi-linear
fractional differential equations of Hilfer type in Banach space by using the non-
compact measure method in the weighted space of continuous functions. The main
result is illustrated with the aid of an example.

Keywords Semi-linear differential equations · Nonlocal initial value problems ·
Hilfer fractional derivative · Fixed point theorems · Measure of non-compactness ·
Condensing map

AMS (MOS) Subject Classifications: 26A33 · 34K37 · 37L05 · 34B10.

1 Introduction

Differential equations of fractional order have recently proved to be valuable tools in
the modeling of many physical phenomena [8]. There has been a significant the-
oretical development in fractional differential equations in recent years; see the
monographs of Kilbas et al. [16], Zhou [19, 20]. In [13], Hilfer proposed a general-
ized Riemann–Liouville fractional derivative, for short, Hilfer fractional derivative,
which is an interpolator between Riemann–Liouville and Caputo fractional deriva-
tives. This operator appeared in the theoretical simulation of dielectric relaxation in
glass-forming materials [14].

Recently, considerable attention has been given to the existence of solution of
initial and boundary value problems for fractional and semi-linear-fractional differ-
ential equations and inclusions involving Hilfer fractional derivative, see [12]. On
the other hand, when an existence result is proved for the fractional Cauchy problem
where the solutions are not unique, it is natural to discuss the topological structure
of the solution set [9, 10].
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Motivated by the papers cited above, in this paper, we consider a class of nonlocal
initial semi-linear fractional differential equation ofHilfer type described by the form

Dα,β
0+ x(t) = Ax(t) + f (t, x(t)), t ∈ (0, b], (1.1)

I 1−γ
0+ x(t) =

m∑

i=1

λi x(τi ), α ≤ γ = α + β − αβ, τi ∈ (0, b], (1.2)

where the two-parameter family of fractional derivative Dα,β denote the left-sided
Hilfer fractional derivative introduced in [13, 14], 0 < α ≤ 1, 0 ≤ β ≤ 1. The state
x(.) takes value in a Banach space E with norm ‖.‖, A is the infinitesimal generator
of semigroup of bounded linear operators (i.e., C0 semigroup) T (t)t≥0 that will be
specified later in Banach space E . The operator I 1−γ

0+ denotes the left-sidedRiemann–
Liouville fractional integral, f : (0, b] × E → E will be specified in later sections.
τi , i = 1, 2, . . . ,m are prefixed points satisfying 0 < τ1 ≤ · · · ≤ τm < b and�(γ) �=∑m

i=1 λiτi where �(γ) = ∫ +∞
0 x1−γe−xdx .

Physically, condition (1.2) says that some initial measurements were made at the
times 0 and τi , i = 1, . . . ,m, and the observer uses this previous information in their
model. This type of situation can lead us to a better description of the phenomenon.
For example, [6], Deng considers the phenomenon of diffusion of a small amount of
gas in a tube and assumes that the diffusion is observed via the surface of the tube.
The nonlocal condition allows additional measurement which is more precise than
the measurement just at t = 0.

Our main aim in this work is to extend the result given in [18], by using a fixed
point principle for condensing maps combined with Browder–Gupta approach [4] in
a general setting, namely when the function right-hand side has values in infinite-
dimensional Banach space.

This paper is organized in the following way. In Sect. 2, we give some general
results and preliminaries and in Sect. 3 we present our main results.

I wish you the best of success.
Tiaret

February 14, 2018

2 Preliminary Results

In this section, we introduce some notation and technical results which are used
throughout this paper [5].

Let J := [0, b], b > 0 and (E, ‖ · ‖) be a Banach space. C(J, E) be the space of
E-valued continuous functions on J endowed with the uniform norm topology

‖x‖∞ = sup{‖x(t), t ∈ J }.



Nonlocal Conditions for Semi-linear Fractional Differential Equations … 71

L1(J, E) the space of E-valued Bochner integrable functions on J with the norm

‖ f ‖L1 =
∫ b

0
‖ f (t)‖dt.

We consider the Banach space of continuous functions

C1−γ([0, b], E) = {x ∈ C((0, b], E) : lim
t→0+

t1−γx(t) < +∞}.

A norm in this space is given by

‖x‖γ = sup
t∈[0,b]

t1−γ‖x(t)‖.

Obviously, C1−γ([0, b], E) is a Banach space. For � a subset of the space C1−γ

([0, b], E), define �γ by
�γ = {xγ : x ∈ �}, (2.1)

where

xγ =
{
t1−γx(t), if t ∈ (0, b];
limt→0+ t1−γx(t), if t = 0.

(2.2)

It is clear that xγ ∈ C(J, E). We note the following Ascoli-Arzelà-type criteria.

Lemma 1 A set � ⊂ C1−γ([0, b], E) is relatively compact if and only if �γ is rel-
atively compact in C([0, b], E).

Proof See, for instance, [1].

Definition 1 Let X and Y be two topological vector spaces. We denote by P(Y ) the
family of all nonempty subsets of Y and by

Pk(Y ) = {C ∈ P(Y ) : compact},

Pb(Y ) = {C ∈ P(Y ) : bounded}.

Let G : [0, b] → P(E) be a multifunction. It is called

(i) integrable, if it admits a Bochner integrable selection g : [0, b] → E , g(t) ∈
G(t) for a.e. t ∈ [0, b];

(ii) integrably bounded, if there exists a function ζ ∈ L1([0, b]; R+) such that

‖G(t)‖ := sup{‖g‖ : g ∈ G(t)} ≤ ζ(t) a.e. t ∈ [0, b].

Wegive some concepts of fractional calculus. Let 0 < α < 1. A function x : J →
E has a fractional integral if the following integral:
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Iαx(t) = 1

�(α)

∫ t

0
(t − s)α−1x(s)ds

is defined for t ≥ 0. The Riemann–Liouville fractional derivative of x of order α is
defined as

Dαx(t) = 1

�(1 − α)

d

dt

(∫ t

0
(t − s)−αx(s)ds

)
= d

dt
I 1−αx(t),

where�(·) is the Gamma function, provided it is well defined for t ≥ 0. The previous
integral is taken in Bochner sense.

The left-sided Hilfer fractional derivative of order 0 < α ≤ 1 and 0 ≤ β ≤ 1 is
defined by

Dα,β
0+ x(t) =

(
I β(1−α) d

dt

(
I (1−β)(1−α)x

))
(t).

for functions such that the expression on the right-hand side exists.

Lemma 2 ([7]) Let α,β ∈ R+. Then

∫ 1

0
tα−1(1 − t)β−1dt = �(α)�(β)

�(α + β)
,

and hence ∫ x

0
tα−1(x − t)β−1dt = xα+β−1 �(α)�(β)

�(α + β)
.

The integral in the first equation of Lemma 2 is known as Beta function B(α,β).
Let us recall the following definitions and results that will be used in the sequel.

Definition 2 Let E be a real Banach space and (Y,≤) a partially ordered set. A
function β : P(E) → Y is called a measure of non-compactness in E if

β(�) = β(co�)

for every � ⊂ P(E), where co� denotes the closed convex hull of �.

Definition 3 ([15, 17]) A measure of non-compactness β is called

(i) monotone if �0,�1 ∈ P(E), �0 ⊂ �1 implies β(�0) ≤ β(�1);
(ii) nonsingular if β({a} ∪ �) = β(�) for every a ∈ E , � ∈ P(E);
(iii) invariant with respect to union with compact sets, if β({K } ∪ �) = β(�) for

every K ∈ Pk(E) and � ∈ P(E);

If Y is a cone in a normed space, we say that the MNC is

(iv) regular if β(�) = 0 is equivalent to the relative compactness of �;
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(v) algebraically semi-additive, ifβ(�0 + �1) ≤ β(�0) + β(�1) for each�0,�1 ∈
P(E).

One of most important examples of a measure of non-compactness possessing all
these properties is the Hausdorff measure of non-compactness defined by

χ(�) = inf{ε > 0 : � has a finite ε − net}.

Definition 4 A continuous map F : X ⊂ E → E is said to be condensing with
respect to a MNC β (β-condensing) if for every bounded set � ⊂ X , that is,

β(F(�)) < β(�),

we have � is relatively compact.

Lemma 3 ([3, 15]) If {un}+∞
n=1 ⊂ L1(J, E) satisfies ‖un(t)‖ ≤ κ(t) a.e. on J for

all n ≥ 1 with some κ ∈ L1(J, R+). Then the function χ({un(t)}+∞
n=1) belongs to

L1(J, R+) and

χ

({∫ t

0
un(s)ds : n ≥ 1

})
≤ 2

∫ t

0
χ(un(s)ds : n ≥ 1)ds. (2.3)

The application of the topological degree theory for condensing maps implies the
following fixed point principle.

Theorem 1 ([2, 15]) Let V ⊂ E be a bounded open neighborhood of zero and
� : V → E a β-condensing map with respect to a monotone nonsingular MNC β in
E. If � satisfies the boundary condition

x �= λ�(x)

for all x ∈ ∂V and 0 < λ ≤ 1, then the fixed point set Fi x� = {x : x = �(x)} is
nonempty and compact.

3 Main Result

Definition 5 The Wright function Mq(θ) defined by

Mq(θ) =
∞∑

n=1

(−θ)n−1

(n − 1)!�(1 − qn)

is such that ∫ ∞

0
θδMq(θ)dθ = �(1 + δ)

�(1 + qδ)
, for δ ≥ 0.
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Define the operators Kα, Sα,β

Kα(t) = tα−1Pα(t), Pα(t) =
∫ ∞

0
αθMβ(θ)T (tαθ)dθ,

Sα,β = I β(1−α)

0+ Kα(t).

The properties of these operators were explored by Zhou [19, 20].
Suppose that there exists the bounded operator B : E → E given by

B =
[
I −

m∑

i=1

λiSα,β(τi )

]−1

. (3.1)

Lemma 4 The operator B defined in (3.1) exists and is bounded if one of the fol-
lowing two conditions holds:

(i) The reals numbers λi satisfies M
m∑

i=1

|λi | < 1.

(ii) T (t) is compact for each t > 0 and the homogeneous linear nonlocal problem

Dα,β
0+ x(t) = Ax(t), t ∈ (0, b], 1 < α ≤ 1, 0 < β ≤ 1

I 1−γ
0+ x(t) =

m∑

i=1

λi x(τi ), α ≤ γ = α + β − αβ, τi ∈ (0, b]

has no nontrivial mild solutions.

Definition 6 A function x ∈ Cγ([0, b], E) is called mild solution of the problem
(1.1)–(1.2), if it satisfies the following equation Dα,β

0+ x(t) = Ax(t) + f (t, x(t)),
t ∈ (0, b] and the condition (1.2).

Lemma 5 (See (5) Theorem 2.3) Let f (., u(.)) ∈ C1−γ([a, b]) for any u ∈ C1−γ

[a, b]. A function u ∈ C1−γ[a, b] is solution of the fractional initial value problem

{
Dα,βx(t) = f (t, u(t)), 0 < α ≤ 1, 0 < β ≤ 1,
I 1−γ
a+ = ua, γ = α + β − αβ.

If and only if u satisfies the the following Volterra integral equation.

x(t) = tγ−1ua
�(γ)

+ 1

�(α)

∫ t

0
(t − s)α−1(Ax(x) + f (s, x(s)))ds. (3.2)

According to the Lemma (4) and (5) we have the following lemma which will be
useful in the sequel:
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Lemma 6 Let h be a continuous function, x is solution for the fractional integral
equation

x(t) = Sα,β |T |
m∑

i=1

λi B(g(τi )) + g(t) if and only if

Dα,β
0+ x(t) = Ax(t) + h(t), t ∈ (0, b],

I 1−γ
0+ x(t) =

m∑

i=1

λi x(τi ), α ≤ γ = α + β − αβ, τi ∈ (0, b],

where

g(τi ) =
∫ τi

0
Kβ(τi − s)h(s)ds,

g(t) =
∫ t

0
Kβ(t − s)h(s)ds

T := 1

�(γ) − ∑m
i=1 λiτi

.

We prove an Aronszajn-type result for this problem. We need to make the follow-
ing assumptions:

(H1) T (t) is continuous in the uniform operator topology for t > 0, and {T (t)}t≥0f
is uniformly bounded, i.e., there exists M > 1 such that sup

t∈[0,+∞)

|T (t)| <

M, M
m∑

i=1

< 1.

(H2) The map f : [0, b] × E → E is continuous.
(H3) There exists a function p ∈ C([0, b],R+) such that

‖ f (t, x)‖ ≤ p(t)(1 + t1−γ‖x‖), for all t ∈ [0, b] and x ∈ E .

(H4) There exists a constant c > 0 such that for each nonempty, bounded set � ⊂
C1−γ([0, b], E)

χ( f (t,�)) ≤ cχ(�(t)), for all t ∈ [0, b],

where χ is the Hausdorff measure of non-compactness in E .
(H5) There is a constant M > 0 such that
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M

(
M‖p‖∞b1−γ+β

�(β + 1)

)

⎛

⎜⎜⎜⎜⎝

M‖B‖T
m∑

i=1

λi

�(γ)
+ 1

⎞

⎟⎟⎟⎟⎠

(
1 + M

)

> 1. (3.3)

To prove the existence of solutions to (1.1)–(1.2), we need the following auxiliary
lemmas.

Lemma 7 ([11]) Under assumption (H1), Pβ(t) is continuous in the uniform oper-
ator topology for t > 0.

Lemma 8 ([11]) Under assumption (H1), for any fixed t > 0, {Kβ(t)}t>0 and
{Sα,β(t)}t>0, are linear operators, and for any x ∈ X

‖Kβ(t)x‖ ≤ Mtβ−1

�(β)
‖x‖, ‖Sα,β(t)x‖ ≤ Mt (β−1)(α−1)

�(α(1 − β) + β)
‖x‖

Lemma 9 ([11])Under assumption (H1), {Kβ(t)}t>0, and {Sα,β(t)}t>0 are strongly
continuous, which means that for any x ∈ X and 0 < t ′ < t ′′ ≤ b we have

‖Kβ(t ′)x − Kβ(t ′′)x‖ → 0, ‖Sα,β(t ′)x − Sα,β(t ′′)x‖ → 0,

as t ′, t ′′ → 0,

Theorem 2 Assume that (H1)–(H5) are satisfied. Then the set S( f, {τi }ni=1) is
nonempty and compact.

We transform the problem (1.1)–(1.2) into a fixed point problem. Consider the
operator N : C1−γ([0, b], E) → C1−γ([0, b], E) defined by

N (x)(t) = Sα,β(t)

(
T

n∑

i=1

λi B

[∫ τi

0
Kβ(τi − s) f (s, y(s))ds

])

+
∫ t

0
Kβ(t − s) f (s, y(s))ds.

Clearly, fromLemma 1.12 [18], the operator N is well defined and the fixed points
of N are solutions to 1.1–1.2. Thus Fi x N = S( f, {τi }ni=1). Next, we subdivide the
operator N into two operators P and Q as follows:

(Px)(t) = Sα,β(t)

(
T

n∑

i=1

λi B

[∫ τi

0
Kβ(τi − s) f (s, y(s))ds

])
.

and
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(Qx)(t) =
∫ t

0
Kβ(t − s) f (s, y(s))ds.

Now, we show that S( f, {τi }ni=1) �= ∅, the proof is devised into several steps.
Step 1. P is continuous.

Let {xn} be a sequence such that xn → x in C1−α([0, b], E). Then

t1−γ‖P(xn)(t) − P(x)(t)‖
≤ M |T |

�(γ)
m∑

i=1

λi B

[∫ τi

0
‖Kβ(τi − s)‖‖ f (s, xn(s)) − f (s, x(s))‖ds

]

≤ M |T |‖B‖
�(β)�(γ)

m∑

i=1

λi

∫ τi

0
|(τi − s)β−1sγ−1‖ f (·, xn(·)) − f (·, x(·))‖γds

≤ M |T |‖B‖
�(β)�(γ)

m∑

i=1

λiτ
γ+β−1
i B(γ,β)‖ f (·, xn(·)) − f (·, x(·))‖γ

≤

⎡

⎢⎢⎢⎢⎣

M |T |‖B‖
m∑

i=1

λiτ
γ+β−1
i

�(γ)�(β)

⎤

⎥⎥⎥⎥⎦

B(γ,β)‖ f (·, xn(·)) − f (·, x(·))‖γ

and

t1−γ‖Q(xn)(t) − Q(x)(t)‖ (3.4)

≤ t1−γ

∫ t

0
‖Kβ(t − s)‖‖ f (s, xn(s)) − f (s, x(s))‖ds (3.5)

≤ Mt1−γ

�(β)

∫ t

0
(t − s)β−1sγ−1s1−γ‖ f (s, xn(s)) − f (s, x(s))‖ds (3.6)

≤ Mt1−γ

�(β)

∫ t

0
(t − s)β−1sγ−1‖ f (·, xn(·)) − f (·, x(·))‖γds (3.7)

≤ Mbβ

�(β)
B(γ,β)‖ f (·, xn(·)) − f (·, x(·))‖γds. (3.8)
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Hence

‖N (xn) − N (x)‖α ≤
[

‖B‖T |
�(γ)

m∑

i=1

λi b
β + bβ

]

× M B(γ,β)

�(β)
‖ f (·, xn(·)) − f (·, x(·))‖γ .

Using the hypothesis (H2), we have

‖N (xn) − N (x)‖α → 0, as n → +∞.

Step 2. N maps bounded sets into bounded sets in C1−γ([0, b], E).
Indeed, it is enough to show that there exists a positive constant � such that for each
x ∈ Bη = {x ∈ C1−α([0, b], E) : ‖x‖γ ≤ η} one has ‖N (x)‖γ ≤ �.

Let x ∈ Bη. Then for each t ∈ (0, b], by (H3) we have

t1−γ‖Nx(t)‖ ≤
(
M T

�(γ)

m∑

i=1

λi B

[∫ τi

0
‖Kβ(τi − s)‖‖ f (s, x(s))‖ds

)]

+ t1−γ

∫ t

0
|Kβ(t − s)|‖ f (s, x(s))‖ds

≤
‖B‖T M2‖p‖∞

m∑

i=1

λi

�(β)�(γ)

∫ τi

0
(τi − s)β−1(1 + s1−γ‖x(s)‖)ds

+ ‖p‖∞M t1−γ

�(β)

∫ t

0
(t − s)β−1(1 + s1−γ‖x(s)‖)ds

≤
‖B‖‖p‖∞T M2(1 + ‖x‖γ)

m∑

i=1

λiτ
β
i

�(β + 1)�(γ)

+ ‖p‖∞Mb1+β−γ(1 + ‖x‖γ)

�(β + 1)

≤ (1 + η)‖p‖∞
�(β + 1)

⎡

⎢⎢⎢⎢⎣

‖B‖T M2
m∑

i=1

λiτ
β
i

�(γ)
+ Mb1−γ+β

⎤

⎥⎥⎥⎥⎦
:= �.

Step 3. N maps bounded sets into equicontinuous sets.
First, we prove {Px, x ∈ Bη}is equicontinuous. Let t1, t2 ∈ (0, b], t1 ≤ t2, let Bη be
a bounded set in C1−γ([0, b], E) as in Step 2, and let x ∈ Bη, we have



Nonlocal Conditions for Semi-linear Fractional Differential Equations … 79

‖t1−γ
2 Px(t2) − t1−γ

1 Px(t1))‖

≤
∥∥∥∥∥t

1−γ
2 Sα,β(t2)

(
T

n∑

i=1

λi B

[∫ τi

0
Kβ(τi − s) f (s, y(s))ds

])

−t1−γ
1 Sα,β(t1)

(
T

n∑

i=1

λi B

[∫ τi

0
Kα(τi − s) f (s, y(s))ds

])∥∥∥∥∥

+
∥∥∥∥∥t

1−γ
2 Sα,β(t2)

(
T

n∑

i=1

λi B

[∫ τi

0
Kα(τi − s) f (s, y(s))ds

])

−t1−γ
1 Sα,β(t1)

(
T

n∑

i=1

λi B

[∫ τi

0
Kα(τi − s) f (s, y(s))ds

])∥∥∥∥∥ .

from the fact that t1−γ
1 Sα,β(t) is uniformly continuous on J, we deduce then {Px, x ∈

Bη}is equicontinuous. Using condition (H2), one has

‖t1−γ
2 Qx(t2) − t1−γ

1 Qx(t1)|

≤ ‖
∫ t1

t2

t1−γ
2 (t2 − s)β−1Pβ(t2 − s) f (s, x(s))ds‖

+ ‖
∫ t1

0
t1−γ
2 (t2 − s)β−1Pβ(t2 − s) f (s, x(s))ds

−
∫ t1

0
t1−γ
1 (t1 − s)β−1Pβ(t2 − s) f (s, x(s))ds‖

+|
∫ t1

0
t1−γ
1 (t1 − s)β−1Pβ(t2 − s) f (s, x(s))ds

−
∫ t1

0
t1−γ
1 (t1 − s)β−1Pβ(t1 − s) f (s, x(s))ds‖

≤ M‖p‖∞(1 + ‖x‖γ)

�(β)
|
∫ t1

t2

t1−γ
2 (t2 − s)β−1ds‖+

M‖p‖∞(1 + ‖x‖γ)

�(β)
∫ t1

0

[
t1−γ
1 (t1 − s)β−1 − t1−γ

2 (t2 − s)β−1
]
ds

+ ‖p‖∞(1 + ‖x‖γ)|
∫ t1

0
t1−γ
1 (t1 − s)β−1

[
Pβ(t2 − s) − Pβ(t1 − s)

]
ds‖

I1 + I2 + I3,

where
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I1 = M‖p‖∞(1 + ‖x‖γ)

�(β)
‖
∫ t1

t2

t1−γ
2 (t2 − s)β−1ds‖

I2 = M‖p‖∞(1 + ‖x‖γ)

�(β)
∫ t1

0

[
t1−γ
1 (t1 − s)β−1 − t1−γ

2 (t2 − s)β−1
]
ds

I3 = (1 + ‖x‖γ)‖p‖∞|
∫ t1

0
t1−γ
1 (t1 − s)β−1

[
Pβ(t2 − s) − Pβ(t1 − s)

]
)ds‖,

which yields limt2↔t1 I1 = 0. Similarly, we can prove that limt2→t1 I2 = limt2→t1
I3 = 0

Thus {Qx, x ∈ Bη} is equicontinuous.
Step 4. N is ν-condensing.
We consider themeasure of non-compactness defined in the followingway. For every
bounded subset � ⊂ C1−γ([0, b], E)

ν(�) = max
�∈�(�)

(̃γ(�),modC1−γ
(�)). (3.9)

�(�) is the collection of all countable subsets of � and the maximum is taken in
the sense of the partial order in the cone R2+. γ̃ is the damped modulus of fiber
non-compactness

γ̃(�) = sup
t∈[0,b]

e−Ltχ(�γ(t)), (3.10)

where�γ(t) = {xγ(t) : x ∈ �}. modC1−γ
(�) is the modulus of equicontinuity of the

set of functions � given by the formula

modC1−γ
(�) = lim

δ→0
sup
x∈�

max
|t1−t2|≤δ

‖xγ(t1) − xγ(t2)‖. (3.11)

Let

q(L) := sup
t∈[0,b]

∫ t

0
(t − s)α−1sα−1e−L(t−s)ds. (3.12)

It is clear that

sup
t∈[0,b]

∫ t

0
(t − s)α−1sα−1e−L(t−s)ds −→

L→+∞ 0.

We can choose L such that

q̄1 :=
2cT M2

m∑

i=1

λi‖B‖q(L)

�(β)�(γ)
<

1

2
(3.13)
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and

q̄2 := 2cMb1−γq(L)

�(β)
<

1

2
. (3.14)

From Lemma 1, the measure ν is well defined and gives a monotone, nonsingular,
semi-additive, and regular measure of non-compactness in C1−γ([0, b], E).

Let � ⊂ C1−γ([0, b], E) be a bounded subset such that

ν(N (�)) ≥ ν(�). (3.15)

We will show that (3.15) implies that � is relatively compact. Let the maximum on
the left-hand side of the inequality (3.15) be achieved for the countable set {yn}+∞

n=1
with

yn(t) = S1 fn(t) + S2 fn(t), {xn}+∞
n=1 ⊂ � (3.16)

with
S1 fn(t)

= Sα,β(t)

(
T

n∑

i=1

λi B

[∫ τi

0
Kα(τi − s) f (s, yn(s))ds

])
,

S2 fn(t) =
∫ t

0
Kα(t − s) f (s, yn(s))ds

and fn(t) = f (t, xn(t)). So that

γ̃({yn}+∞
n=1) ≤ γ̃({S1 fn}+∞

n=1) + γ̃({S2 fn}+∞
n=1). (3.17)

We give now an upper estimate for γ̃({yn}+∞
n=1). By using (H4) we have

χ({Kβ(t − s) fn(s)}+∞
n=1)

≤ cM

�(β)
(t − s)α−1χ({xn(s)}+∞

n=1)

= cM

�(β)
(t − s)α−1sγ−1χ({xnγ (s)}+∞

n=1)

≤ cM

�(β)
(t − s)α−1sγ−1eLs sup

0≤s≤t
e−Lsχ({xnγ (s)}+∞

n=1)

= cM

�(β)
(t − s)α−1sγ−1eLs γ̃({xn}+∞

n=1)

(3.18)

for all t ∈ [0, b], s ≤ t . Then applying Lemma 3, we obtain

t1−γχ({S1 fn(t)}+∞
n=1) ≤

2cM2T ‖B‖
�(β)�(γ)

m∑

i=1

λi

∫ ti

0
(ti − s)α−1sγ−1eLs γ̃({xn}+∞

n=1)ds
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and
t1−γχ({S2 fn(t)}+∞

n=1) ≤
2cMb1−γ

�(β)

∫ t

0
(t − s)α−1sγ−1eLs γ̃({xn}+∞

n=1)ds.

Taking (3.13) and (3.16) into account, we derive

γ̃({yn}+∞
n=1) ≤ (q̄1 + q̄2)̃γ({xn}+∞

n=1). (3.19)

Combining the last inequality with (3.15), we have

γ̃({xn}+∞
n=1) ≤ (q̄1 + q̄2)̃γ({xn}+∞

n=1).

Therefore
γ̃({xn}+∞

n=1) = 0.

Hence by (3.19), we get
γ̃({yn}+∞

n=1) = 0.

Furthermore, from Step 3, we know that modC1−γ
(N (�)) = 0 and (3.15) yields

modC1−γ
(�) = 0. Finally,

ν(�) = (0, 0),

which proves the relative compactness of the set �.

Step 5. A priori bounds.
Let x = λN (x) for some 0 < λ < 1. This is implied by (H3), (H5) follows

‖x‖γ �= M .

Set
U = {x ∈: ‖x‖γ < M}.

From the choice of U , there is no x ∈ ∂U such that x = λN (x) for some λ ∈ [0, 1]
yielding the desired a priori boundedness.
By Theorem (1), Fi x N = S( f, {τi }ni=1) is nonempty compact subset of C1−α

([0, b], E).

4 Conclusion

In this paper, I have given a new result concerning the existence of solution of a class
of semi-linear Hilfer fractional differential equation with nonlocal conditions using
a measure of non-compactness combined with condensing map in Banach space.
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Offshore Wind System in the Way of
Energy 4.0: Ride Through Fault Aided
by Fractional PI Control and VRFB

Rui Melicio, Duarte Valério and V. M. F. Mendes

Abstract This chapter presents a simulation of a study to improve the ability of an
offshore wind system to recover from a fault due to a rectifier converter malfunction.
The system comprises: a semi-submersible platform; a variable-speed wind turbine;
a PMSG; a 5LC-MPC; a fractional PI controller using the Carlson approximation.
Recovery is improved by shielding the DC link of the converter during the fault using
as further equipment a redox vanadium flow battery, aiding the system operation as
desired in the scope of Energy 4.0. Contributions are given for: (i) the fault influence
on the behavior of voltages and currents in the capacitor bank of the DC link; (ii)
the drivetrain modeling of the floating platform by a three-mass modeling; (iii) the
vanadium flow battery integration in the system.
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1 Introduction

Wind energy conversion into electric energy through wind power systems either
onshore or offshore plays a significant role in a future shaped by the need for sustain-
able development concerning energy usage [1–40] and smart energy in the context
of Energy 4.0. The wind system quota has increased in capacity into the mixed gen-
eration of electric grids, improving the diversification of resources and contributing
to matching the needs in the usage of electric energy [6]. Fluctuation on the side
of the conversion into electric energy is expected to increase due to the uncertainty
inherent to the intermittency of exploitation of wind or solar energy sources [16].
Fluctuation on the side of the usage of electric energy is also expected to increase
in the future, for instance, due to the use of electric vehicles. Both fluctuations are
prone to lead to new challenges and threats to be faced in the scope of smart energy
in the context of Energy 4.0. Particularly, if not properly conduced, the exploitation
of wind energy sources for conversion into electric energy is a power system inter-
connection menacing the quality of energy and the transient stability of electric grid
[37] (Table1).

Grid codes establish interconnecting guidelines, i.e., instructions specifying tech-
nical and operative requirements to conduce power production and other parties
involved in the production, transportation, and usage of electric energy. Indeed, in
the context of sustainable power production in the scope of Energy 4.0, more restric-
tive grid codes are expected to be in force to conduce the operation of wind systems
to avoid abnormal behavior leading to menace, for instance, as loss of power quality
or of stability- appropriated margin into the electric grid. Wind systems must cope
with acceptable performance regulated in grid codes to integrate the electric grid. So,
after a failure, the recovery of normal operation in due time is of great importance
to avoid eventual coming off from the electric grid. Rethinking how a wind system
can satisfy grid codes and capture more value from the participation into the mixed
production of an electric grid while mitigating faults are challenges of research in
the way of Energy 4.0. Furthermore, abnormal behavior in the operation which is not
avoided in due time can lead to a fault going into a failure, needing human interven-
tion on the wind system. This is hampered for offshore wind systems by the access
of the place of exploitation, often impossible in days with severe weather in fall or
winter seasons [17, 20]. So, improving the recovery of normal operation, particu-
larly Fault Ride Through capability [25], is of vital importance for offshore wind
systems. Research contributing to the operation continuity of wind systems in the
occurrence of an eventual failure is a promising line of research. A way of ensuring
operation continuity and capture more value often stated and justified as an advanta-
geous option is the use of energy storage. Energy storage through the technology of
VRFB has the advantage of a full depth of discharge without affecting performance
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Table 1 Nomenclature

VRFB Vanadium redox flow battery

BMS Battery management system

IGBT Insulated gate bipolar transistor

MPC Multiple point clamped

PMSG Permanent magnet synchronous generator

5LC Five-level power converter

u Wind speed value with disturbance

u0 Average wind speed

n Index of eigenswing excited

An Magnitude of the eigenswing n

ωn Eigenfrequency of the eigenswing n

η Wave elevation at the point x, y

ηa Vector of harmonic wave amplitudes

ϑ Vector of harmonic wave frequencies

ζ Vector of harmonic wave phases (random)

φ Vector of harmonic wavenumbers

ψ Vector of harmonic wave directions

Pt Mechanical power with perturbation

Ptt Mechanical power without perturbation

m Order of the harmonic in an eigenswing

anm Normalized magnitude of gnm

gnm Distribution of m-order harmonic in
eigenswing n

hn Modulation of eigenswing n

ϕnm Phase of m-order harmonic in eigenswing n

usk Rectifier input or inverter output voltages

Ucj Voltage in the capacitor bank j

icj Current in the capacitor bank j

Udc Total DC voltage

C j Capacitance of the capacitor bank j

i f k Currents injected into the electric grid

Ln Inductance of the electric grid

Rn Resistance of the electric grid

u f k Voltage at the filter

ik Input or output current in MPC five-level
converter

uk Voltage at the electric grid, k ∈ {4, 5, 6}
μ Fractional order of the derivative or of the

integral
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Fig. 1 VRFB reaction, charge/discharge process

and the useful life of the battery, customizable scalability high power, long duration
of about 15,000 cycles of charge/discharge, fast response, large capacity, and a fair
balance of energy efficiency and costs [12]. In comparison with other technologies,
VRFB technology is pointed out as an appropriate storage for electric grids, [2, 3,
14], contributing to smooth the impact of uncertainty on the availability of renew-
able energy and allowing satisfaction of conditions imposed by grid codes [15]. A
schematic diagram of the electrochemical reactions charge/discharge processes of
the VRFB [2] is shown in Fig. 1.

In Fig. 1 are shown the two tanks to store the electrolytes to be gradually pumped
into the stack of the electrochemical cells, where by chemical reactions the elec-
trolytes are charged or discharged. So, augmenting the volume of the tanks allows
scaling up the storage capacity. The membrane carries a selective transmission of
protons from the two sides of the VRFB. Each vanadium ion by a process of oxida-
tion drops at the positive terminal an electron during charge. The flow of electrons is
controlled by the BMS and directed to be collected by a vanadium ion at the cathode
by a process of reduction during charge, during discharge the process is reversed. A
VRFB is recognized by having not only capability to respond nearly instantaneously
to demand, standing in for the traditional means ofmeeting peak demand, but also the
ability to convey energy when required over significant periods of time, for instance,
a time of twelve hours as pointed out in [10]. So, the technology of VRFB at utility
scale is expected to be the way of the future for energy storage in the scope of Energy
4.0. The technology of VRFB is already in the way of application at utility scale.
In the Isle of Gigha, Scotland, a VRFB is in use due to the ability to balance vari-
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able generation from renewable sources and due to the cost-effective time shifting.
In Dalian, China, a 200 MW/800 MWh VRFB utility scale is to be implemented
for peak-shaving and grid stabilization. Advantages pointed out are reliability, full
recyclability of the electrolyte, and more than 20-year useful life-time [9].

Many of the faults in wind systems can occur in power control and sensor elec-
tronic devices [39]. Faults are susceptible to disturb the operation and cause an inabil-
ity to perform within specified requirements, i.e., grid codes, or going into failure.
Hence, not only fault avoidance, but also tolerance to fault, i.e. the ability to continue
to perform within specified performance in the presence of a fault is regarded as
crucial. In this regard, a VRFB can be used during a short time span to replace the
delivery of energy coming from the generator interrupted, for instance, by a fault
in the rectifier converter. This replacement is intended to preserve the wind system
connection to the electric grid during a time span that ends with the recovery of the
full operation, avoiding a failure, implying the disconnection of the wind system
[35]. The VRFB can be incorporated into a wind system by a direct current circuit
a BMS required for: monitoring the state; processing and reporting secondary data;
protecting and controlling the environment of the VRFB [2]. However, a convenient
control strategy for the selection of voltage vectors to maintain the equilibrium of the
voltages in the capacitor bank must be carried out to further aid in avoiding failure
of the wind system. One part of the scope of the research in this chapter is the above
convenient control strategy for the selection of voltage vectors, aiding in avoiding a
failure of the wind system subject to a rectifier converter fault. This control strategy
is implemented by a convenient exploration of the use of the redundant vectors and
the dominant currents in the capacitor bank.

The chapter is concerned with a wind system equipped with a MPC-5LC and
the main contributions are: (i) the study of the fault influence on the behavior of
voltages and currents in the capacitor bank; (ii) the consideration of the dynamics
of the floating platform by a three-mass modeling drivetrain; (iii) the study of the
incorporation a VRFB assisting the recovery of operation. The rest of the chapter is
organized as follows: Sect. 2 is concerned with the integration of wind systems in
the scope of Energy 4.0. Section 3 presents the model. Section 4 presents the control
method. Section 5 presents a case study and discusses the consequence of the results.
Section 6 presents the concluding remarks.

2 Energy in a Sustainable Way

The industry of energy is at the brink of a new industrial revolution, not only shift-
ing the present, but also the way of the future, in what regards information pro-
cessing, control and action of intervenient agents. Availability of energy has been
of paramount importance and a key influence on all Industrial Revolutions and is
expected to remain so in the future. But another important influence is the paradigm
for the organization of the energy business, which is expected to play a substantial
role.
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The mix of sources of energy used in the power systems has changed, because
of the integration in an unprecedented scale of intermittent renewable sources of
energy, of nuclear phase-out, and of the appearance of utility-scale technology for
storage of electric energy. Also, new concepts for grids at the level of transmission
and distribution of electric energy are expected to happen together with the operation
of power systems in a sustainable way under Energy 4.0.

The increasing use of intermittent renewable energy, and in particular of wind
systems, requires control acting in due time, and needs to be balanced with flexible
generation, demand management, energy storage, or interconnection devices. Wind
systems must embrace Energy 4.0 concepts to cope with the future, implementing
convenient monitoring, transferring, and analyzing data in a smart grid and IoT
way. Systems interconnection and energy sustainability is the ambition of the future
energy business, using information not only from monitoring systems of the energy
industry, but also from other industrial systems [4, 28]. Advanced smart technology
and better control systems for wind systems operation connected with electric grid
allow some flexibility on the requirements for the performance of electric generators.
But one of the most severe requirements in the case of offshore wind system could be
the black start capability, which requires the ability to recover from a total or partial
shutdown within a set timeframe, without any external supply. Under the Energy 4.0
framework, the integration of offshore wind systems in a smart grid is expected to
be aided by real-time monitoring and safety actions to mitigate the impact of faults
[34], improving efficiency and sustainability.

3 Modeling

The wind system under consideration is equipped with the following main compo-
nents: a semi-submersible platform of the category used in the WindFloat project
[29] anchored to the seabed by suspended cables; a platform where is placed the
variable-speed wind turbine and the equipment for power control by blade pitch
angle; a PMSG; the MPC-5LC; and an energy storage system assumed to be, but not
necessary a VRFB. What is necessary is that the energy storage system device has
enough energy to aid in avoiding failure due to the fault.

3.1 Wind and Marine Wave

The wind speed is modeled by a sum of harmonics ranging from 0.1 Hz to 10.0 Hz
as in [35] given by

u = u0

[
1 +

∑
n

An sin (ωnt)

]
(1)



Offshore Wind System in the Way of Energy 4.0: Ride Through Fault Aided … 91

The marine wave elevation is described as a phase/amplitude model as in [32] con-
sidered by a convenient sum of harmonic waves given by

η(x, y, z) =
∑
i

ηa(i) cos [ϑi t + ζi − υi (x, y)] (2)

where
υi (x, y) = φi (x cosψi + y sinψi ) (3)

In (3) is computed the inner product of the position vector in the horizontal plane
(x, y) by the wave vector, having the information concerned with the displacement
of the wave, pointing in the normal direction to the wave front.

3.2 Wind Turbine

The turbine mechanical power is modeled as a sum of a function of the magnitude
of three eigenswings as in [31] given by

Pt = Ptt

[
1 +

3∑
n=1

An

(
2∑

m=1

anmgnm(t)

)
hn(t)

]
(4)

where

gnm = sin

(∫ t

0
mωn(t

′) dt ′ + ϕnm

)
(5)

The data considered for (4) and (5) are reported in [1].

3.3 Drivetrain Model

The aerodynamic loads to which wind turbines are subject have an important influ-
ence in the design of their structural components, due to the need to resist fatigue.
Fatigue-oriented design [13] is needed for the tower, the blades, and also the driv-
etrain. The model followed in this chapter (consisting of three masses coupled by
elastic elements) can be found to be reported in technical literature (e.g., [23, 36]).

The reason why the drivetrain is modeled with several masses is its flexibility,
which is needed to increase reliability in the presence of fatigue [5, 13]. In fact,
the vibrations of the structure, revealed by noise in the aerodynamic blades, can be
reduced by a better aerodynamic design, and so the efforts are now shifted to the
drivetrain itself.



92 R. Melicio et al.

3.4 Generator

The generator is a PMSG, and its model is that usually employed for a normal
synchronous electric machine. This has been reported in technical literature such
as [22]. An additional constraint is needed: the direct component of the electric
current in the stator is imposed to be zero. This constraint is intended to prevent the
demagnetization of the permanent magnet in a PMSG [33].

3.5 Five-Level Power Converter

Figure 2 shows the details of the MPC 5LC rectifier. It shows that the MPC-5LC
rectifier and the inverter have 24 unidirectional commanded IGBTs. The IGBTs are
modeled as ideal components. Branch k of the converter consists of a group of eight
IGBTs connected to the same phase. IGBTs are identified by Sik with i ∈ {1, . . . , 8},
corresponding to a branch k ∈ {1, 2, 3} (in the case of the rectifier) or k ∈ {4, 5, 6}
(in the case of the inverter) [32]. Figure 3 shows the MPC-5LC, equipped with the
VRFB. For details, see [18].

The voltages in the rectifier (input, k ∈ {1, 2, 3}) and the inverter (output, k ∈
{4, 5, 6}) are given by

usk = 1

3

p−1∑
j=1

⎛
⎝2δ jnk

3∑
a=1,a �=k

δ jna

⎞
⎠Ucj (6)

On each capacitor bank C j , the current icj can be found as

icj =
3∑

k=1

δnkik −
6∑

k=4

δnkik, k ∈ {1, . . . , 6} (7)

The currents in each capacitor banks are, in (7), the input and output currents of
the MPC-5LC. The state equation the DC bar voltage Udc is

dUdc

dt
=

p−1∑
j=1

1

C j
icj , j ∈ {1, . . . , p − 1} (8)

Note that (8) is valid even if the BMS has called the VRFB.
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Fig. 2 MPC 5LC rectifier

3.6 Electric Grid

The current injected into the electric grid is modeled by the following state equation:

di f k
dt

= 1

Ln

(
u f k − Rni f k − uk

)
, k ∈ {4, 5, 6} (9)

This model consists of an ideal voltage source, in series with the short-circuit
impedance.
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Fig. 3 Offshore wind system equipped with VRFB

3.7 VRFB

The VRFB is a DC source with a value of 7.14 kV, 2% plus of the DC link voltage.
Although this type of source can have significant discharge times [15], the capability
to respond nearly instantaneously is themost important for the purpose of the chapter.

4 Control Method

4.1 Fractional-Order Controllers

Fractional-order controllers are those designed by the application of fractional-order
derivatives, having advantageous robustness as themain reason for being useful in the
applications. Usual fractional-order controllers include fractional PIDs, introduced
in [27] and so-called because of their similitude with PID controllers, and CRONE
(Commande Robuste d’Ordre Non Entier) controllers [19, 26]. The CRONE con-
trollers are designed according to a methodology conceived with control robustness
in mind. In the system under study, the controller for the variable-speed operation is
fractional PI controller [35], from the PID family, combining a fractional derivative
with a constant gain at low frequencies. The transfer function for the controller for
the variable-speed operation is given by

C(s) = 2.6 + 0.6
1

s0.5
(10)



Offshore Wind System in the Way of Energy 4.0: Ride Through Fault Aided … 95

Several tuning methods have been proposed for fractional PIDs, including tuning
rules such as in [11], or numerical methods as in [24]. Controller (16) was designed
according to the rules in [21]. The term s0.5 is the Laplace transform of a half-
derivative. More about fractional derivatives is presented in [30, 38]. An implemen-
tation of a term such as sα is usually carried out by means of an approximation. The
most usual approximations [38] are the CRONE approximation, due to the work of
Alain Oustaloup, the Matsuda approximation, and the Carlson approximation, the
one used for the system under study. It was introduced in [7], and is based on the
Newton–Raphson method for finding numerical solutions of equations, which can
be used to obtain numerical values for a1/n finding the roots of f (x) = xn − a. The
method can also be used if a is not a positive real number, but rather the Laplace
transform variable s instead. In this way, iterative approximations of s1/n, n ∈ N

can be found. Some calculations show that, beginning with the trivial (and far from
accurate) approximation

s1/n ≈ G1(s) = 1, (11)

further approximations given by

s1/n ≈ Gk+1(s) = Gk(s)
(n − 1)Gn

k (s) + (n + 1)s

(n + 1)Gn
k (s) + (n − 1)s

, (12)

can be found, which are rather accurate in a frequency range that increases with
n, centered on frequency 1 rad/s. The approximation used to implement (10) was
obtained with two iterations:

s
1

−2 ≈ G3(s) = s4 + 36s3 + 126s2 + 84s + 9

9s4 + 84s3 + 126s2 + 36s + 1
(13)

Transfer function (13) provides a good approximation a limited frequency range [ωl,

ωh] = [10−1, 10] rad/s. Finally, (10) was implemented as C(s) ≈ 2.6 + 0.6G3(s).

4.2 Power Converter Control

The modeling to be considered for the MPC-5LC control is of fractional order com-
plemented with a sliding mode control associated with PWM by space vector mod-
ulation. The output voltage vectors in the (α,β) space for the 5LC are shown in
Fig. 4.

In Fig. 4, the required selection for the output voltage vector in the (α,β) space
is carried out in function of the discrepancy between the current of the stator and the
reference current. A power converter is a time variable structure due to the IGBTs
switching blockage/conduction states [32]. The operation of time-variable structures
subject to uncertainties and external disturbances must be suitably complemented by
sliding mode control as is reported in the literature. This operation of the power con-
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Fig. 4 Output voltage vectors for the MPC-5LC

verter as a time variable structure subject to uncertainties and external disturbances
is the one presented by the authors in [35].

5 Case Study

The case study is carried out using the computer applicationMATLAB/Simulink and
has a time horizon of 10 s. The electric grid voltage is of 5 kV at 50 Hz. A 10 kHz
switching frequency is assumed for the IGBTs. The capacitor bank reference voltage
U ∗

dc is of 7 kV. The main data concerned with the wind system [36] is summarized
in Table 2.

The wind speed is shown in Fig. 5. The marine wave elevation is shown in Fig. 6
that shows a significant perturbation due to marine wave with a period of about 10 s
subjecting the wind system to a significant perturbation. The data for (1) and (4) are
u0 = 14.5 m/s; A1 = 0.01; A2 = 0.08; A3 = 0.15; ω1(t) = ωt (t); ω2(t) = 3ωt (t);
and ω3(t) = [g11(t) + g21(t)]/2, g11(t), g21(t) given by (5).
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Table 2 Wind system data

Turbine moment of inertia 5.5 × 106 kgm2

Turbine rotor diameter 90 m

Hub height 45 m

Tip speed 17.64–81.04 m/s

Rotor angular velocity 6.9–31.6 rpm

PMSG rated power 2 MW

PMSG inertia moment 400 × 103 kgm2

Fig. 5 Wind speed

Fig. 6 Marine wave
elevation
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Fig. 7 Power coefficient

Fig. 8 Voltage in the
capacitor bank

5.1 No Fault

This simulation is carried out with no-fault consideration for purpose of comparison,
i.e., is a normal operation with intermittent availability of wind energy, having the
wind speed shown in Fig. 5. The power range satisfaction due to the action of the
maximum power point tracking imposes the power coefficient shown in Fig. 7. The
voltages in the capacitor bank are shown in Fig. 8. The current in the capacitor
bank is shown in Fig. 9. These last two figures show that the control of the converter
surmounts the imbalance voltages in the capacitor bank, having appropriated currents
in the capacitors and almost a steady behavior for voltage in the DC link. So, normal
operation is pursued.
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Fig. 9 Currents in the
capacitor bank

5.2 Failure

In what concerns the data, this simulation has the same wind speed and the marine
wave as the first one. It also has the same equipment for the wind system, but with
a fault. This fault imposes that a circuit breaker at the input of the rectifier is open
between 1.15 s and 1.65 s. So, during this period no energy flows to the capacitors,
i.e., the capacitors are not charged by the rectifier, implying a hovering menace of
fault going into failure on the wind system. This menace is in accordance with the
simulation results given for the voltages in the capacitors as shown in Fig. 10. In
this figure, it is shown that the voltage drop across capacitors is significant and the
level of voltage is not recovered in due time to avoid the disconnection. So, this
simulation is in accordance with the wind system having an inevitable fault going
into failure, i.e., the system goes into the necessary disconnection to avoid further
worst consequences.

The input voltages in the rectifier are shown in Fig. 11. Here it is once more
shown that the wind system is unable to recover voltage for feasible operation in the
rectifier. Again, this simulation results are in accordance with the wind system not
being able to avoid disconnection.

The currents in the capacitor bank are shown in Fig. 12. This figure shows that
after 1.15 s the currents in the capacitor bank have a smaller positive oscillation
than the negative one, meaning that the capacitors are discharging. The control of
the converter is trying to surmount the imbalance on voltages in the capacitor bank,
but there is not enough electric charge to sustain the drop on the voltages dropping
significantly near 1.65 s.

The main conclusion of this simulation is in accordance with the fact that the
system is unable to maintain the interconnection with the electric grid. So, ride
through fault is feasible for the wind system. The ability to perform within specified
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Fig. 10 Voltage in the
capacitors of the capacitor
bank

Fig. 11 Input voltages in the
rectifier

performance requirements, i.e., in the way of fault tolerance in the way of the future
at Energy 4.0, is not feasible and disconnection is to happen to avoid further worst
consequences of equipment damage.

5.3 Ride Through Fault

In what concerns the data, this simulation has the same wind speed and the marine
wave as the first one. It also has the same equipment for the wind system, and a
fault considered as imposing that a circuit breaker at the input of the rectifier is open
between 1.15 s and 1.65 s. That is to say, the simulation has the same data as that of
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Fig. 12 Currents in the
capacitor bank

Sect. 5.2, but with the addition of an energy storage system device assumed—but not
necessarily—to be given by the technology of VRFB. What is important to assume
is that the energy storage system device is designed to have enough energy to aid in
avoiding the fault going into failure during the time without energy flowing from the
rectifier converter. So, the simulation is concerned with the wind system calling due
to the fault the aid of the energy storage system device by the BMS to conveniently
charge the capacitor bank during the period of transient operation between 1.15 s
and 1.65 s. The behavior of the system during this period tends to be described by
the arrangement shown in Fig. 13.

In Fig. 13 is shown the VRFB call during the period of transient operation to
contribute with a convenient charge of the capacitors. So, recovering of normal
operation is feasible after fault clearing. The voltages in the capacitor bank are shown
in Fig. 14.

In Fig. 14 is shown that when the VRFB is called a transient occurs while the
returning of the VRFB to standby is done more smoothly. The voltage drop across
capacitors is not significant and the level of voltage is recovered in due time to avoid
the disconnection. So, this simulation is in accordance with the wind system having
a fault but not going into failure. The system can ride through the fault due to the halt
dropping of the level of voltages in the capacitor bank. The control surmounts imbal-
ance voltages on the capacitors, giving a recovering of the appropriated behavior of
the voltage in the DC link in a way of fault tolerance feasibility. The input voltages
in the rectifier, the currents in the rectifier, and the current in the capacitor bank are,
respectively, shown in Figs. 15, 16 and 17.

In Fig. 15, it is shown that the wind system can recover the normal operation of
the rectifier converter, the system went into a state of the fault and goes into normal
operation after fault clearing. In Fig. 16, it is shown as expected that the input currents
in the rectifier are null during the period 1.15 s to 1.65 s. After this period, the currents
accommodate values given by the wind system control to achieve maximization of
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Fig. 13 System during the transient

Fig. 14 Voltage in the capacitor bank

energy conversion in the power range of the wind system. In Fig. 17 is shown that
when theVRFB is called a transient occurs and the returning of theVRFB to a standby
state has smooth picks on currents in the capacitor bank. After the disconnection of
the VRFB, the rectifier can provide an electric charge to the capacitor bank to avoid
the imbalance voltages. Hence, the wind system can recover the feasible operation
after the fault clearing due to the assistance of the VRFB, conveniently charged. The
total harmonic distortion (THD) of the electric current injected into the electric grid
for the simulations with No fault and with Ride through fault are shown in Table 3.
These figures show, as expected, that the THD of the electric current into the electric
grid is not significantly greater and the difference is faded after fault clearing.
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Fig. 15 Input voltages in the
rectifier

Fig. 16 Input currents in the
rectifier

Fig. 17 Current in the
capacitor bank
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Table 3 Average THD of the current injected in the electric grid

Case study THD

No fault 0.51

Fault with VRFB 0.54

6 Conclusions

Grid codes are important tools to mitigate threats coming into the electric grid. But
faults in wind systems are likely to disable the ability to perform within grid codes.
Worst still, due to their location, offshore wind systems may require a considerable
time of disconnection due to the maintenance and repairs needed because of a fault
going into failure. If a wind system in fault does not have the Ride through fault
capability and is not disconnected in due time, then equipment damage and negative
impacts are to be expected in the electric grid. Consequently, not only fault avoidance,
but also tolerance to faults are of crucial importance for offshore wind systems, to
avoid the need of disconnecting from the grid, to reduce the economic consequence of
being not able of injecting energy into the grid, and to remainwithin the requirements
of grid codes.

A model is proposed for the simulation of a wind system having a threatening
on the continuity of the operation due to a fault in the rectifier converter. The fault
creates an interruption in the energy delivery from the PMSG to the electric grid. The
simulation of the fault is in accordance with an inability to maintain energy injection
into the grid, tapping the system in a state of no recovery, i.e., the system goes from
fault into failure and disconnection is expected. Then a VRFB controlled by a BMS
is suggested as an aid to introduce Ride through fault in a strategic hardware solution
with the MPC-5LC to satisfy grid codes in what regards continuity of the operation.
The strategic hardware solution of the VRFB with the MPC 5LC must be reinforced
with a convenient selection of voltage vectors to maintain the equilibrium of the
voltages to further aid in avoiding failure of the wind system when subject to the
rectifier fault. This strategic hardware solution and the reinforcement is in the line of
the objectives of Energy 4.0. The simulation carried out shows that normal operation
is recovered after rectifier fault clearing and imbalance voltages on the capacitor bank
are circumvented due to the action of the convenient selection of voltage vectors.
Also, the quality of energy injected in what regards the total harmonic distortion is
not significantly affected.
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Soft Numerical Algorithm with
Convergence Analysis for
Time-Fractional Partial IDEs
Constrained by Neumann Conditions

Omar Abu Arqub, Mohammed Al-Smadi and Shaher Momani

Abstract Some scientific pieces of research are governed by classes of partial
integro-differential equations (PIDEs) of fractional order that are leading to novel
challenges in simulation and optimization. In this chapter, a soft numerical algorithm
is proposed and analyzed to fitted analytical solutions of PIDEs with appropriate
initial and Neumann conditions in Sobolev space. Meanwhile, the solutions are rep-
resented in series form with strictly computable components. By truncating n-term
approximation of the analytical solution, the solution methodology is discussed for
both linear and nonlinear problems based on the nonhomogeneous term. Analysis
of convergence and smoothness are given under certain assumptions to show the
theoretical structures of the method. Dynamic features of the approximate solutions
are studied through an illustrated example. The yield of numerical results indicates
the accuracy, clarity, and effectiveness of the proposed algorithm as well as provide
a proper methodology in handling such fractional issues.

Keywords Partial integro-differential equations · Reproducing kernel algorithm ·
Fredholm and Volterra operators · Fractional derivatives
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diverse fields of science and engineering according to the enormous range of real-

O. A. Arqub (B) · S. Momani
Department of Mathematics, Faculty of Science, The University of Jordan,
Amman, 11942, Jordan
e-mail: o.abuarqub@ju.edu.jo

M. Al-Smadi
Department of Applied Science, Ajloun College, Al-Balqa Applied University,
Ajloun 26816, Jordan

S. Momani
Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman
University, Ajman, UAE

© Springer Nature Singapore Pte Ltd. 2019
P. Agarwal et al. (eds.), Fractional Calculus, Springer Proceedings
in Mathematics & Statistics 303, https://doi.org/10.1007/978-981-15-0430-3_7

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0430-3_7&domain=pdf
mailto:o.abuarqub@ju.edu.jo
https://doi.org/10.1007/978-981-15-0430-3_7


108 O. A. Arqub et al.

world applications and the critical role that it plays to describe the complex dynam-
ical behaviors to such models including fluid dynamic model, traffic flow model,
convection-diffusion model, heat flux model, and so forth [1–4]. As well as, this
topic aids to simplify the controlling design without any shortage of hereditary. The
derivatives of fractional order are powerful to interpret several physical problems,
for instance, electrical circuits, damping laws, and controlled damper. Further, frac-
tional partial differential equations (FPDEs) are constructed due to attention among
the scientists and engineers to exact explanation of nonlinear phenomena which
appear, for example, in fluid mechanics wherever continuum assumption does not
well, and therefore fractional model can be deemed to be the best operator [5–10].
Developing numeric-analytic techniques to the solutions of PIDEs of fractional order
is an essential task. Since it is challenging to get closed-form solutions to fractional
PIDEs inmany situations. So a lot of efforts have beenmade to introduce and improve
analytical techniques that help us to obtain the analytic solution of those fractional
differential equations [11–17].

The reproducing kernel (RK) technique is a well-known systematic approach
in obtaining a feasible solution of both linear and nonlinear differential or integral
operators involving ordinary differential, partial differential, integral and integro-
differential, fractional differential, fuzzy differential, and delay differential equa-
tions [18–30]. The RKA is a superb, suitable, and useful tool to provide accurate
and appropriate algorithms for numeric simulations to natural phenomena arising
in physics, chemistry, biology, ecology, and engineering such as diffusive transport,
viscoelastic materials, fluid rheology, intelligent transportation systems, electromag-
netic theory, and probability [31–46]. Inspired by the areas mentioned above, the RK
method has been successfully implemented and utilized directly in solving nonlinear
initial or boundary value problemswithout the need for unphysically tied hypotheses,
linearization, transformations, discretization, or even perturbation.

In this chapter, we display a soft numerical algorithm, called reproducing kernel,
for handling classes of time-fractional PIDEs restricted by initial and Neumann
functions as follows:

∂α
ξαϕ(η, ξ) + μ1∂

2
η2

ϕ(η, ξ) + μ2∂ηϕ(η, ξ) + μ3ϕ(η, ξ) + P [ϕ(η, ξ)] + Q [ϕ(η, ξ)] = F(η, ξ),

P [ϕ(η, ξ)] = λ1

∫ 1

0
k1 (η, ξ, ρ)

(
μ4∂

2
η2

ϕ(η, ρ) + μ5∂ηϕ(η, ρ) + μ6ϕ(η, ρ)
)
dρ,

Q [ϕ(η, ξ)] = λ2

∫ η

0
k2 (η, ξ, ρ)

(
μ7∂

2
η2

ϕ(η, ρ) + μ8∂ηϕ(η, ρ) + μ9ϕ(η, ρ)
)
dρ,

(1)
with the initial and Neumann conditions

ϕ(η, 0) = ω(η),

∂ηϕ(0, ξ) = ν1(ξ), ∂ηϕ(1, ξ) = ν2(ξ),
(2)

where 0 < α ≤ 1, 0 ≤ η, ξ, ρ ≤ 1, μi , i = 1, 2, ..., 9 are real finite constant, λ1 and
λ2 are constant parameters, k1 (η, ξ, ρ) and k2 (η, ξ, ρ) are arbitrary continuous ker-
nel functions on the cube [0, 1]3 , ω(η), ν1(ξ), ν2(ξ) and F(η, ξ) are continuous
functions over the required domain, and ϕ(η, ρ) is an analytical solution to be found



Soft Numerical Algorithm with Convergence Analysis for Time-Fractional … 109

numerically. Hereby, we assume that Eq. (1) with conditions (2) has a unique smooth
solution. Further, ∂α

ξα denotes the time-fractional Caputo derivative of orderα, which
is given by

∂α
ξαϕ(η, ξ) = 1

� (1 − α)

ξ∫

0

(ξ − τ )−α ∂τϕ(η, τ )dτ . (3)

The rest of this chapter is organized as follows. In Sect. 2, the Hilbert spaces
required are extended, as well the reproducing kernel functions are provided. The
issue is formulated and the computational RK algorithm is presented in Sect. 3.
Meanwhile, some necessary theoretical results and convergent validity are studied
in the same section. In Sect. 4, numerical results are discussed to show the reliability
and efficiency of the proposed algorithm. Finally, this chapter ends with conclusions.

2 Preliminary Spaces

For clarity of presentation, some necessary definitions and preliminary facts are pre-
sented. Henceforth, ||u||2� = 〈u (η) , u (η)〉�, u ∈ �, η ∈ [0, 1], and � is a Hilbert

space, and L2 [0, 1] =
{
r | ∫ 1

0 r2 (ρ) dρ < ∞
}

.

Definition 1 [17] If � is a Hilbert space defined on a nonempty set �, then F :
� × � → R is called a reproducing kernel function (RKF) of the space � when
both two conditions are met:

1. For each η ∈ �, we have F (ρ, η) ∈ �.
2. For each ψ ∈ � and each η ∈ �, we have 〈ψ (ρ) ,F (ρ, η)〉 = ψ (η). (Reprod−

ucing Property)

The space � that possesses a reproducing kernel is said to be reproducing kernel
Hilbert space. The RKF F of the space � completely determines the Hilbert space
�.

Next, the required Hilbert spaces r H 1
2 [0, 1] and d H 2

2 [0, 1] will be defined, which
are possessing RKFs r R{1}

η (ξ) and d R{2}
η (ξ) , respectively.

Definition 2 [17] Let r ′(η) be in the space L2 [0, 1] . The space r H 1
2 [0, 1] given by

r H 1
2 [0, 1] = {r = r(η) : r is absolutely continuous over [0, 1]}. The inner product

is equipped by

〈r1(η), r2(η)〉
r H 1

2
= r1 (0) r2 (0) +

1∫
0
r ′
1(ρ)r ′

1(ρ)dρ. (4)

Remark 1 The space r H 1
2 [0, 1] is complete reproducing kernel and the RKF is

obtained as follows:
r R

{1}
η (ξ) = 1 + mim{η, ξ}. (5)
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Anyhow, if [0, 1] is the desired domain in direction of τ , then the complete
reproducing kernel space r̂ H 1

2 [0, 1] can be defined. Further, the inner product is
equipped by

〈r1(τ ), r2(τ )〉̂
r H 1

2
= r1 (0) r2 (0) +

1∫
0
r ′
1(ρ)r ′

1(ρ)dρ.

The kernel function is r̂ R{1}
τ (ξ) = 1 + mim{τ , ξ}.

Definition 3 Let r ′′(η) be in the space L2 [0, 1] . The space d H 2
2 [0, 1] is given by

d H 2
2 [0, 1] = {r = r(η) : r, r ′ are absolutely continuous over [0, 1], and r (0) = 0}.

The inner product is equipped by

〈r1(η), r2(η)〉
d H 2

2
=

2∑
i=0

r (i)
1 (0) r (i)

2 (0) +
1∫
0
r ′′
1 (ρ)r ′′

2 (ρ)dρ. (6)

Remark 2 The space d H 2
2 [0, 1] is complete reproducing kernel and the RKF is

obtained as follows:

d R
{2}
η (ξ) = 1

12

{
hη(ξ), η ≤ ξ,

hξ(η), η > ξ,
(7)

where hη(ξ) = 12ηξ + 6ηξ2 − 2ξ3.

Definition 4 Let r ′′′(η) be in the space L2 [0, 1] . The space d H 3
2 [0, 1] is given by

d H 3
2 [0, 1] = {r = r(η) : r, r ′, r ′′ are absolutely continuous over [0, 1], and r ′ (0) =

r ′(1) = 0}. The inner product is equipped by

〈r1(η), r2(η)〉
d H 3

2
=

1∑
i=0

r (i)
1 (0) r (i)

2 (0) + r1(1)r2(1) +
1∫
0
r ′′′
1 (ρ)r ′′′

2 (ρ)dρ. (8)

Remark 3 The space d H 3
2 [0, 1] is complete reproducing kernel, and the RKF is

obtained as follows:

d R
{3}
η (ξ) = 1

120

{(
(1 − ξ)3η3

)
gη(ξ), η ≤ ξ,(

(1 − η)3ξ3
)
gξ(η), η > ξ,

(9)

where gη(ξ) = 6η2ξ2 + 3ηξ(ξ − 5η) + (10η2 − 5ηξ + ξ2).

Next, to extend the novel inner product spaces and to fit its reproducing kernel
functions, we construct a reproducing kernel space W (�), � = [0, 1] ⊗ [0, 1], in
which every function satisfies the constraints homogeneous initial and Neumann
conditions of the above-mentioned time-fractional PIDEs.

Definition 5 Let be ∂3
η3∂

3
ξ3ϕ in the space L2(�). The Hilbert spaceW (�) is defined

as W (�) = {ϕ = ϕ(η, ξ) : ∂2
η2∂

2
ξ2ϕ are complete continuous functions in �, and

ϕ(η, 0) = ∂ηϕ(0, ξ) = ∂ηϕ(1, ξ) = 0}. The metric system structure lies in
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〈ϕ1(η, ξ),ϕ2(η, ξ)〉W =
1∑

i=0

〈
∂i

ξi
ϕ1 (η, 0) , ∂i

ξi
ϕ2 (η, 0)

〉
d H3

2

+
1∫
0

[
1∑

i=0
∂2

ξ2
∂i

ηi
ϕ1 (0, ξ) ∂2

ξ2
∂i

ηi
ϕ2 (0, ξ) + ∂2

ξ2
ϕ1 (1, ξ) ∂2

ξ2
ϕ2 (1, ξ)

]
dξ (10)

+
1∫
0

1∫
0
∂3

ξ3
∂2

η2
ϕ1 (η, ξ) ∂3

η3
∂2

ξ2
ϕ2 (η, ξ) dηdξ.

Theorem 1 The space W (�) is a complete reproducing kernel, and its RKF is
defined by

RW
(x,t) (η, ξ) = (

d R
{3}
x (η)

) (
d R

{2}
t (ξ)

)
, (11)

where the functions d R
{2}
t (ξ) and d R

{3}
x (η) are RKFs of d H 2

2 [0, 1] and d H 3
2 [0, 1] ,

respectively.

Proof By utilizing the features of 〈r1(η), r2(η)〉
d H 2

2
and 〈r1(η), r2(η)〉

d H 3
2
, it follows

that

〈
ϕ(η, ξ),d R{3}

x (η)d R{2}
t (ξ)

〉
W

=
1∑

i=0

〈
∂i
ξi

ϕ (η, 0) , ∂i
ξi

(
d R

{3}
x (η)d R{2}

t (0)
)〉

d H
3
2

+
1∫
0

⎡
⎢⎢⎣

1∑
i=0

∂2
ξ2

∂i
ηi

ϕ (0, ξ) ∂2
ξ2

∂i
ηi

(
d R

{3}
x (0)d R{2}

t (ξ)
)

+∂2
ξ2

ϕ (1, ξ) ∂2
ξ2

(
d R

{3}
x (1)d R{2}

t (ξ)
)

⎤
⎥⎥⎦ dξ

+
1∫
0

1∫
0
∂3
ξ3

∂2
η2

ϕ (η, ξ) ∂3
η3

∂2
ξ2

(
d R

{3}
x (η)d R{2}

t (ξ)
)
dηdξ

=
1∑

i=0

〈
∂i
ξi

ϕ (η, 0) ,d R{3}
x (η) ∂i

ξi d
R{2}
t (0)

〉
d H

3
2

+
1∫
0

⎡
⎢⎢⎣

1∑
i=0

∂2
ξ2

∂i
ηi

ϕ (0, ξ) ∂2
ξ2d

R{2}
t (ξ) ∂i

ηi d
R{3}
x (0)

+∂2
ξ2

ϕ (1, ξ)d R{3}
x (1) ∂2

ξ2d
R{2}
t (ξ)

⎤
⎥⎥⎦ dξ

+
1∫
0

(
1∫
0

∂3
ξ3

∂2
η2

ϕ (η, ξ) ∂3
η3d

R{3}
x (η) ∂2

ξ2d
R{2}
t (ξ) dη

)
dξ

=
1∑

i=0

〈
∂i
ξi

ϕ (η, 0) ,d R{3}
x (η)

〉
d H

3
2

∂i
ξi d

R{2}
t (0)

+
1∫
0

∂2
ξ2d

R{2}
t (ξ) ∂2

ξ2

⎡
⎢⎢⎣

1∑
i=0

∂i
ηi

ϕ (0, ξ) ∂i
ηi d

R{3}
x (0) + ϕ (1, ξ)d R{3}

x (1)

+ ∫ 1
0 ∂3

ξ3
ϕ (η, ξ) ∂3

η3d
R{3}
x (η)

⎤
⎥⎥⎦ dξ

=
1∑

i=0
∂i
ξi

ϕ (x, 0) ∂i
ξi d

R{2}
t (0) +

1∫
0

∂2
ξ2d

R{2}
t (ξ) ∂2

ξ2

〈
ϕ (η, ξ) ,d R{3}

x (η)
〉
d H

3
2
dξ

=
1∑

i=0
∂i
ξi

ϕ (x, 0) ∂i
ξi d

R{2}
t (0) +

1∫
0

∂2
ξ2d

R{2}
t (ξ) ∂2

ξ2
ϕ (x, ξ) dξ

=
〈
ϕ (x, ξ) ,d R{2}

t (ξ)
〉
d H

3
2

= ϕ (x, t) .

Hence,
〈
ϕ(η, ξ), R(x,t) (η, ξ)

〉
W = ϕ (x, t) . �
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Definition 6 Let be ∂η∂ξϕ in the space L2(�). The space H(�) is given by
H(�) = {ϕ = ϕ(η, ξ) : ϕ is continuous functions on �}, and the metric space can
be obtained by

〈ϕ1(η, ξ),ϕ2(η, ξ)〉H = 〈ϕ1 (η, 0) ,ϕ2 (η, 0)〉
d H2

2
(12)

+
1∫
0

∂ξϕ1 (0, ξ) ∂ξϕ2 (0, ξ) dξ +
1∫
0

1∫
0
∂2

ηξϕ1 (η, ξ) ∂2
ηξϕ2 (η, ξ) dηdξ.

Theorem 2 The space H [�] is complete reproducing kernel, and the RKF is

RH
(x,t) (η, ξ) = (̂

r R
{1}
τ (ξ)

) (
r R

{1}
η (ξ)

)
, (13)

where the functions r R{1}
η (ξ) and r̂ R{1}

τ (ξ) are RKFs of r H 1
2 [0, 1] and r̂ H 1

2 [0, 1] ,
respectively.

3 Numerical RK Algorithm

In this section, the statement of PIDEs (1) and (2) is being redrafted in Hilbert
space W (�). After homogenizing the inhomogeneous restriction conditions using
appropriate transformation, the differential operator T : W (�) → H(�) of frac-
tional order α can be defined, which is invertible, linear, and bounded, such that

Tϕ(η, ξ) = ∂α
ξαϕ(η, ξ) + μ1∂

2
η2

ϕ(η, ξ) + μ2∂ηϕ(η, ξ) + μ3ϕ(η, ξ) + P [ϕ(η, ξ)] + Q [ϕ(η, ξ)] .

Therefore, the original FPIED statement will be converted equivalently into the
following form:

Tϕ(η, ξ) = F (η, ξ) , (14)

with respect to the homogeneous initial and Neumann conditions

ϕ(η, 0) = 0,
∂ηϕ(0, ξ) = 0, ∂ηϕ(1, ξ) = 0.

(15)

The orthogonal function systems ofW (�) can be constructed by choosing a count-
able dense set {(ηi , ξi )}∞i=1 of�, and definingωi (η, ξ) = RH

(ηi ,ξi )
(η, ξ) andψi (η, ξ) =

T ∗ωi (η, ξ), in which T ∗ is the adjoint operator of T such tah T ∗ : H (�) →W (�).
While, the orthonormal basis

{
ψ̄i (η, ξ)

}∞
i=1 of the space W (�) can be obtained using

the procedures of G-Schmidt normalization to {ψi (η, ξ)}∞i=1 such that

ψi (η, ξ) =
i∑

k=1
βikψk (η, ξ) . (16)



Soft Numerical Algorithm with Convergence Analysis for Time-Fractional … 113

Theorem 3 The system {ψi (η, ξ)}∞i=1 is complete orthogonal basis of the space
W (�) as follows:

ψi (η, ξ) = T(x,t)
(
RW

(x,t) (η, ξ)
)∣∣

(x,t)=(ηi ,ξi )
,

where T(x,t) indicates that the operator T applies to the function of (x, t).

Proof Clearly that

ψi (η, ξ) = T ∗ωi (η, ξ) = 〈
T ∗ωi (x, t) , RW

(η,ξ) (x, t)
〉
W

= 〈
ωi (x, t) , T(x,t)R

W
(η,ξ) (x, t)

〉
H

= T(η,ξ)

(
RW

(η,ξ) (x, t)
)∣∣

(x,t)=(ηi ,ξi )
(17)

= T(x,t)
(
RW

(x,t) (η, ξ)
)∣∣

(x,t)=(ηi ,ξi )
∈ W (�).

Consequently, for each fixed ϕ ∈ W (�), let 〈ϕ(η, ξ),ψi (η, ξ)〉W = 0, i = 1, 2, ....
Then, 〈ϕ(η, ξ),ψi (η, ξ)〉W = 〈ϕ(η, ξ), T ∗ωi (η, ξ)〉W = 〈Tϕ(η, ξ),ϕi (x)〉H =
Tϕ(ηi , ξi ) = 0. Since {(ηi , ξi )}∞i=1 is dense on �, therefore Lϕ(η, ξ) = 0. It follows
that ϕ(η, ξ) = 0 by applying T−1ϕ. �

Remark 4 The sequence
{
RW

(xi ,ti )
(η, ξ)

}∞
i=1

is linear independent basis on W (�).

Theorem 4 Suppose that Am = ∑m
k=1 βik F(ηk, ξk). Letϕ(η, ξ) ∈ W (�) be the the

analytical solution of Eqs. (14) and (15), then it has the following form:

ϕ(η, ξ) =
∞∑

m=1
Amψ̄m (η, ξ) . (18)

Proof By utilizing the features of 〈ϕ1(η, ξ),ϕ2(η, ξ)〉W , it follows that

ϕ(η, ξ) =
∞∑

m=1

〈
ϕ(η, ξ), ψ̄m (η, ξ)

〉
W ψ̄m (η, ξ)

=
∞∑

m=1

m∑
k=1

βmk 〈ϕ(η, ξ),ψk (η, ξ)〉W ψ̄m (η, ξ)

=
∞∑

m=1

m∑
k=1

βmk
〈
ϕ(η, ξ), T ∗ωk (η, ξ)

〉
W ψ̄m (η, ξ)

=
∞∑

m=1

m∑
k=1

βmk 〈Tϕ(η, ξ),ωk (η, ξ)〉H ψ̄m (η, ξ)

=
∞∑

m=1

m∑
k=1

βmk 〈F(η, ξ),ωk (η, ξ)〉H ψ̄m (η, ξ)

=
∞∑

m=1

m∑
k=1

βmk F(ηk , ξk)ψ̄m (η, ξ)

=
∞∑

m=1
Am ψ̄m (η, ξ) . �
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Remark 5 The n-term approximate solution of the analytical solution described in
Eq. (18) can be given by

ϕn(η, ξ) =
n∑

i=1

i∑
k=1

βik F(ηk, ξk)ψ̄i (η, ξ) . (19)

According to the proposed algorithm, the required domain � can be divided into
finite r×s grid points with respect to η space-direction, �η = 1

r , and to ξ time-
direction, �ξ = 1

s over [0, 1], respectively, r, s ∈ N, r, s > 0. Anyhow, the ordered
pair (ηl, ξm) of � can be given simultaneously by

(ηl, ξm) = (l�η,m�ξ) , l = 0, 1, ..., r, m = 0, 1, ..., s.

The following computational RK algorithm is given to summarize the procedures
of the proposed method in solving those time-fractional PIDEs.

Algorithm 1 To obtain approximate solution ϕn(η, ξ) of the analytical solution
ϕ(η, ξ) of BVPs (14) and (15) on �, the following steps can be carried out:

Step A: Divide the required domain � into grid points such as n = rs, r, s ∈ N,

r, s > 0;
Step B: Put ψn (ηn, ξn) = T

(
RH

(x,t) (η, ξ)
)∣∣∣

(x,t)=(ηn ,ξn)
;

Step C: Find orthonormal coefficients βnk, then let ψn (ηn, ξn) = ∑n
k=1 βnkψn

(ηn, ξn) , n = 1, 2, ...,rs;
Step D: Ues the initial data ϕ0(η1, ξ1); then do the following subroutine:

For n = 1, n + +;
Let An = ∑n

k=1 βnk F(ηk, ξk);
Set ϕn(ηn, ξn) = ∑n

k=1

∑n
j=1Akψk (ηk, ξk);

Step E: If n<rs, then let n = n+1 and go to Step D; Otherwise, Stop.

Theorem 5 Let ||ϕ(η, ξ)||W be bounded on�, then the n-term approximate solution
ϕn(η, ξ) in Eq. (19) converges to the analytical solutionϕ(η, ξ) of Eqs. (14) and (15)

in W (�) that is given as ϕ(η, ξ) =
∞∑
i=1

i∑
k=1

βik F(ηk, ξk)ψ̄i (η, ξ).

Proof Let δn = ||ϕ(η, ξ) − ϕn(η, ξ)||W the nature error at (η, ξ) ∈ �,

then δ2n−1 =
∥∥∥∥

∞∑
i=n

i∑
k=1

βik F(ηk, ξk)ψ̄i (η, ξ)

∥∥∥∥
2

W

=
∞∑
i=n

(∑i
k=1 βik F(ηk, ξk)

)2
and δ2n =

∥∥∥∥
∞∑

i=n+1

i∑
k=1

βik F(ηk, ξk)ψ̄i (η, ξ)

∥∥∥∥
2

W

=
∞∑
i=n

(∑i
k=1 βik F(ηk, ξk)

)2
. Thus, δn−1 ≥ δn .

Consequently {δn}∞n=1 is decreasing with respect to the norm of W (�). If
∞∑
i=1

Ai ψ̄i

(η, ξ) is convergent, then, ||ϕ(η, ξ) − ϕn(η, ξ)||W → 0 as soon as n → ∞. �
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4 Numerically Gained Results

In this section, some examples are quantitatively discussed at certain grid points on
� to demonstrate the ability and performance of the proposed method in solving
those fractional PIDEs. For computation, all symbolic and numerical calculations
are performed using the Mathematica 9.0.

Example 1 We consider the linear time-fractional PIDE in the following form:

∂α
ξαϕ(η, ξ) + ∂2

η2
ϕ(η, ξ) − ∂ηϕ(η, ξ) + xϕ(η, ξ) + P [ϕ(η, ξ)] − Q [ϕ(η, ξ)] = F(η, ξ),

P [ϕ(η, ξ)] =
∫ 1

0
(ξ − ρ) eη+ρ

(
∂2
η2

ϕ(η, ρ) + ∂ηϕ(η, ρ) + ϕ(η, ρ)
)
dρ,

Q [ϕ(η, ξ)] =
∫ η

0
ρα+1eη−ξ

(
∂2
η2

ϕ(η, ρ) + 3∂ηϕ(η, ρ) + 4ϕ(η, ρ)
)
dρ,

(20)
with the initial and Neumann conditions

ϕ(η, 0) = 0,
∂ηϕ(0, ξ) = e−1ξ2α, ∂ηϕ(1, ξ) = 2ξα+1(ξα−1 + 1),

(21)

where 0 ≤ η, ξ ≤ 1, 0 < α ≤ 1 and F(η, ξ) are given functions such that the selected
solutionwill be satisfied in the both left- and right-hand sides ofBVPs. Equations (20)
and (21) over thedomain�.Here, the exact solution isϕ(η, ξ) = ηeη−1ξ2α + η2ξα+1.

Example 2 Consider the following nonlinear time-fractional PIDE:

∂α
ξα ϕ(η, ξ) − ∂2

η2
ϕ(η, ξ) + eηϕ3(η, ξ) + sin (η)ϕ2(η, ξ) + ∂ηϕ(η, ξ) − P [ϕ(η, ξ)] − Q [ϕ(η, ξ)] = F(η, ξ),

P [ϕ(η, ξ)] =
∫ 1

0
(ξ + η) eηρα

(
∂2

η2
ϕ(η, ρ) + ∂ηϕ(η, ρ) + ϕ(η, ρ)

)
dρ,

Q [ϕ(η, ξ)] =
∫ η

0
sin (ηξ)

(
∂2

η2
ϕ(η, ρ) − ∂ηϕ(η, ρ) − ϕ(η, ρ)

)
dρ,

(22)
with the initial and Neumann conditions

ϕ(η, 0) = 0,
∂ηϕ(0, ξ) = ξ3α+1, ∂ηϕ(1, ξ) = ln (0.5)ξ3α+1,

(23)

where 0 ≤ η, ξ ≤ 1, 0 < α ≤ 1 and F(η, ξ) is given function such that the selected
solution will be satisfied in the both left- and right-hand sides of BVPs (20) and
(21) over the domain �. Here, the exact solution is ϕ(η, ξ) = (1 − η) ln (1 + η)

cos2 (3πη) ξ3α+1.

To demonstrate the effectiveness of the RK solutions, the examples above are
tested across the domain �. Anyhow, results from numerical analysis are an approx-
imation, in general,which canbemade as accurate as desired.Because a computer has
a finiteword length, only a fixed number of digits are stored and used during computa-
tions. Following, absolute errors of approximate solutionϕn(η, ξ) for both Examples
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Table 1 Absolute errors of Example 1 over �

x t α = 0.25 α = 0.5 α = 0.75 α = 1

0 0.25 1.5202955220 × 10−7 8.5851595338 × 10−7 9.3131586223 × 10−7 1.6088074877 × 10−8

0.5 3.1310929434 × 10−6 2.9629678339 × 10−7 4.4292618364 × 10−7 9.7271247494 × 10−7

0.75 4.0499972764 × 10−6 1.6829336033 × 10−6 8.1459842130 × 10−6 5.9375835113 × 10−7

1 8.9639505999 × 10−6 9.9022004243 × 10−6 2.3384483768 × 10−6 8.1051406404 × 10−6

0.25 0.25 8.2373427553 × 10−7 6.5983172765 × 10−7 9.3054980205 × 10−7 7.6310676740 × 10−7

0.5 2.7232898676 × 10−6 1.0693336383 × 10−7 3.9973040691 × 10−7 7.7728964454 × 10−7

0.75 3.2714639390 × 10−6 3.4265168332 × 10−6 8.9924037150 × 10−6 8.1729535402 × 10−6

1 1.8522344410 × 10−6 8.6625479440 × 10−6 9.7462801838 × 10−6 1.1749765902 × 10−6

0.5 0.25 4.5870682134 × 10−7 3.1634826495 × 10−7 2.7065700155 × 10−7 5.9471694210 × 10−8

0.5 9.9056258776 × 10−6 4.4738559389 × 10−6 4.6166202647 × 10−7 6.8824054303 × 10−7

0.75 3.0618500642 × 10−6 6.7163511298 × 10−6 6.9702799521 × 10−6 3.8457050803 × 10−7

1 2.7560569249 × 10−6 4.2505438452 × 10−6 8.1256012945 × 10−6 8.2173135294 × 10−6

0.75 0.25 1.7835134763 × 10−7 7.3344192438 × 10−7 3.6082013498 × 10−7 6.2822299556 × 10−8

0.5 3.2605016445 × 10−6 3.4355177778 × 10−7 5.8928801842 × 10−7 8.8955534782 × 10−7

0.75 1.9684148538 × 10−6 8.5361825235 × 10−6 5.8141127051 × 10−6 3.1743929263 × 10−7

1 5.3327573861 × 10−6 6.2303305719 × 10−6 2.0146526217 × 10−6 8.0470697269 × 10−6

1 0.25 4.8687548990 × 10−7 1.4518234026 × 10−7 7.3231124692 × 10−7 6.7200224276 × 10−7

0.5 5.3763575915 × 10−6 8.8579046722 × 10−6 2.5430060005 × 10−7 7.4596696195 × 10−7

0.75 5.9469042577 × 10−6 7.7876144332 × 10−6 6.8853386269 × 10−6 3.6563750502 × 10−6

1 1.3313627925 × 10−6 8.9735110839 × 10−6 2.2569043006 × 10−6 4.8476533804 × 10−6

Table 2 Absolute errors of Example 2 over �

x t α = 0.25 α = 0.5 α = 0.75 α = 1

0 0.25 7.9776844684 × 10−7 3.4840685648 × 10−7 2.0885121979 × 10−7 4.1424682191 × 10−8

0.5 8.3783958819 × 10−7 4.1528820307 × 10−7 7.1702389557 × 10−8 6.1668778742 × 10−8

0.75 3.3967362498 × 10−7 6.6991474431 × 10−7 8.4884903069 × 10−7 2.0811339500 × 10−7

1 5.3104194940 × 10−6 5.2032473529 × 10−7 1.8581559833 × 10−7 5.1027116115 × 10−8

0.25 0.25 7.7999626080 × 10−7 2.4640451071 × 10−7 2.8311662609 × 10−7 8.6689276035 × 10−8

0.5 8.3989967791 × 10−7 5.7091389550 × 10−7 4.8072774473 × 10−7 5.2358140673 × 10−7

0.75 6.9639358686 × 10−7 2.8087915523 × 10−7 7.0935196083 × 10−7 6.6709448740 × 10−8

1 5.1420418936 × 10−6 4.0159489813 × 10−7 2.2581468314 × 10−7 3.2212477612 × 10−7

0.5 0.25 6.9540160215 × 10−7 5.6446045032 × 10−7 7.8194176413 × 10−8 1.3560757675 × 10−8

0.5 1.8873258794 × 10−7 8.7256088711 × 10−7 7.3103863842 × 10−7 6.1796585570 × 10−7

0.75 9.3946809462 × 10−7 5.5063241201 × 10−7 3.0104629974 × 10−7 1.7518180465 × 10−8

1 9.4341574440 × 10−6 9.3968995759 × 10−7 8.0664793597 × 10−7 6.1269428722 × 10−8

0.75 0.25 4.7458237332 × 10−7 2.7794343641 × 10−7 1.2112309375 × 10−7 4.8362338856 × 10−8

0.5 3.4525853552 × 10−7 5.0629795416 × 10−7 4.0379454165 × 10−7 9.4477540589 × 10−7

0.75 6.6148187244 × 10−7 2.9964614478 × 10−7 2.2900033128 × 10−7 8.9941236417 × 10−8

1 9.8926059525 × 10−6 2.6698929941 × 10−7 6.7181321202 × 10−8 1.1564777914 × 10−8

1 0.25 2.8313095737 × 10−7 6.6972801239 × 10−7 7.4614502464 × 10−7 3.0846376150 × 10−8

0.5 6.5203528576 × 10−7 5.8144559231 × 10−7 4.3056435055 × 10−7 7.5776950397 × 10−8

0.75 3.2788169448 × 10−7 6.3469459479 × 10−7 6.2841762561 × 10−7 7.8177679269 × 10−7

1 4.9070667887 × 10−6 4.9990426724 × 10−7 9.2211292620 × 10−7 6.7229592233 × 10−7



Soft Numerical Algorithm with Convergence Analysis for Time-Fractional … 117

1 and 2 for different values (η, ξ) in�with step-size 0.25 are listed in Tables 1 and 2,
respectively. From these tables, it can be observed that the error estimate confirm the
accuracy of numeric results related to fill time ξm = m�ξ,m = 0, 1, ...,r , �ξ = 1

r

and distance ηl = l�η, l = 0, 1, ...,s, �η = 1
s . Hence, more accurate numeric solu-

tions can be found by utilizing more grid points (η, ξ).

5 Concluding Remarks

In this chapter, the RKM has been applied to obtain approximate solutions for both
linear and nonlinear PIDEs of fractional order. The fractional derivative has been
described in the Caputo sense. Two examples have been tested to show the efficiency
of the proposed method. By comparing our results with the exact solution for integer
and non-integer orders derivative, one can observe that the proposed method yields
accurate approximations. This adaptive can be used as an alternative technique in
solving several nonlinear partial fractional problems arising in diverse engineering,
chemistry, biology, and physical sciences.
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Abstract In order to deal with some difficult problems in fractional-order sys-
tems, like computing analytical time responses such as unit impulse and step
responses; some rational approximations for the fractional-order operators are pre-
sented with satisfying results in simulation and realization. In this chapter, several
comparisons in the time response and Bode results between four well-known meth-
ods; Oustaloup’s method, Matsuda’s method, AbdelAty’s method, and El-Khazali’s
method are made for the rational approximation of fractional-order operator (frac-
tional Laplace operator). The various methods along with their advantages and limi-
tations are described in this chapter. Simulation results are shown for different orders
of the fractional operator. It has been shown in several numerical examples that the El-
Khazali’s method is very successful in comparison with Oustaloup’s, Matsuda’s, and
AbdelAty’s methods.
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1 Introduction

Many attempts have been made by many researchers to obtain different forms
of finite-order rational approximation to the fractional-order Laplacian integro-
differential operators. Such attempts allow one to develop realizable models of dif-
ferent systems and processes using passive or active electronic devices to mimic the
behavior of such operators. For example, a diffusion process in the electrochemical
process, which exhibits fractional-order dynamics, can successfully be modeled by
finite-order electrical circuits using different approximation algorithms [1, 2].

Fractional-order systems provide more freedom in control theory. For example,
fractional-order controllers proved to show superior performance over their integer-
order counterparts. It widens the scope of applications in systems and, in some
cases, simplifies the design of controllers. The Laplace transform of the input–output
relationship provides a powerful tool to investigate the frequency response of linear
systems. It is extended to systems that exhibit fractional-order dynamics [1–5]. The
frequency response of an integro-differential Laplacian operator, s±α can be defined
as

( jω)±α = ω±α
[
cos

(απ

2

)
± j sin

(απ

2

)]
(1)

It is not possible to estimate the exact time response of a fractional-order transfer
function since the analytical inverse Laplace transform does not exist [2], one may
compute the system time responses, namely the impulse and the step responses,
whichmaybedescribedby fractional-order transfer function, by constructing rational
approximations of the fractional-order operators, s±α. Such approximation can be
used to generate equivalent integer-order transfer functions that describe the original
system within a limited frequency band [1].

There are several popular approximation methods that are used to approximate
s±α, such as the Continued Fractional Expansion (CFE), least square method,
Oustaloup’s, Carlson’s, Matsuda’s, Chareff’s, AbdelAty’s et.al., and El-Khazali’s
approximation methods [1–5]. In the latest paper by the authors in [6], the numerical
time-domain solution of fractional-order systems is obtained using two methods; the
first one uses the Fourier series representation of a square wave, and the second one
uses the inverse Fourier transform. The two methods use the exact numerical data of
the system frequency response to obtain accurate representations of the fractional-
order dynamics.

In this chapter, some basic concepts about the fractional-order models, the fre-
quency domain analysis, and some rational approximations of fractional-order oper-
ators are presented in the first four sections. Section 5, however, includes the main
comparison results in both time and frequency domains using four different approxi-
mationmethods of the Laplacian operators, s±α, namely, theOustaloup’s,Matsuda’s,
AbdelAty’s et.al, and El-Khazali’s approximations [1–5].Two numerical examples
are given to provide detailed comparison and to highlight the advantages and disad-
vantages of each method.
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Furthermore, providingmodular approximating to s±α, 0 < α ≤ 1, by finite-order
rational-transfer functions simplifies the realization of larger class of fractional-order
controllers such as fractional-order integrators, I λ, fractional-order differentiator,
Dδ , a combination of PIλ, PDδ , to design PIλDδ controllers (FOPID). The proper-
ties of these controllers and the effect of their fractional orders on system transient
response are briefly highlighted for completeness and compared with their integer-
order counterparts.

2 Fractional-Order Models

Figure 1 shows a general classification of LTI systems. It is well known that sys-
tems, which exhibit hereditary effect, are described by fractional-order differential
equations. The fundamental definitions of fractional-order calculus are used to char-
acterize such systems [7]. The integer-order dynamics, however, is considered as a
subset of larger class of fractional-order systems. Furthermore, it was shown in [7–9]
that fractional-order controllers outperform their integer-order counterparts due to
their flexibility in accommodating more parameters, and due to the constant-phase
frequency response, which provides more robustness to the controlled plants.

The class of linear time-invariant systems that will be considered here is described
by the following fractional-order differential equations [7]:

anD
αn y(t) + · · · + a0D

α0 y(t) = bmD
βm u(t) + · · · + b0D

β0u(t) (2)

where u(t) and y(t) are the control and output variables, and Dα defines a fractional-
order differential operator (according to Caputo definition) of different fractional
orders αk; k = 1, 2, 3, . . . , n, and βl; l = 1, 2, 3, . . . ,m, are arbitrary constants and
n,m ∈ N.

Fig. 1 Classification of LTI
systems
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The system of (2) is said to be of commensurate order if all its orders are integer
multiples of a base of a fractional order,q, such thatαk;βk = kq; q ∈ R

+. The system
can then be expressed as [4]:

n∑
k=0

akD
kq y(t) =

m∑
k=0

bkD
kq u(t) (3)

Obviously, if one sets q = 1
n , where n > 1; then (3) defines a typical fractional-order

system of commensurate order. A fractional-order linear time-invariant (FOLTI)
system is mathematically equivalent to an infinite-dimensional LTI filter. In order
to model such systems, one has to realize finite-order approximate models that best
describe the original fractional-order systems. Obviously, the size of approximation
depends on the type of the numerical algorithms used to implement such models.

Discrete-time fractional-order systems are usually approximated by higher order
FIR or IIR filters of integer orders [10]. The size of the FIR filters needed to model
such systems are usually much larger than those of IIR filters. Therefore, most
researchers focus on developing a set of rational-transfer functions of much lower
orders. The presence of the feedback action imbedded in the rational transfer func-
tions compensate for the need to realize larger size of either continuous or discrete
FIR filters for the FOLTI systems [11, 12]. Figure 1 shows a classification of FOLTI
that is of interest in this chapter.

The frequency response of systems is usually carried out by using transfer func-
tions. The transfer function of a linear time-invariant system is defined as the ratio of
the Laplace transform of the output (system output response) to the Laplace trans-
form of the input (system input) under the assumption that all initial conditions are
zero [11], i.e.,

G(s) = L (output)

L (input)

∣∣∣
zero initial conditions

= Y (s)

U (s)
(4)

A typical form of a fractional-order LTI (FoLTI) system can be described by the
following transfer function [11]:

G(s) = Y (s)

U (s)
= bmsβm + bm−1sβm−1 + · · · + b1sβ1 + b0sβ0

ansαn + an−1sαn−1 + · · · + a1sα1 + a0sα0
(5)

The next sections outline a complete comparison between the different types of
approximations used to evaluate the time and frequency response of the approximated
integro-differential operators. In addition, the finite-order rational approximations
will be used to model and design fractional-order PID (FOPID) controllers, and
compared with the ideal controllers.
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3 Frequency Response of FOLTI Systems

The frequency response of FOLT I systems (5) may be obtained by replacing, s, in
(5) by a generating function, s = (ω(z−1)) [11] to yield

G(z) = bm(ω(z−1))βm + bm−1(ω(z−1))βm−1 + · · · + b1(ω(z−1))β1 + b0(ω(z−1))β0

an(ω(z−1))αn + an−1(ω(z−1))αn−1 + · · · + a1(ω(z−1))α1 + a0(ω(z−1))α0

(6)

where s = (ω(z−1)) denotes the discrete equivalence of the Laplace operator s,
expressed as a function of the complex variable z or the shift operator z−1. Sys-
tem (5) defines an irrational continuous transfer function in the Laplace domain
or/and an infinite-dimensional discrete-time transfer function in the z-domain [5]. In
both cases, FOLTI systems have unlimited memory size, while integer-order ones
are described by finite-dimensional models [1].

4 Rational Approximation of Fractal-Order Operators

The rational approximation of fractional-order Laplacian operators simplifies the
realization of fractal elements of real orders, which can also be characterized as
Constant-Phase Elements (CPE) [13]. Such elements provide a good description of
these operators over a limited frequency range. In this study, our interest is limited to
fractional-order operators of real order. The electronic circuit realizations of different
fractional-order operators are left for future consideration [13].

The following section describes briefly the different approximation methods of
the fractional-order integro-differential Laplacian operators, s±α, that are used in
many applications [1, 3–5, 14].

4.1 Oustaloup’s Approximation

Oustaloup’s approximation is a popular one and generates rational-transfer functions
of odd order only. The bandwidth over which the approximation is considered can
be customized to yield a good fitting to the fractional-order elements s±α within
a predefined frequency band. Thus, for geometrically distributed frequencies over
the frequency range of interest (ωb,ωh), the following rational function is used for
approximating sα [1]:

sα ∼= K
N∏

k=−N

s + ω
′
k

s + ωk
= Bnsn + Bn−1sn−1 + · · · + B1s + B0

Ansn + An−1sn−1 + · · · + A1s + A0
(7)
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where the poles, zeros, and gain are evaluated from

ωk = ωb

(ωh

ωb

) k+N+0.5(1+α)

2N+1
(8a)

ω
′
k = ωb

(ωh

ωb

) k+N+0.5(1−α)

2N+1
(8b)

K =
(ωh

ωb

) −α
2

N∏
k=−N

ωk

ω
′
k

(8c)

Due to the geometrical distribution of frequencies, the unity gain geometric fre-
quency ωu is calculated from

ωu = √
ωb · ωh (9)

where the approximation depends on the order of the filer N and the upper and the
lower frequency range (ωb,ωh). Observe that the order of the transfer function (7)
will always be n = 2N + 1, i.e., only odd-order approximations are possible through
the Oustaloup’s method. In the special case where the limited frequencies ωb and
ωh are symmetrical around the center frequency ωu = 1rad/sec, (i.e., ωb = 1/ωh),
then the coefficients of (7) are correlated to each other as follows [12]:

An−i = Bi , i = 0, 1, 2, . . . , N . (10)

One can define the fractional-order derivative using the a fractional-order integral
as follows:

Dα
a f (t) = Dm Jm−α

a f (t) (11)

where m is a positive integer such that m − 1 < α ≤ m.
Consequently, for the case when the fractional orders α ≥ 1, one may rewrite

sα as

sα = snsγ (12)

where n = α − γ denotes the integer part of α and sγ is obtained by Oustaloup’s
approximation using (7).

For digital implementations, the obtained approximation may be discretized to
using suitable discretization methods [5].
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4.2 Matsuda’s Approximation

This method provides continuous approximation by calculating gain at logarithmi-
cally spaced frequencies. If the value of a function F( jω) is known over a set of
frequencies ω0,ω1,ω2, . . . ,ωN , then the following set of functions is recursively
defined by [15]:

d0(ω) =| F( jω) | (13)

dk+1(ω) = ω − ωk

dk(ω) − dk(ω)
, k = 0, 1, 2, . . . , N (14)

Then, an (N + 1)(N + 1) superior upper triangular matrix is formed as follows:

D =

⎡
⎢⎢⎢⎢⎢⎣

d0(ω0) d0(ω1) d0(ω2) . . . d0(ωN )

d1(ω1) d1(ω2) . . . d1(ωN )

d2(ω2) . . . d2(ωN )

. . .
...

dN (ωN )

⎤
⎥⎥⎥⎥⎥⎦

(15)

The desired approximation is then given by the following continued fraction:

F(s) = a0 + s − ω0

a1 + s−ω1

a2+ s−ω2
a3+···

= a0 + s − ω0

a1 + · · ·
s − ω1

a2 + · · ·
s − ω2

a3 + · · · (16)

such that the set of coefficients is defined as

ak =

⎧⎪⎨
⎪⎩

| F( jω0) |, i f k = 0

ωk−ωk−1

dk−1(ωk )−dk−1(ωk−1)
, i f k = 1, 2, 3, . . . , N

(17)

4.3 AbdelAty’s Approximation

The approximation is based on using a weighted sum of 1st-order high-pass fil-
ters. The parameters of the filters are obtained using a flower pollination algorithm
(FPA) for each fractional order [16], which can be synthesized using Forster II RC
realization [4] and given by

sα = 1

�(α)�(1 − α)

n∑
i=1

ki
s

τα
i (1 + τi s)

(18)

where τi and ki are two constants found using the FPA optimization algorithm.
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Notice that the high-pass structure of each filter section of (20) creates larger
phase errors for fractional orders less than 0.5 than other approximation methods,
since the phase value of each section is π/2 at low frequency.

4.4 El-Khazali’s Integro-Differential Approximation

Fractional-order integro-differential Laplacian operators, s±α, can be approximated
using a biquadratic approximation algorithm introduced in [17], where sα defines a
differential operator, while s−α defines a fractional-order integrator. The orders of
both the numerator and denominator are equal, where the reciprocal of one approx-
imation yields the other one. Thus, realizing fractal elements (i.e., fractional-order
capacitors or inductors) is straightforward and only depends on the order of differ-
entiation or integration. For a single module, it enjoys a flat phase response at its
center frequency, but with a narrower bandwidth than its counterparts. It consists of
cascaded several 2nd-order biquadratic transfer functions of the form [13, 17]:

( s

ωg

)α =
n∏

i=1

Hi (s/ωi ) =
n∏

i=1

Ni

(
s

(ωi /ωg)

)

Di

(
s

(ωi/ωg)

) (19)

where ωi , i = 1, 2, . . . , n, is the center frequency of each biquadratic module and

ωg = n

√∏n
i=1 ωi is their geometric mean.

If one selects the first center frequency, ω1, of the first section, then to obtain a
constant-phase element, the subsequent center frequencies of each section can be
calculated from the following recursive formula [17]:

ωi = ω2(i−1)
x ω1; i = 2, 3, . . . , n (20)

where ωx is the maximum real solution of the following polynomial:

a0a2ηγ4 + a1(a2 − a0)γ
3 + (a21 − a22 − a20)ηγ2 + a1(a2 − a0)γ + a0a2η = 0

(21)
and where η = tan(απ/4). Each biquadratic module in (21) is given by

( s

ωg

)α = Hi

( s

ωi

)
= Ni (

s
ωi

)

Di (
s
ωi

)
∼=

a0(
s
ωi

)2 + a1(
s
ωi

) + a2

a2(
s
ωi

)2 + a1(
s
ωi

) + a0
, i = 1, 2, 3, . . . (22)

where
a0 = αα + 2α + 1

a2 = αα − 2α + 1

a1 = (a2 − a0)tan
(

(2+α)π
4

)
= −6α tan

(
(2+α)π

4

)

⎫⎪⎪⎬
⎪⎪⎭

(23)
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Observe that (24) is the only approximation that yields Hi (
s
ωi

) = ( s
ωi

) as α → 1; i.e.,

Hi

( s

ωi

)
= a0(

s
ωi

)2 + a0(
s
ωi

)

a0(
s
ωi

) + a0
=

( s

ωi

)
(24)

Moreover, the reciprocal of (21) approximates a fractional-order integrator [17],
or simply:

(s/ωg)
(−α) =

n∏
i=1

Ĥi (s/ωg) =
n∏

i=1

Di

(
s

(ωi /ωg)

)

Ni

(
s

(ωi/ωg)

) . (25)

5 Comparison Results

In this section, we introduce a comparison simulation result between the four dif-
ferent approximation algorithms discussed in section (4) in both time and frequency
domains. Two numerical examples are investigated to highlight the main differences
of these methods; the first one approximates a fractional-order Laplacian differen-
tiator s0.4, and the second example is the approximation of a closed-loop transfer
function of a FOLTI system.

Example 1 The integer-order of a rational transfer function that approximates s0.4

using Oustaloup’s, Matsuda’s, AbdelAty’s, and El-Khazali’s approximation, respec-
tively, are given by

– Oustaloup’s approximation

s0.4 = 6.31s3 + 77.14s2 + 41.74s + 1

s3 + 41.74s2 + 77.14s + 6.31
, 0.1 ≤ ω ≤ 10 (26)

– Matsuda’s approximation

s0.4 = 10.01s3 + 163.6s2 + 83.01s + 1

s3 + 83.01s2 + 163.6s + 10.01
(27)

– AbdelAty’s approximation

s0.4 =

412.48s8 + 206415397.69s7 + 11956108280000.56s6 + 94706047639064780s5

+ 104739477770482730000s4 + 1.616e22s3 + 3.399e23s2 + 8.429e23s

s8 + 1443327.34s7 + 190377994705.8s6 + 3320443435965385.5s5

+ 8064411171562614000s4 + 2.737e21s3 + 1.285e23s2 + 7.801e23s + 3.550e23

(28)
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Fig. 2 Bode plot of the approximations (26), (27), (28), and (29)

– El-Khazali’s approximation

s0.4 = 2.493s2 + 4.924s + 0.8931

0.8931s2 + 4.924s + 2.493
(29)

The Bode diagrams and the step response of (26)–(29) are shown in Figs. 2 and 3,
respectively. Figure 2 shows the frequency response of four different approximations.
They all show similar frequency response, except for AbdelAty’s approximation
since the phase error at low frequency is larger than the rest of approximations. This
error would increase for lower values of α. Figure 3, however, shows an almost
identical response of the fractional-order derivative of the unit-step function using
the four approximations given by (26)–(29). However, the 8th-order approximation
of AbdelAty does not give the right time response.

Example 2 Consider the following fractional-order transfer function reported in [6]:

H(s) = 1

2s2.1 + 0.8s0.8 + 1
(30)

If one wishes to sufficiently simplify (30) by a lowest integer-order transfer func-
tion using the four approximations discussed in Sect. 4, one needs to replace s0.1 and
s0.8 by their integer-order equivalence to be able to develop integer-order approxima-
tion to (30). Using Oustaloup’s 5th-order approximations for s0.1 and s0.8 yields [1]:
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Fig. 3 Fractional-order derivative of order 0.4 of the unit-step function using (26), (27), (28), and
(29)

s0.1 = 1.585s5 + 68.37s4 + 403.3s3 + 367.9s2 + 51.87s + 1

s5 + 51.87s4 + 367.9s3 + 403.3s2 + 68.37s + 1.585
(31)

s0.8 = 39.81s5 + 901.4s4 + 2790s3 + 1336s2 + 98.83s + 1

s5 + 98.83s4 + 1336s3 + 2790s2 + 901.4s + 39.81
(32)

Substituting (31) and (32) into (30) yields a 10th-order transfer function of the form:

HOus (s) =

s10 + 150.7s9 + 6830s8 + 1.088e05s7 + 6.769e05s6 + 1.619e06s5

+ 1.551e06s4 + 5.711e05s3 + 8.211e04s2 + 4151s + 63.1

3.17s12 + 450s11 + 1.859e04s10 + 2.745e05s9 + 1.593e06s8 + 3.871e06s7 + 4.771e06s6

+ 3.953e06s5 + 2.293e06s4 + 6.858e05s3 + 8.961e04s2 + 4331s + 64.36

(33)

Repeating the same procedure using the following Matsuda’s 5th-order approxima-
tions of s0.1 and s0.8:

s0.1 = 1.891s5 + 175.3s4 + 1329s3 + 1197s2 + 126.3s + 1

s5 + 126.3s4 + 1197s3 + 1329s2 + 175.3s + 1.891
(34)

s0.8 = 313.3s5 + 1.188e04s4 + 4.261e04s3 + 1.826e04s2 + 809.3s + 1

s5 + 809.3s4 + 1.826e04s3 + 4.261e04s2 + 1.188e04s + 313.3
(35)
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yields the following 10th-order rational-transfer function of (30) of the form:

HMat (s) =

s10 + 935.6s9 + 1.216e05s8 + 3.317e06s7 + 2.831e07s6 + 7.689e07s5

+ 7.406e07s4 + 2.366e07s3 + 2.579e06s2 + 7.739e04s + 592.3

3.78s12 + 3411s11 + 3.557e05s10 + 8.757e06s9 + 6.709e07s8 + 1.806e08s7 + 2.219e08s6

+ 1.815e08s5 + 1.041e08s4 + 2.725e07s3 + 2.722e06s2 + 7.875e04s + 593.8

(36)

In similar manner, the 8th-order AbdelAty’s approximations of s0.1 and s0.8 are given
by

s0.1 =

4.51s8 + 3722617.69s7 + 390344733034.4s6 + 6445483209685290s5

+ 17462315946623164000s4 + 7.739e21s3 + 5.437e23s2 + 5.054e24s

s8 + 1053025.15s7 + 133752991203.54s6 + 2649165710288196s5

+ 8597754455256356000s4 + 4.569e21s3 + 3.872e23s2 + 4.503e24s + 1.386e24

(37)

s0.8 =

228721.34s8 + 56105355367.14s7 + 1671424211082485s6 + 7107665167043685000s5

+ 4.418e21s4 + 4.005e23s3 + 5.176e24s2 + 7.867e24s

s8 + 3327245.95s7 + 518122071483.89s6 + 10400295711020872s5

+ 30071114886647075000s4 + 1.273e22s3 + 7.848e23s2 + 6.793e24s + 6.216e24

(38)

Consequently, the 16th-order approximation of (30) is

H Abd (s) =

s16 + 4380271.1s15 + 4155548728273.07s14 + 1003674131746307100s13 + 8.911e22s12

+ 2.824e27s11 + 3.606e31s10 + 1.732e35s9 + 3.401e38s8 + 2.529e41s7 + 7.661e43s6

+ 8.707e45s5 + 3.923e47s4 + 6.210e48s3 + 3.408e49s2 + 3.741e49s + 8.618e48

9.02s18 + 37456993.85s17 + 30226279998733.27s16 + 6561788513256727000s15

+ 5.251e23s14 + 1.514e28s13 + 1.758e32s12 + 7.688e35s11 + 1.376s10 + 9.315e41s9

+ 2.574e44s8 + 2.655e46s7 + 1.090e48s6 + 1.558e49s5 + 7.889e49s4 + 9.057e49s3

+ 6.816e49s2 + 4.613e49s + 8.618e48

(39)

In addition, the biquadratic approximationmethod of El-Khazali yields the following
rational transfer function for s0.1 and s0.8, respectively.

s0.1 = 1.994s2 + 5.082s + 1.594

1.594s2 + 5.082s + 1.994
(40)

s0.8 = 3.436s2 + 4.404s + 0.236

0.2365s2 + 4.404s + 3.436
(41)

Substituting (40) and (41) into (30) gives a 6th-order approximation of the form:

Hk(s) = 0.377s4 + 8.222s3 + 28.333s2 + 26.247s + 6.852

0.943s6 + 19.968s5 + 63.984s4 + 76.78s3 + 62.978s2 + 34.234s + 7.229
(42)
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The frequency and the unit-step responses of all four approximations given by
(33), (36), (39), and (42) are shown in Figs. 4 and 5, respectively. Obviously,
El-Khazali’s approximation yields a competitive frequency response to those of
Oustaloup’s and Matsuda’s approximations, but gives larger steady-state errors than
its counterparts as depicted in Fig. 5. This is due to using a 2nd-order approxima-
tion to the fractional-order derivatives in (40) and (41). Increasing their order of
approximation to a 4th-one, for example, would improve the rational approximation
of s0.1 and s0.8 and consequently, it would improve the steady-state step response.
Furthermore, the parameter values of El-Khazali’s approximation are smaller than
its competitive counterparts and that would imply less expensive circuit design.

The effectiveness of the approximation methods in designing different types of
controllers is further investigated in the next section.
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6 Approximation of Fractional-Order Controllers

The commonly used proportional–integral–derivative (PID) controller, which con-
sists of three parameters has been successfully used in industrial applications for
several decades. The popularity of the PID controller lies in the simplicity of the
design procedures and in the effectiveness of its system performance [18]. Some
applications of PID controller show undesirable system performance, which may be
enhanced by using fractional-order PID (FOPID) controllers [7–9, 19–21].

AFOPID controllerwas introduced in [7]. it is a generalization of the conventional
integer-order PID controller and denoted by P I λDδ , where λ and δ are the fractional
orders of the integral and the derivative components, respectively. Thus, adding two
more parameters to tune the original three parameters of the classical integer-order
PIDcontrollers,which addmoredegrees of freedom[7]. ThePIDcontroller processes
the present, past, and future values of the error signal, e(t). A digital implementation
of such controllers grew rapidly and overcomes the difficulties embedded in the
realizations of the continuous versions.
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Fig. 6 Block diagram of a controlled system using integer-order PID controller

Figure 6 shows a typical block diagram of an integer-order PID controller. The
proportional controller amplifies the present value of the error signal. The integral
part refers to the accumulation of the past errors, while its derivative part predicts
the future values of the error; i.e., acts on the anticipated value of the error signal.
One may use the weighted sum of these three actions to make a final adjustment to
tune its parameters [7].

6.1 Proportional-Order Controllers

Proportional controllers are widely used and are simple to design. They simply form
a direct scaling of the error signal to alter the transient and steady-state system
responses, i.e.,

y(t) = Kpe(t) (43)

where e(t) = r(t) − y(t) is the error signal between a reference signal, r(t), and the
output signal, y(t). Thus,

Y (s) = KpE(s) (44)

The steady-state error in a proportional controller, C(s) = Kp, is inversely pro-
portional to the controller gain [22, 23]. It is well known that increasing it makes
the system response faster and minimizes the steady-state errors, but increases the
system overshoot [15].
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6.2 Fractional-Order Integral Controllers (Iλ-Controllers)

The fractional-order integral controllers (I λ- controllers) produce the control signal
y(t), which is proportional to the fractional integral of the error signal e(t). It can be
described by the following relation [23]:

y(t) = Ti .I
λe(t) ≡ Ti .D

−λe(t) (45)

which is described by the following transfer function:

Y (s)

E(s)
= Ti

sλ
≡ C(s,λ) (46)

where C(s,λ) denotes a fractional-order controller, (I λ-controller) of order λ.
Obviously, increasing λ reduces the steady-state error. The fractional-order inte-

grator, s−λ, eliminates the offset error when λ > 1 without increasing the integral
constant Ti . It is possible to reduce the offset error when λ < 1 by adding a pole and
zero at the origin. Therefore, s−λ in this case can be expressed as [22, 24]:

1

sλ
= 1

sλ
.
s

s
= 1

s
.s(1−λ), 0 < λ < 1 (47)

Equation (47) shows that s−λ can be expressed as a product of a pure integral (1/s)
and a fractional-order differentiator s(1−λ).

Now, we briefly summarize the effects of extending the integral control actions
to the fractional case. Let us first explore s−λ with λ = 0.4 and Ti = 1. The transfer
function of the I 0.4-controller is then given by

C(s) = 1

s0.4
(48)

Using the approximations discussed in example (1), the I 0.4-controller, (48), can be
expressed by the following transfer functions:

COus(s) = s3 + 41.74s2 + 77.14s + 6.31

6.31s3 + 77.14s2 + 41.74s + 1
(49)

CMat (s) = s3 + 83.01s2 + 163.6s + 10.01

10.01s3 + 163.6s2 + 83.01s + 1
(50)

CAbd (s) =

s8 + 1443327.34s7 + 190377994705.8s6 + 3320443435965385.5s5

+ 8064411171562614000s4 + 2.737e21s3 + 1.285e23s2 + 7.801e23s + 3.550e23

412.48s8 + 206415397.69s7 + 11956108280000.56s6 + 94706047639064780s5

+ 104739477770482730000s4 + 1.616e22s3 + 3.399e23s2 + 8.429e23s

(51)
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Fig. 7 Bode diagram of an integer I - and a fractional-order I 0.4-controller approximated by
Oustaloup’s, Matsuda’s, AbdelAty’s, and El-Khazali’s approximations for Ti = 1

and

Ck(s) = 0.8931s2 + 4.924s + 2.493

2.493s2 + 4.924s + 0.8931
(52)

Figure 7 shows a numerical simulation of the ideal I 0.4-controller’s four of its
approximations using Oustaloup’s, Matsuda’s, AbdelAty’s, and El-Khazali’s meth-
ods.

6.3 Fractional-Order Differential Controllers
(Dδ-Controllers)

The fractional-order differential controllers of order δ, denoted by Dδ-controllers,
produce a control signal, y(t), that is proportional to the fractional-order derivative
of the error signal e(t). It described by the following expression [23]:

y(t) = Td .D
δe(t) (53)
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Hence, the corresponding transfer function of (53) is given by

Y (s)

E(s)
= Td .s

δ (54)

where Td is a constant of the differential controller, C(s) = Td .sδ .
The fractional differentiator, sδ , acts as a δ-predictor that predicts the future value

of the error signal. It reduces the rate of change of error, which improves the control
performance. Notice that sδ cannot be implemented alone since it does not eliminate
the steady-state errors. Thus, it must be augmented at least with a proportional con-
troller, P, to form a PD controller, known as lead controller, to shape the frequency
response of the controlled system.Notice that the δth-differential controller amplifies
noise signals when δ increases and has no effect on the steady-state error [9, 23].

For comparison, let us consider the case when δ = 0.4 and Td = 1, then, the
D0.4-controller is given by C(s) = s0.4. Figure 8 shows the frequency response of
the rational approximation of C(s) = s0.4 using (7), (16), (18), and (19). Obviously,
the low-frequency deviation of (18) cannot be avoided due to the presence of the
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differential effect of the high-pass filters approximations. However, the biquadratic
approximation of (19) does behave like a proportional controller for both the low-
and high-frequency bands, thus suppressing signal noise.

6.4 Fractional-Order PI Controllers (PIλ-Controller)

The fractional-orderPI controller (PIλ-Controller), or lag controllers, combines both
the proportional and the fractional-order integral action and is defined as [23]

y(t) = Kpe(t) + Ti .I
λe(t) (55)

which yields a lag controller of order λ of the form:

Y (s)

E(s)
= C(s) = Kp + Ti

sλ
(56)

As λ increases, this controller has the following features [23]:

• It reduces the steady-state error.
• It decreases the rise time.
• It filters out the noise at high frequencies.
• It increases bandwidth of the system.
• It increases the order and type of the system.

Consider the case when λ = 0.4, Kp = 1, and Ti = 1, the following transfer
functions approximatePI0.4 = 1 + 1/s0.4 using (7), (16), (18), and (19), respectively:

COus(s) = 731s3 + 11888s2 + 11888s + 731

631s3 + 7714s2 + 4174s + 100
(57)

CMat (s) = 1101s3 + 24661s2 + 24661s + 1101

1001s3 + 16360s2 + 8301s + 100
(58)

CAbd (s) =

s8 + 502710.5s7 + 29376520704.24s6 + 237079034998476.75s5

+ 272818468162711600s4 + 45699052676123180000s3

+ 1.133e21s2 + 3.925e21s + 3.859e05

0.9976s8 + 499219.78s7 + 28916087705.21s6 + 229048475943137.66s5

+ 253314527978607520s4 + 39078673785758040000s3

+ 822012098401221200000s2 + 2.039e21s

(59)

and

Ck(s) = s2 + 2.908s + 1

0.7362s2 + 1.454s + 0.2638
(60)
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Fig. 9 Bode diagram of an approximated PI0.4-controller using Oustaloup’s, Matsuda’s, Abde-
lAty’s, and 2nd-order El-Khazali’s biquadratic form with Kp = Ti = 1

Graphically, we make the following comparison in the frequency domain, shown
in Fig. 9, between a classical PI-controller and PI0.4-controller.

Figure 10 shows the same approximation shown in Fig. 9, except for El-Khazali’s
approximation, where the following 4th-order biquadratic form is used to approxi-
mate s0.4 instead of a 2nd-order one:

P I 0.4 = 70137s4 + 1374500s3 + 3422000s2 + 1374500s + 70137

7977s4 + 362500s3 + 1711000s2 + 1012000s + 62160
(61)

Clearly, the frequency response of all approximations match that of the ideal con-
troller except for AbdelAty’s one, which has large deviations in both the magnitude
and phase responses for low frequency. If one considers the simplicity of the real-
ization and construction, one would choose the biquadratic approximation given by
(61) since it depends only on a single parameter, which could be the order of the
integrators or the differentiator.
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Fig. 10 Bode diagram of an approximated PI0.4-controller using (7), (16), (18), and (61) with
Kp = Ti = 1

6.5 Fractional-Order PD Controller (PDδ-Controller)

The transfer function of the fractional-order controller (lead controller) of order δ is
given by

C(s) = Kp + Td .s
δ (62)

As δ increases, the PDδ or the fractional-order lead controller enjoys the following
properties [19]:

• It reduces the overshoot.
• It improves transient response.
• It reduces the settling time.
• It improves the bandwidth of the system.
• It may make noises at high frequencies.
• It does not affect steady-state errors.

Now, to summarize the effects of extending the derivative control actions to the
fractional case; let us explore the case when δ = 0.4, Kp = 1, and Td = 1. Then,
the PD0.4-controller becomesC(s) = 1 + s0.4. Now using (26), (27), (28), and (29),
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Fig. 11 Bode diagram of PDδ-controller and compared with the ideal one for δ = 0.4,
Kp = Td = 1

the frequency response of the PD0.4 is shown in Fig. 11. All approximations yield
a good match with the ideal lead integrator, however, the AbdelAty’s one gives a
perfect match with the ideal lead controller at high frequency only.

7 FOPID Controllers

It is well known that the time response of the PID controllers output is given by the
following expression [7]:

u(t) = Kpe(t) + Ti

∫ t

0
e(τ ).dτ + Td

d

dt
e(t) (63)

and its transfer function is given by

C(s) = U (s)

E(s)
= Kp + Ti

s
+ Td .s (64)

where E(s) = L {e(t)}, andU (s) = L {u(t)} are the Laplace transforms of the error
and control signals, respectively.

The Zeigler–Nichols design method is a popular one that can be used to design
integer-order PID controllers for most systems [15, 20, 21]. The integer-order PID
controller is applicable for many control problems and it often yields satisfactory
performance and, in some cases, it requires parameter tuning [21].



Approximation of Fractional-Order Operators 143

The concept of the fractional-order PID (FOPID or PIλDδ) controller was intro-
duced by Podlubny in [23]. This controller has an integrator of an order λ and a dif-
ferentiator of order δ. It was shown that the fractional-order controller outperforms
its integer counterpart [19, 25]. When controlling industrial plants, they require a
complete satisfaction of a wide range of specification, where wide ranges of tech-
niques are needed. Recently, FOPID controllers are used for industrial applications
to improve system performance. They provide extra degrees of freedom by adding
two more parameters to tune (namely, λ and δ) to the original three parameters,
(Kp, Ti , Td ), thus increasing the complexity of tuning its parameters [20].

7.1 FOPID Controllers

The fractional-order integro-differential equation that describes the FOPID con-
trollers is given by [23]

u(t) = Kpe(t) + Ti .I
λe(t) + Td .D

δe(t) (65)

The Laplace transform of (65) is given by

C(s) = Kp + Ti .s
−λ + Td .s

δ (66)

Obviously, one can get the classical integer-order PID controller by taking
λ = δ = 1. With more freedom in tuning the controller, the four-point PID diagram
can be seen as a PID controller plane, which is depicted in Fig. 12 [7].

Notice that the integer-order controllers are classified as particular cases of the
more general FOPID controller, which provides more flexibility and robustness and
gives the capability for better adjustment of the dynamical properties of fractional-
order control system [21, 26]. For example, by assuming δ = 0 and Td = 0, then a
PIλ- controller is derived, and so on.

The FOPID controller can be considered as an infinite-dimensional linear filter
due to the fractional orders of the differentiators and the integrators. Since PID con-
trollers are ubiquitous in industry process control, then fractional-order PID control
will also be ubiquitous when tuning and implementation techniques are well devel-

Fig. 12 Generalization of
the FOPID controllers
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oped [27–35]. As compared to PID controller, a FOPID is supposed to offer the
following advantages [30]:

• If the parameter of a controlled system changes, a FOPID controller is less sensitive
than the classical PID controller.
• Fractional-order controller has two extra variables to tune. This provides extra
degrees of freedom to the dynamic properties of fractional-order system.

Now, we will study the effects of extending the integral and derivative control
actions on the fractional-order case. Let us first explore sλ and sδ with λ = δ = 0.4
and Kp = Ti = Td = 1. Then, the PI0.4D0.4-controller is given by

C(s) = 1 + 1

s0.4
+ s0.4 (67)

Moreover, the PI0.4D0.4-controller expressed in (67) can be approximated by
Oustaloup’s, Matsuda’s, AbdelAty’s, and El-Khazali’s approximations using Eqs.
(26), (27), (28) and (29), respectively, as follows:

COus (s) =

471261s6 + 13975062s5 + 121221630s4 + 206381577s3

+ 121221630s2 + 13975062s + 471261

63100s6 + 3405194s5 + 37483170s4 + 77336233s3

+ 37483170s2 + 3405194s + 63100

(68)

CMat (s) =

1112101s6 + 44358221s5 + 509457623s4 + 881186042s3

+ 509457623s2 + 44358221s + 1112101

100100s6 + 9945301s5 + 153010820s4 + 337568202s3

+ 153010820s2 + 9945301s + 100100

(69)

CAbd (s) =

s16 + 1003151.62s15 + 309946795646.82s14 + 29742326890849164s13 + 1.086e21s12

+ 1.389e25s11 + 6.992e28s10 + 1.256e32s9 + 8.960e34s8 + 2.301e37s7 + 2.360e39s6

+ 8.778e40s5 + 1.303e42s4 + 6.770e42s3 + 1.283e43s2 + 5.003e42s + 7.391e41

0.0024s16 + 4700.99s15 + 2277382680.28s14 + 340180953977873.3s13 + 3.491e23s11

+ 18186425387598578000s12 + 2.530e27s10 + 6.727e30s9 + 6.797e33s8 + 2.523e36s7

+ 3.548e38s6 + 1.815e40s5 + 3.437e41s4 + 2.223e42s3 + 4.563e42s2 + 1.755e42s

(70)

and

Ck(s) = s4 + 5.4134s3 + 9.5961s2 + 5.41399s + 1

0.241s4 + 1.8047s3 + 3.3834s2 + 1.8047s + 0.241
(71)

A direct comparison in the frequency domain is shown in Fig. 14 for the approx-
imated PI0.4D0.4-controller given by (68), (69), (70), and (71). Observe that for
AbdelAty’s method, an 8th-order approximation was used for simulation purposes.
In spite of using a higher order approximation, a larger magnitude and phase error
is demonstrated for low frequencies.
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The following example introduces further comparison in both time and fre-
quency domains between the previous three methods; Oustaloup’s, Matsuda’s, and
El-Khazali’s methods by considering a closed-loop controlled system.

Example 3 Let us consider Fig. 13 with FOPID controller and integer-order plant
transfer function below:

C(s) = 18 + 13

s0.8
+ 6s1.4 (72)

and

G(s) = 1

s(s + 1)(s + 5)
(73)

Then, the open-loop transfer function of the controlled system is given by

L(s) = C(s)G(s) = 6s2.2 + 18s0.8 + 13

s3.8 + 6s2.8 + 5s1.8
(74)

and the closed-loop transfer function for a unity feedback system is equal to

P(s) = L(s)

1 + L(s)
= 6s2.2 + 18s0.8 + 13

s3.8 + 6s2.8 + 6s2.2 + 5s1.8 + 18s0.8 + 13
(75)

That is,

P(s) = 6s2(s0.2) + 18s0.8 + 13

s3(s0.8) + 6s2(s0.8) + 6s2(s0.2) + 5s(s0.8) + 18s0.8 + 13
(76)

Obviously, (76) includes s0.2 and s0.8 such that the Oustaloup’s 5th-order approx-
imation of s0.8 was given previously in equation (32), while the Oustaloup’s approx-
imation of s0.2 is given by

Fig. 13 Block diagram of a FOPID controller with unity gain feedback
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Fig. 14 Bode diagram of a frequency response of a classical PID controller and PIλDδ controller
approximated by Oustaloup’s, Matsuda’s, AbdelAty’s, and El-Khazali’s approximations with λ =
δ = 0.4, Kp = Ti = Td = 1

s0.2 = 2.512s5 + 98.83s4 + 531.7s3 + 442.3s2 + 56.87s + 1

s5 + 56.87s4 + 442.3s3 + 531.7s2 + 98.83s + 2.512
(77)

One can obtain an approximate closed-loop transfer function P(s) by substituting
(32) and (77) into (76). Similarly, the Matsuda’s approximation of s0.2 is given by

s0.2 = 3.357s4 + 161s3 + 453.9s2 + 95s + 1

s4 + 95s3 + 453.9s2 + 161s + 3.357
(78)

The approximated closed-loop transfer function can now be obtained by using (35),
(78) and (76). On the other hand, El-Khazali’s approximation for s0.2 is given by

s0.2 = 2.125s2 + 5.051s + 1.325

1.325s2 + 5.051s + 2.125
(79)

The closed-loop transfer functions of the three approximations are, respectively,
given as follows:
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POus (s) =

0.3786s12 + 52.31s11 + 2076.37s10 + 30424.88s9 + 190374.23s8

+ 629279.32s7 + 1343379.50s6 + 1723054.78s5 + 1136020.90s4

+ 340700.72s3 + 44471.77s2 + 2181.14s + 33.79

s13 + 85.89s12 + 2334.45s11 + 27839.99s10 + 171865.80s9

+ 587969.75s8 + 1207365.50s7 + 1776199.71s6 + 1881971.42s5

+ 1162206.67s4 + 342468.13s3 + 44515.75s2 + 2181.46s + 33.79

(80)

PMat (s) =

0.0643s11 + 55.11s10 + 3695.99s9 + 68507.40s8 + 371769.57s7

+ 1075594.57s6 + 2020717.97s5 + 1873642.24s4 + 711212.26s3

+ 102240.19s2 + 3913.16s + 43.839

s12 + 138.98s11 + 5049.83s10 + 59864.84s9 + 344954.58s8

+ 1012528.04s7 + 1745850.16s6 + 2331027.67s5 + 1932393.81s4

+ 714332.34s3 + 102286.18s2 + 3913.21s + 43.83

(81)

and

Pk(s) = 0.6623s6 + 13.91s5 + 58.25s4 + 142.3s3 + 202s2 + 118s + 22.84

s7 + 11.76s6 + 56.03s5 + 125.4s4 + 189.1s3 + 214.3s2 + 118.6s + 22.84
(82)

The exact step and frequency response of the systems are shown in Figs. 15 and 16.
Obviously, the three approximations yield almost identical step response. However,
using the 2nd-order biquadratic approximation of El-Khazali reduces the size of the
controllers needed for similar cases.

Fig. 15 Bode diagram of the closed-loop controlled system using FPID controllers
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Fig. 16 Step responses for the closed-loop controlled system FOPID controllers

8 Conclusions

Four different approximation methods were used to approximate fractional-order
Laplacian operators. These are Oustaloup’s, Matsuda’s, AbdelAty’s, and
EL-Khazali’s methods. Oustaloup yields only odd order of rational-transfer func-
tions, while Matsuda’s method yields an unrealizable model if the sum of poles and
zeros is odd.Bothmethods require highorder of approximationwith large coefficients
to generate constant phases in the frequency domain. AbdelAty’s method, however,
is a sum of high-pass filter that yields large phase error for small fractional orders
(say below 0.5). It depends on using optimum phase algorithm (OPA) to calculate
the parameters of the approximations. It yields large parameter values than expected,
which is expensive to design. The fourth method is the biquadratic approximation of
El-Khazali. It yields an exact phase response at the center frequency of the approx-
imation with unity gain. In most cases, lower order approximation of El-Khazali
is very competitive to higher order approximations of other methods, which yields,
most of the time, reasonable parameter values. Notice that one may approximate
fractional-order integrators using El-Khazali’s method by simply using the recipro-
cal approximation of the fractional-order differentiator. This feature is not possible
by the other three approximations. It is worth mentioning that when discretizing
these approximations using bilinear transformation, which is left for further study,
it showed that EL-Khazali’s method gave the most accurate and stable discrete-time
version of the given approximation out of all four methods.
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Appendix: Springer-Author Discount

1. Oustaloup’s Approximation

clear all
alf=input (’Enter value of ALFA = ’)
% frequency range
w_L=0.1; w_H=10.
r=alf; NN=2;

%
[v1,v2,D_N_K,sysO_tf]=ora_foc(r,NN,w_L,w_H);
%%
% Oustaloup-Recursive-Approximation for fractional order differentiator
%
% Input variables:
% r: the fractional order as in sˆr, r is a real number
% N: order of the finite TF approximation for both (num/den)
% (Note: 2N+1 recursive z-p pairs)
% w_L: low frequency limit of the range of the frequency of interest
% w_H: upper freq. limit of the range of the frequency of interest
% Output:
% sys_foc: continuous time transfer function system object (TF)
% Sample values: w_L=0.1;w_H=1000; r=0.5; N=4;
% Existing problem: Be careful when doing "c2d", I met some problems.
function [v1,v2,D_N_K,sys_N_tf]=ora_foc(r,N,w_L,w_H)
w_L=w_L*0.1;w_H=w_H*10; % enlarge the freq. range of interest for % goodness
mu=w_H/w_L; %
w_u=sqrt(w_H*w_L);
alpha=(mu)ˆ(r/(2*N+1));
eta=(mu)ˆ((1-r)/(2*N+1));
k=-N:N;
w_kp=(mu).ˆ( (k+N+0.5-0.5*r)/(2*N+1) )*w_L;
w_k=(mu).ˆ( (k+N+0.5+0.5*r)/(2*N+1) )*w_L;
D_N_K=(w_u/w_H)ˆr * prod(w_k) / prod(w_kp);
D_N_P=-w_k;D_N_Z=-w_kp;
[num,den]=zp2tf(D_N_Z’,D_N_P’,D_N_K);
sys_N_tf=tf(num,den);
v1=num; v2=den;
sys_foc=tf(num,den);
end

2. El-Khazali’s Approximation

%
alf=input (’Enter value of ALFA = ’)
n= input (’No. of Biquadratic Modules = ’)
% wc is the initial selection of the center frequency of the first %biquadratic form

wc=1;
% This is a call statement of the function "Biquad_K" that generates
% a modular structure of biquadratic approximations using EL-Khazali % approximation.
[Nk,Dk,sysk]= Biquad_K (alf,n,wc)
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%%
function [Numk,Denk,sysk]=Biquad_K(alf,n,w)
% This function generates a normalized modular biquadratic structure
% structures of order 2*n.
%
et=tan(alf*pi/4);
wc(1)=w;

ao=alfˆalf+2*alf+1;
a2=alfˆalf-2*alf+1;
a1=(a2-ao)*tan((2+alf)*pi/4);

if ( n > 1 )
% The solution of the following polynomial is used to generate
% a recursive formula to select the next center frequency for the
% next modular structure.
Y=roots([ao*a2*et a1*(a2-ao) (a1ˆ2-a2ˆ2-aoˆ2) a1*(a2-ao) ao*a2*et ]);
wx=(abs(max(Y)))
for k=2:n
wc(k)=(wxˆ(2*(k-1)))*wc(1)
end

% normalizing by the geometric mean;
wm=(prod(wc))ˆ(1/n);
sysk=1;

for l=1:n;
N=[ao a1*wc(l)/wm a2*(wc(l)/wm)ˆ2];
D=[a2 a1*wc(l)/wm ao*(wc(l)/wm)ˆ2];

sysk=sysk*(tf(N,D));
end
[Numk,Denk]=tfdata(sysk);

else
Numk=[ao a1*w a2*wˆ2];
Denk=[a2 a1*w ao*wˆ2];
sysk=tf(Numk,Denk);

end
end
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Multistep Approach for Nonlinear
Fractional Bloch System Using Adomian
Decomposition Techniques

Asad Freihat, Shatha Hasan, Mohammed Al-Smadi, Omar Abu Arqub
and Shaher Momani

Abstract In this chapter, a superbmultistep approach, basedon theAdomiandecom-
positionmethod (ADM), is successfully implemented for solving nonlinear fractional
Bolch system over a vast interval, numerically. This approach is demonstrated by
studying the dynamical behavior of the fractional Bolch equations (FBEs) at differ-
ent values of fractional order α in the sense of Caputo concept over a sequence of
the considerable domain. Further, the numerical comparison between the proposed
approach and implicit Runge–Kutta method is discussed by providing an illustrated
example. The gained results reveal that the MADM is a systematic technique in
obtaining a feasible solution for many nonlinear systems of fractional order arising
in natural sciences.

Keywords Multistep approach · Fractional system · Bolch equations · Adomian
decomposition method

1 Introduction

During the past few decades, a growing interest in the study of complex systems has
been observed including glasses, amorphous systems, microemulsions, polymers,
biopolymers, and so forth. The term “complex” is due to a broad distinction of the
elementary units, intense interactions between the units, or an irregular evolution of
units over time. Nowadays, such complex systems are investigated on all structural
levels frommicroscopic to macroscopic and in all fields of physics, biophysics, engi-
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neering, chemistry, and medicine. For instance, nuclear magnetic resonance (NMR),
magnetic resonance imaging (MRI), or electron spin resonance (ESR) are physical
phenomena that are widely utilized to study complex systems. Indeed, these systems
have nonlocal interaction and a long memory due to the disorder that appears in the
magnetic relaxation in complex environments. In this aspect, Bloch equations are
a set of macroscopic equations that are used to calculate the nuclear magnetization
M = (Mx , My, Mz) as a function of time in the presence of the relaxation times T1
and T2, where the components Mx (t), My(t), and Mz(t) are the system magnetiza-
tion, T1 is the spin–lattice relaxation time that characterizes the rate of which the
longitudinal Mz component recovers exponentially toward the thermodynamic equi-
librium, and T2 represents the spin–spin relaxation time that characterizes the signal
decay in the NMR and MRI systems. For more details, see [1–3] and the references
therein.

The standard Bloch equations are a set of first-order ordinary differential equa-
tions that describe the magnetization behavior in static, varying magnetic fields, and
relaxation. However, to study the heterogeneity, complex structure, and memory
effects in the relaxation process, the classical Bloch equations were generalized to
fractional order by extending the first-order time derivative to a derivative of non-
integer order [4]. From this point of view, the fractional operator is considered as a
robust framework to account for anomalous diffusion in structurally heterogeneous
tissues, porous and composite materials. This is due to the nonlocal nature of frac-
tional derivatives. On the other hand, the utility of generalizing the FBEs with their
contributions have recently appeared in the literature. For example, numerical and
simulation models of integer and fractional orders of the BEs have been proposed
in [5]. In [6], the FBEs have been used to describe anomalous NMR relaxation phe-
nomena. Also, these equations have been considered with time delays, and different
stability behaviors for T1 and T2 processes were analyzed [7].

Our motivation for this chapter has been devoted to studying approximate solu-
tions for nonlinear Bloch models of fractional order utilizing a numerical multistep
approach based on the Adomian decomposition method (ADM). The problem under
consideration is subjected to appropriate initial conditions over a vast domain. Indeed,
the ADM is efficiently used to provide approximate solutions for many nonlinear
fractional problems in convergent series formula with accurately computable struc-
tures. Unfortunately, such approximations are found to be not valid for the large
values of t for some systems. So, the multistep approach is needed that offers an
accurate solution over a longer time frame compared to standard ADM.

Consider the following fractional-modified transformed model of nonlinear BEs
that govern the evolution of the magnetization:

Dα1x(t) = δy(t) + γz(t) (x(t) sin(c) − y(t) cos(c) − x(t)
�2

),

Dα2 y(t) = −δx(t) − z(t) + γz(t)
(
x(t) cos(c) + y(t) sin(c) − y(t)

�2

)
,

Dα3 z(t) = y(t) + γ sin(c)
(
x2(t) + y2(t) − z(t)−1

�1

)
,

(1)
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subject to the initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, (2)

where t ≥ 0, x0, y0, z0 are real finite constants, δ, γ, c, �1, and �2 are physical
parameters, Dαi , i = 1, 2, 3, are the fractional derivatives of order αi in Caputo
sense that will be introduced in the next section, and x(t), y(t), and z(t) are analytical
unknown functions to be determined.

Anyhow, some of the well-known analytic and numeric techniques were modified
for solving the FBEs such as the finite difference method [8], the homotopy pertur-
bation method [9], the predictor-corrector method [10], the Chebyshev polynomials
method [3], the operational matrix methods based on Legendre scaling and Laguerre
polynomials [11], and the multistep generalized differential transform method [12].

This chapter introduces MADM for fractional nonlinear problems and contains
the following sections:

1. Introduction
2. Preliminaries for fractional calculus
3. Principle of Adomian decomposition method
4. Multistep Adomian decomposition method
5. Nonlinear fractional Bloch equations and its modification
6. Multistep approach for modified fractional Bloch equations.

2 Preliminaries for Fractional Calculus

The subject of fractional calculus is not new. It is a generalization of classical calcu-
lus that deals with the ordinary differentiation and integration of arbitrary order. The
basic idea of fractional calculus goes back to Leibniz in a letter to L‘Hospital in 1695
“Can the meaning of derivatives with integer order be generalized to derivatives with
non-integer orders?”. This concept was developed almost in tandem with the evolu-
tion of the classical ones. Anyhow, the fractional operators highlight the intermediate
behaviors that cannot be modeled by traditional theory [13]. Nowadays, fractional
calculus has becomean effective instrument in theoretical and appliedfields including
physics, bioengineering, finance, signal processing, and so forth [14–21]. Moreover,
fractional models can be used to describe the memory and transmissibility for mul-
tiple types of materials. So, it plays a vital role in modeling many scientific issues,
especially in the anomalous transport process and Hamiltonian chaos.

Unlike the classical calculus, which has unique definitions and clear geometri-
cal and physical interpretations, there are numerous definitions for the operations
of differentiation and integration of fractional order. Riemann–Liouville, Riesz,
Grünwald–Letnikov, and Caputo are some examples of these definitions. In this
chapter, the Caputo concept was preferred due to the facts that the derivative of any
constant is equal to zero, and the initial conditions are treated in similar form to those
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for integer order [22–31]. Next, some main definitions and results concerned with
fractional calculus theory are briefly mentioned.

It is well known that the Cauchy’s formula for n ∈ N, a, t ∈ R, t > a holds such
that

J n
a f (t) =

t∫
a

τ1∫
a

...
τn−1∫
a

f (τn)dτn...dτ2dτ1 = 1

(n − 1)!
t∫
a

(t − τ )n−1 f (τ )dτ .

Thus, if n replaced by a positive real number α and (n − 1)! by Gamma function
�(n), then a formula of fractional integration can be obtained as in the following
definition:

Definition 1 The fractional operator Jα
a of order α for a function f (t)

Jα
a f (t) = 1

�(α)

∫ t

a
(t − τ )1−α f (τ )dτ , 0≤τ < t, α > 0,

is called the Riemann–Liouville fractional integral operator.

The following are some of the interesting properties of the operator Jα
a :

1. For α = 0, Jα
a is the identity operator.

2. The operator Jα
a is linear, that is, Jα

a (c f (t) ± g(t)) = cJα
a f (t) ± Jα

a g(t), for any
c ∈ R.

3. If f (t) is continuous for t ≥ 0, then lim
α→0

Jα
a f (t) = f (t).

4. Jα1
a

(
Jα2
a f (t)

) = Jα1+α2
a ( f (t)) = Jα2

a

(
Jα1
a f (t)

)
, α1,α2 > 0.

Definition 2 The fractional operator D∗α
a of order α for a function f (t)

D∗α
a f (t) = 1

�(n − α)

dn

dtn

∫ t

a

f (τ )

(t − τ )α−n+1
dτ , n − 1 < α < n, n ∈ N,

is called the Riemann–Liouville fractional derivative operator.

Here, it should be observed that if α ∈ N, then the operator D∗α
a is reduced to

the standard integer-order differential operator Dn = dn

dtn . In 1967, an alternative
operator to the above Riemann–Liouville fractional derivative has been presented by
Caputo as follows:

Definition 3 The fractional operator Dα
0 of order α for a function f (t)

Dα f (t) = 1

�(n − α)

∫ t

a

f (n)(τ )

(t − τ )α−n+1
dτ , n − 1 < α < n, n ∈ N,

is called the Caputo-fractional derivative operator.
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The following are some of the interesting properties of the operator Dα:
1. For α = n, we have Dα f (t) = dn

dtn f (t).
2. The operator Dα is linear, that is, Dα(c f (t) ± g(t)) = cDα f (t) ± Dαg(t), for

any c ∈ R.
3. Dαc = 0 for any constant c ∈ R.

4. For γ > n − 1, we have Dαtγ = �(γ+1)
�(γ+1−α)

tγ−α for n − 1 < α < n, and is equal
to zero otherwise.

3 Principle of Adomian Decomposition Method

The Adomian decomposition method (ADM) is an alternative systematic technique
for providing a robust algorithm for analytically approximate solutions and numerical
optimization of several fractional applications in physics and engineering. The main
features of ADM lie in that it can be directly applied for solving nonlinear fractional
problems without the need for unphysical restrictive assumptions such as lineariza-
tion, discretization, perturbation, guessing the initial data, etc. [32–35]. Indeed, the
ADM concept evolved to deal with the linear, nonlinear, stochastic, and determinis-
tic operator problems of Taylor’s analytical series with an easily computable, easily
verifiable, and rapidly convergent sequence of analytic approximate functions.

For understanding the ADM concept, consider the following nonlinear problem
in general form:

u = Nu + f, (3)

where f is the system input, u is the system output, and N is the nonlinear operator
which is assumed to be analytic.

The ADM decomposes the solution into a series

u =
∞∑
n=0

un,

and decomposes the nonlinear term Nu into a series

Nu =
∞∑
n=0

An,

where An’s are called the Adomian polynomials, which are depending on the values
of u0, u1, ..., un .

In the first approach given by Adomian, An’s are obtained from the following
equalities:

q =
∞∑
n=0

λnun,

Nq = N

( ∞∑
n=0

λnun

)
=

∞∑
n=0

λn An,
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where λ is a grouping parameter of convenience.
Formally, the Adomian polynomials An’s for the nonlinearity are obtained by the

following formula:

An = 1

n!
dn

dλn

[
N

( ∞∑
k=0

λkuk

)]

λ=0

, n = 0, 1, 2, ....

Consequently, the above process leads to the equality

∞∑
n=0

un =
∞∑
n=0

An + f,

in which the Adomian polynomials An can be listed, inclusively, by

A0 = f,
A1 = A0(u0),
A2 = A1(u0, u1),
...

An = An−1(u0, u1, ..., un−1).

Therefore, the solution u can be written as a series of functions un such that

∞∑
n=0

|un| < +∞.

4 Multistep Adomian Decomposition Method

Multistep Adomian decomposition method (MADM) is effectively utilized due to
many advantages in the scientific application. Indeed, since it is based on ADM, so
there is no need for unphysical restrictive assumptions or small and auxiliary param-
eters. However, the approximate solution obtained by ADM is usually converged in
a small interval but it is not valid or completely divergent over the broader term. So,
the MADM is needed to partition the domain of interest into small time steps, which
offers a powerful accuracy, especially for the nonlinear problems [36–40].

For perception of Ms-DTM basic idea, consider a general system of fractional
differential equations

Dα1x1(t) = F1(t, x1(t), ..., xn(t)),
Dα2x2(t) = F2(t, x1(t), ..., xn(t)),
...

Dαn xn(t) = Fn(t, x1(t), ..., xn(t)),

(4)
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subject to the initial conditions

xi (0) = ci , i = 1, 2, ..., n, (5)

where 0 ≤ t ≤ T, ci ∈ R (i = 1, 2, ..., n), Dαi ’s are the Caputo-fractional derivative
of order αi , 0 < αi � 1, for i = 1, 2, . . . , n, and Fi ’s, i = 1, 2, ..., n are linear or
nonlinear functions in terms of x1(t), ..., xn(t).

To illustrate the MADM for solving such fractional system, the main ideas of the
multistep technique are introduced as follows:

Suppose that the interval [0, T ] can be divided intom-subintervals of equal length
�t, such as [t0, t1], [t1, t2], [t2, t3], ..., [tm−1, tm] with t0 = 0, tm = T . Let t∗ be the
initial value for each subintervals and let xi, j (t), i = 1, 2, ..., n, j = 1, 2, ...,m be
approximate solutions in each subinterval [t j−1, t j ], j = 1, 2, ...,m.

Consequently, system (4) can be converted equivalently into

Dα1x1, j (t) = F1, j (t, x1, j (t), ..., xn, j (t)),
Dα2x2, j (t) = F2, j (t, x1, j (t), ..., xn, j (t)),
...

Dαn xn, j (t) = Fn, j (t, x1, j (t), ..., xn, j (t)),

(6)

where 0 < αi ≤ 1, i = 1, 2, . . . , n, and j = 1, 2, ...,m.

By applying Jαi on both the sides of (6) for j = 1, 2, ...,m, it follows that

x1, j (t) = x1, j (t∗) + Jα1F1, j (t, x1, j (t), ..., xn, j (t)),
x2, j (t) = x2, j (t∗) + Jα2F2, j (t, x1, j (t), ..., xn, j (t)),
...

xn, j (t) = xn, j (t∗) + Jαn Fn, j (t, x1, j (t), ..., xn, j (t)),

(7)

Here, by employing the ADM to system (7), we have the following equalities:

xi, j (t) = xi, j (t
∗) +

∞∑
k=1

xi, j,k(t), i = 1, 2, . . . , n, j = 1, 2, ...,m, (8)

Fi, j (t, x1, j (t), . . . , xn, j (t)) =
∞∑
k=0

Ai, j,k, i = 1, 2, . . . , n, j = 1, 2, ...,m, (9)

where Ai, j,k’s are Adomian polynomials, which are depending on the values of
x1, j,0,..., x1, j,k , x2, j,0,..., x2, j,k ,..., xn, j,0,..., xn, j,k .

Consequently, the above process leads to the equality
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∞∑
k=0

xi, j,k(t) = xi, j (t
∗) + Jαi

( ∞∑
k=0

Ai, j,k(x1, j,0, ..., x1, j,k, ..., xn, j,0, ..., xn, j,k)

)
,

(10)
i = 1, 2, . . . , n, j = 1, 2, ...,m.

Now, for i = 1, 2, . . . , n, j = 1, 2, ...,m, and k = 0, 1, 2, ..., set

xi, j,0(t) = xi, j (t∗),
xi, j,1(t) = Jαi Ai, j,1(x1, j,0, x1, j,1, ..., xn, j,0, xn, j,1),
...

xi, j,k+1(t) = Jαi Ai, j,k(x1, j,0, ..., x1, j,k, ..., xn, j,0, ..., xn, j,k).

(11)

To determine the Adomian polynomials Ai, j,k introduce a parameter q into (9)
such that

Fi, j (t,
∞∑
k=0

x1, j,kq
k, . . . ,

∞∑
k=0

xn, j,kq
k) =

∞∑
k=0

Ai, j,kq
k, (12)

thus by letting xi, j,q(t) =
∞∑
k=0

xi, j,kqk, one can get that

Ai, j,k = 1

k!D
kα
q

[
Fi, j,q(t, x1, j,q , ..., xn, j,q)

]
q=0 , q = 0, 1, 2, ....

= 1

k!D
kα
q

[
Fi, j,q(t,

∞∑
k=0

x1, j,kq
k, ...,

∞∑
k=0

xn, j,kq
k)

]

q=0

, (13)

=
[
1

k!D
kα
q Fi, j,q(t,

∞∑
k=0

x1, j,kq
k, ...,

∞∑
k=0

xn, j,kq
k)

]

q=0

.

Hence, for q = 0, 1, 2, ..., j = 1, 2, ...,m, the following recurrence relations are
satisfied:

xi, j,0(t) = xi, j (t∗),

xi, j,1(t) = Jαi

[
Fi, j,q(t,

∞∑
k=0

x1, j,1q, ...,

∞∑
k=0

xn, j,1q)

]

q=0,

,

...

xi, j,k+1(t) = Jαi

[
1
k! D

kα
q Ni, j (t,

∞∑
k=0

x1, j,kqk, ...,

∞∑
k=0

xn, j,kqk)

]

q=0,

.

(14)

The N -term approximate solution xN
i, j (t) can be given by
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xN
i, j (t) =

N∑
k=0

xi, j,k(t),

such as lim
N−→∞xN

i, j = xi, j.

For the convergence of MADM, if the system (4) admits a unique solution, then
the MADM will produce a unique solution, while if the system (4) does not possess
a unique solution, then the MADMwill give a solution among many (possible) other
solutions [41].

The solution of system (4) in each subinterval [t j−1, t j ], j = 1, 2, ..., n, has the
following form:

x̂i, j (t) =
∞∑
k=0

xi, j,k(t − t j−1), i = 1, 2, . . . , n, j = 1, 2, ...,m, (15)

while the solution of system (4) in the interval [0, T ] can be given as

xi (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂i,1(t) t ∈ [t0, t1] ,
x̂i,2(t) t ∈ [t1, t2] ,

...
...

x̂i,m(t) t ∈ [
tm−1, tm

]
,

. (16)

subject to the initial guesses

xi,1(t
∗) = ci ,

xi, j (t
∗) = x̂i, j (t j−1) = x̂i, j−1(t j−1), i = 1, 2, ..., n, j = 2, 3, ...,m.

5 Nonlinear Fractional Bloch Equations
and its Modification

MR experiments are mostly performed with a large number of electron spins’ reso-
nance and nuclear spins that measure the behaviors and quantities of identical spins.
The BEs describe the spin systems of electronic and nuclear resonance in arbitrary
magnetic fields over the time–space from transient processes to steady states. The
classical BEs is derived from a magnetization M processing in the magnetic induc-
tion field with the presence of a constant radio frequency and given in the following
form:
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dMx (t)

dt
= ω0My(t) − Mx (t)

T2
,

dMy(t)

dt
= −ω0Mx (t) − My(t)

T2
, (17)

dMz(t)

dt
= M0 − Mz(t)

T1
,

subject to the initial conditions

Mx (0) = 0, My(0) = 100, Mz(0) = 0, (18)

where M0 is the equilibrium magnetization, ω0 is the resonant frequency in terms
of the static magnetic field B0 (z-component) given by the Larmor relationship
ω0 = γB0, γ/2π is the gyromagnetic ratio, T1 is the spin–lattice relaxation time
that characterizes the rate of which the longitudinal Mz-component recovers expo-
nentially toward the thermodynamic equilibrium, T2 is the spin–spin relaxation time
that characterizes the signal decay in the NMR andMRI systems, and Mx (t), My(t),
andMz(t) represent the systemmagnetization in x, y, and z component, respectively.
Here, the set of analytical solution is given by

Mx (t) = e−t/T2
(
Mx (0) cosω0t + My(0) sinω0t

)
,

My(t) = e−t/T2
(
My(0) cosω0t − Mx (0) sinω0t

)
, (19)

Mz(t) = Mz(0)e
−t/T1 + M0

(
1 − e−t/T1

)
.

Some fractional models have been proposed for the BEs, for instance, the follow-
ing model is investigated in [42] by utilizing the Caputo sense with fractional order
0 < α ≤ 1 to study the spin dynamics and magnetization relaxation, in the simple
case of a single spin particle at resonance in a static magnetic field B0:

DαMx (t) = ω′
0My(t) − Mx (t)

T ′
2

,

DαMy(t) = −ω′
0Mx (t) − My(t)

T ′
2

, (20)

DαMz(t) = M0 − Mz(t)

T ′
1

,

where ω′
0 = ω0/τ

α−1
2 , T ′

1 = τ 1−α
1 T1, T ′

2 = τ 1−α
2 T2, and τ1 and τ2 are fractional time

constants.
The next anomalous model is investigated in [43] by utilizing the Riemann–

Liouville with fractional orders 0 < α,β ≤ 1 to fit the derived spin–spin relaxation
T2 decay curves to relaxation data from normal and trypsin-digested bovine nasal
cartilage:
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dMx (t)

dt
= ω0My(t) − D1−αMx (t)

T2
,

dMy(t)

dt
= −ω0Mx (t) − D1−αMy(t)

T2
, (21)

dMz(t)

dt
= D1−β M0 − Mz(t)

T1
,

where D1−α and D1−β are the time-fractional Riemann–Liouville derivative. For
more details about these models, see [10] and the references therein.

Furthermore, the following modified model of nonlinear BEs governs the evolu-
tion of the magnetization M :

dMx

dt
= ρMy + GMz(Mx sinψ − My cosψ) − Mx

T2
,

dMy

dt
= −ρMx − ω1Mz + GMz(Mx cosψ + My sinψ) − My

T2
, (22)

dMz

dt
= ω1My − G sinψ

(
(Mx )

2 + (
My

)2) − Mz − M0

T1
,

where ρ = ωr f − ω0, ωr f is the frequency of a constant radio frequency field with
intensity ω1/γ, γ/2π is the gyromagnetic ratio, G is the enhancement factor with
respect to the magnitude of the transverse magnetization, ψ is the feedback field, T1
and T2 are the longitudinal time and transverse relaxation time, respectively. This
model can be transformed by introducing

t → ω1t, G → G

ω1
= γ, δ → ρ

ω1
, �i → ω1Ti , i = 1, 2,

and

Mx → Mx

M0
= x, My → My

M0
= y, Mz → Mz

M0
= z,

into dimensionless variables model in the following form:

dx

dt
= δy + γz(x sinψ − y cosψ) − x

�2
,

dy

dt
= −δx − z + γz(x cosψ + y sinψ) − y

�2
, (23)

dz

dt
= y − γ sinψ

(
x2 + y2

) − z − 1

�1
.

In this chapter, we consider the modified transformed model by utilizing the
Caputo-fractional derivative of order αi (0 < αi ≤ 1, i = 1, 2, 3) described in Eqs.
(1) and (2).
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6 Multistep Approach for Modified Fractional Bloch
Equations

The objective of the section is to obtain the approximate solution of the fractional-
modified transformed model (1) and (2) using the MADM. To perform so, set the
values of the magnetization parameters as follows:

γ = 35, δ = −1.26, c = 0.173, �1 = 5 and �2 = 2.5, (24)

and set the initial conditions as

x(0) = 0.5, y(0) = −0.5 and z(0) = 0. (25)

For j = 1, 2, 3, ..., n, define the nonlinear terms by

N1, j (q) = δy j (q) + γz j (q)(x j (q) sin(c) − y j (q) cos(c)) − x j (q)

�2

=
∞∑

m=0

A1, j,m,

N2, j (q) = −δx j (q) − z j (q) + γz j (q)(x j (q) cos(c) + y j (q) sin(c)) − y j (q)

�2

=
∞∑

m=0

A2 j,m, (26)

N3, j (q) = y j (q) − γ sin(c)(x2j (q) + y2j (q)) − z j (q) − 1

�1

=
∞∑

m=0

A3, j,m,

where

x j (q) =
K∑

m=0

x j,m(t)qm, y j (q) =
K∑

m=1

y j,m(t)qm, z j (q) =
K∑

m=1

z j,m(t)qm,

and the Adomian polynomials Ai, j,m, i = 1, 2, 3, is given by

Ai, j,m = 1

m!
[
Dmα

q Ni, j (q)
]
q=0

, j = 1, 2, ..., n, m = 1, 2, ..., K .

So in this case, we have to satisfy the initial conditions at each subinterval
[t j−1, t j ], j = 1, 2, 3, ..., n, such that
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x1(t
∗) = 0.5, x j (t

∗) = x j (t j−1) = x j−1(t j−1),

y1(t
∗) = −0.5, y j (t

∗) = y j (t j−1) = y j−1(t j−1),

z1(t
∗) = 0, z j (t

∗) = z j (t j−1) = z j−1(t j−1),

where t∗ is the initial value for each subinterval.
For j = 1, 2, 3, ..., n, m = 0, 1, 2, ...K , the Adomain decomposition series (11)

leads to the following scheme:

x j,0 = x j (t
∗), x j,m+1 = Jα1 A1, j,m,

y j,0 = y j (t
∗), y j,m+1 = Jα2 A2, j,m,

z j,0 = z j (t
∗), z j,m+1 = Jα3 A3, j,m .

The solutions of system (1), (2) in each subinterval [t j−1, t j ], j = 1, 2, ..., n,has
the following form:

x̂ j (t) =
K∑

m=0

x j,m(t − t j−1),

ŷ j (t) =
K∑

m=0

y j,m(t − t j−1),

ẑ j (t) =
K∑

m=0

z j,m(t − t j−1),

and the solution in the interval [0, T ] is given by

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x̂1(t) t ∈ [t0, t1] ,
x̂2(t) t ∈ [t1, t2] ,

...
...

x̂n(t) t ∈ [
tn−1, tn

]
,

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŷ j (t) t ∈ [t0, t1] ,
ŷ j (t) t ∈ [t1, t2] ,

...
...

ŷ j (t) t ∈ [
tn−1, tn

]
,

z(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẑ1(t) t ∈ [t0, t1] ,
ẑ2(t) t ∈ [t1, t2] ,

...
...

ẑn(t) t ∈ [
tn−1, tn

]
.
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Table 1 Numerical results of x(t) at fractional order α = 1

t MADM IRKM Absolute error Relative error

0.5 0.0900899 0.09009 2.63948 × 10−8 2.92983 × 10−7

1.0 0.0100309 0.0100309 1.28886 × 10−8 1.28489 × 10−6

1.5 0.0362608 0.0362609 1.63743 × 10−8 4.51568 × 10−7

2.0 0.0289491 0.0289491 1.28465 × 10−8 4.43762 × 10−7

2.5 0.0289752 0.0289751 5.42791 × 10−9 1.87330 × 10−7

3.0 −0.00164103 −0.00164104 1.23807 × 10−8 7.54445 × 10−6

3.5 0.0399933 0.0399933 1.02814 × 10−8 2.57077 × 10−7

4.0 −0.0277855 −0.0277855 5.37176 × 10−9 1.93330 × 10−7

4.5 0.0100665 0.0100664 1.23103 × 10−8 1.22291 × 10−6

5.0 0.0967854 0.0967853 5.44949 × 10−8 5.63049 × 10−7

Table 2 Numerical results of y(t) at fractional order α = 1

t MADM IRKM Absolute error Relative error

0.5 −0.139658 −0.139658 1.54080 × 10−8 1.10327 × 10−7

1.0 −0.0178745 −0.0178746 2.15256 × 10−8 1.20426 × 10−6

1.5 −0.0000591291 −0.0000591296 5.18577 × 10−10 8.77018 × 10−6

2.0 0.0142948 0.0142948 3.69011 × 10−11 2.58144 × 10−9

2.5 0.0231906 0.0231906 1.42967 × 10−8 6.16489 × 10−7

3.0 0.020148 0.020148 3.34537 × 10−9 1.66039 × 10−7

3.5 −0.0321054 −0.0321054 1.83989 × 10−9 5.73080 × 10−8

4.0 0.0174674 0.0174673 6.89852 × 10−9 3.94938 × 10−7

4.5 0.100417 0.100417 4.78751 × 10−9 4.76763 × 10−8

5.0 0.187399 0.187399 5.27830 × 10−9 2.81661 × 10−8

For numerical simulation, we have compared the MAD results from the implicit
Runge–Kutta method (IRKM) at the fractional order αi = 1, i = 1, 2, 3, over the
interval [0, 5] with step size 0.5, K = 5, n = 800, and the numeric results are listed
in Tables 1, 2, and 3. From these tables, it is observed that the accuracy by theMADM
is compatible with the IRKM at the value of fractional order α. All the results are
calculated by using the Mathematica software package.

The graphical results and parametric plots of the MADM and IRKM are given
in Figs. 1, 2, and 3 at fractional order αi = 1, i = 1, 2, 3, over the interval [0, 5].
While Figs. 4 and 5 are given for the MAD solutions at fractional order αi = 0.9,
i = 1, 2, 3, over the interval [0, 5].
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Table 3 Numerical results of z(t) at fractional order α = 1

t MADM IRKM Absolute error Relative error

0.5 −0.519828 −0.519828 1.75095 × 10−8 3.36833 × 10−8

1.0 −0.398178 −0.398178 1.51377 × 10−8 3.80175 × 10−8

1.5 −0.263365 −0.263365 1.44217 × 10−8 5.47591 × 10−8

2.0 −0.142461 −0.142461 8.71885 × 10−9 6.12018 × 10−8

2.5 −0.0286219 −0.0286219 1.27388 × 10−8 4.45072 × 10−7

3.0 0.0786463 0.0786463 1.34023 × 10−8 1.70413 × 10−7

3.5 0.158251 0.158251 7.90765 × 10−9 4.99689 × 10−8

4.0 0.237731 0.237731 8.78612 × 10−9 3.69582 × 10−8

4.5 0.288485 0.288485 1.02007 × 10−8 3.53596 × 10−8

5.0 0.285525 0.285525 2.49369 × 10−8 8.73371 × 10−8

Fig. 1 The MAD solutions and the corresponding IRKM at α = 1 and t ∈ [0, 5]

Fig. 2 The parametric plots of the solution x versus y at α = 1
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Fig. 3 The 3D parametric plots of the solutions at α = 1

Fig. 4 The parametric plots
of the MADM solutions x
versus y at α = 0.9
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Fig. 5 The 3D parametric
plots of the MADM
solutions at α = 0.9
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Abstract In this paper, we are interested in studying the propagation of the over
diagnostic ultrasound waves through complex biological vascular networks such as
the tumor tissue. Evidence shows that the over diagnostic wave propagates through
complexmediawith power lawof non-integer order t−ν , 1 < ν < 2. Evidence shows
also that the vascular morphology of the tumor is non-smooth and is a complexmedia
that means it is a fractal media. The wave propagates through this fractal media
which exhibits with extremely long jumps whose length is distributed according
to the Lévy long tail ∼ |x |−1−α, 0 < α < 2. Therefore, the space–time-fractional
forced wave equation with attenuation, or the so-called multi-term wave equation,
mathematicallymodels thismedicine problem. This equationmathematicallymodels
many other physical, biological, chemical, and environmental problems. We get the
approximate solution of thismodel to study the time evolution of the propagatedwave
by adopting the backward Grünwald–Letnikov scheme joining with the common
finite difference method. We investigate numerically the effect of the time fractional
on the propagation of the wave as well as the effect of the space-fractional order
for the three cases as: 0 < α < 1, 1 < α < 2, and α = 1. The stability condition of
each approximate solution is also discussed separately. Finally, we prove that the
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1 Introduction

The propagation of the ultrasound waves with attenuation in a smooth biological
tissue is mathematically modeled by the forced wave equation with attenuation.
Whereas attenuation means loss of wave amplitude due to all mechanisms including
absorption, scattering through the tissues, and mode conversion [1]. This equation is
defined as

∂2u(x, t)

∂t2
= k

∂u(x, t)

∂t
+ a

∂2u(x, t)

∂x2
− ∂

∂x
(F(x) u(x, t)) , −R ≤ x ≤ R, t > o ,

(1.1)
here u(x, t) is the pressure amplitude, a > 0 is the general positive constant, and
0 < k < 1 is the attenuation coefficient. F(x) represents the external force, which
supplies energy to the ultrasound wave.

It is known that the vascular morphology of tumor is significantly different from
normal tissues. Vascular networks are developed and ordered with a hierarchical
vessel arrangement. While the tumor vascular networks randomly consisted of a dis-
orderly tangle of vessels. In other words, tumor vasculature has long been known to
be more chaotic in appearance than normal vasculature. Complexity, irregularities,
and poorly regulated growth are some of the known characteristics of cancer. Tumor
vasculature, in particular, defines the optimized growth patterns of healthy vascula-
ture and is known to contain many tortuous vessels, shunts, vascular loops, widely
variable inter-vascular distances, and large vascular areas. This complex structure
represents a fractal media. That means, when the over diagnostic ultrasound wave
propagates in tumor vasculature, it propagates in fractal medium. For more infor-
mation, see [2–8]. In other words, the over diagnostic ultrasound wave propagates
with large deviation from the stochastic process of Brownian motion. The Lévy sta-
ble motion is the natural generalization of the Brownian motion but it is different
because of the occurrence of the extremely long jumps whose length is proportional
to the Lévy tail ∼ |x |−1−α, 0 < α < 2. This long jump requires not finite velocity.
Evidence shows that the velocity of propagation in fractal media has a power law
of non-integer frequency of order t−ν , 1 < ν < 2, see [9–11, 18]. Then to study the
space–time-fractional forced diagnostic ultrasound wave propagation with attenua-
tion, Eq. (1.1) should be modified to

D
t ∗

β u(x, t) = k
∂u(x, t)

∂t
+ a D

x 0

α u(x, t) − ∂

∂x
(F(x) u(x, t)) , (1.2)

where 1 < β ≤ 2 and 0 < α < 2. The used time-fractional derivative operator
D
t ∗

β u(x, t) is called the Caputo-fractional operator, see [12] for more informa-

tion about the relation between Caputo-fractional derivative and the Riemann–
Liouville-fractional integral operators. The used D

x 0

α u(x, t) is the Riesz–Feller

space-fractional differentiation operator, see [13]. Time-fractional wave equations
with attenuation term have been studied by Szabo [1], Caputo [14], and Treeby and
Cox [15]. The recent works [16] proposed transient-wave propagation in porous
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materials using fractional modeling to take into account the frequency variability of
some dynamic coefficients of the medium like tortuosity and compressibility. Other
authors, like Tarasov [11], gave a space-fractional formulation of the hydrodynamic
equations to describe fluid flow in fractal media. Casasanta and Garra [17] studied
the space-fractional wave equation in relation to the propagation of acoustic waves
with space-dependent sound speed. We have given the approximate solution of the
time-fractional wave, forced wave (shear wave), and damped wave equations, see [9,
18].

In this paper, we are interested in finding the approximate solution of the studied
model (1.2). The approximate solution is given by adopting the backwardGrünwald–
Letnikov scheme joined with the common finite difference method. We investigate
numerically the effect of the time fractional on the propagation of the wave as well as
the effect of the space- fractional order for the three cases as: 0 < α < 1, 1 < α < 2,
andα = 1. The paper is organized as follows: Section1 is devoted to the introduction.
Section2 is to introduce the approximate solution of the space–time-fractional forced
wave equation with attenuation term for all the fractional-order values. In Sect. 3, the
proof of the stability conditions are studied. Finally, Sect. 4 is devoted to simulate the
propagation of the waves of the previous model for different values of the parameters
β, α, f (x), and t . The interpretation of the numerical results with investigations of
the effect of the memory is also given.

2 Approximate Solutions

In this section, we discuss the approximate solution of Eq. (1.2) for all values of α
and β. To do so, identify first the used external force F(x). There are many forms
of F(x), which can be used depending on the kind of the model. In this paper, we
consider F(x) = −bx , b > 0, i.e., F(x) is a linear attractive force. So far, Eq. (1.2)
takes the form

D
t ∗

β u(x, t) = k
∂u(x, t)

∂t
+ a D

x 0

α u(x, t) + b
∂

∂x
(x u(x, t)) , (2.1)

we solve this equation with the initial conditions

u(x, 0) = f (x) , ut (x, 0) = 0 , (2.2)

and the boundary conditions

u(−R, t) = u(R, t) = 0 . (2.3)

Discretize x and t by the grid {(x j , tn
) : −R ≤ j ≤ R, n ≥ 0} with x j = jh, tn =

nτ . Where h > 0, and τ > 0 are the steps in space and time, respectively. Introduce
the clump y(n) = {y(n)−R, y

(n)
−R+1, · · · , y(n)R−1, y

(n)
R }T to approximate the integral of the
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pressure function u(x, t) over the small interval h. The initial value y(0) is obtained
by the aid of initial condition u(x, 0) = f (x). To discretize D

t ∗
β u(x, t), we utilize

the backward Grünwald–Letnikov scheme as

D
τ ∗

β y j (tn+1) =
n+1∑

m=0

(−1)m
(

β

m

)
y j (tn+1−m) − y j (t0)

τβ
, 1 < β ≤ 2 ,∀n ∈ N0. (2.4)

This scheme has been successfully utilized at [9, 18–20] formodeling and simulation
the time-fractional diffusion processes. The used space-fractional operator D

x 0

α, is

the symmetric Riesz–Feller operator, see [21]. We use here the Zaslavski notation
[13] to define the inverse Riesz–Feller, see also Oldham and Spanier [22], Ross and
Miller [23] and Samko [24], as

D
0

α = −1

2cos(απ/2)
[I−α

+ + I−α
− ] , 0 < α ≤ 2 , α �= 1 , (2.5)

where I−α
± are the inverse of the operators Iα±, being called theWeyl integrals. So far,

the discretization of the Riesz potential operator is as follows:

D
h 0

αy j (tn) = −1

2cos απ
2

( I
h +

−α + I
h −

−α) y j (tn) , 0 < α ≤ 2 α �= 1 j ∈ Z . (2.6)

This scheme has been effectively used for finding the approximate solutions of the
space-fractional diffusion processes, see also [20] and the references therein. D

x 0

α

has three different discretization schemes depending on the values of α as follows:

I
h ±

−α y j (tn) = 1

hα

∞∑

s=0

(−1)s
(

α

s

)
y j±1∓s , 1 < α < 2 , (2.7)

while

I
h ±

−α y j (tn) = 1

hα

∞∑

s=0

(−1)s
(

α

s

)
y j∓s , 0 < α < 1 . (2.8)

Finally, for the case α = 1, which is related to the Cauchy distribution and because
of Eq. (2.6) one cannot use the Grünwald–Letnikov to discretize it, instead we use
the method introduced by Gorenflo and Mainardi [25].

Now joining the discretization of the time- and space-fractional differential opera-
tors, one can give the discretization of the space–time-fractional forcedwave equation
with damping term for each case. Beginning by 1 < α < 2, 1 < β < 2, see for more
detail [26], one gets after minor mathematical manipulating
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y(n+1)
j = bn

1 − kτβ−1
y(0)j + 1

1 − kτβ−1

n∑

m=2

cm y
(n+1−m)
j

+
(

β − kτβ−1

1 − kτβ−1
+ aμ

cos απ
2 (1 − kτβ−1)

(
α

1

))
y(n)j

− 1

1 − kτβ−1

(
bτβ( j − 1)

2
+ aμ

2 cos απ
2

(1 +
(

α

2

)
)

)
y(n)j−1

+ 1

1 − kτβ−1

(
bτβ( j + 1)

2
− aμ

2 cos απ
2

(1 +
(

α

2

)
)

)
y(n)j+1

− 1

1 − kτβ−1

aμ

2 cos απ
2

∑

s≥3

(−1)s
(

α

s

) (
y(n)j+1−s + y(n)j−1+s

)
. (2.9)

For ease of writing, we use the same parameters bn and cm defining in [19]. Define
the scaling relation as

μ = τβ

hα
. (2.10)

For easing the computation, we rewrite Eq. (2.9) in the matrix form as

y(n+1) = bn
1 − kτβ−1

y(0) + 1

1 − kτβ−1

n∑

m=2

cm y(n+1−m) + QT y(n) . (2.11)

Since (−1)s
(
α
s

) → 0 as s → ∞, then we can ignore the terms which are correspond-
ing to large values of s. Define Q = {qi j } to be the diagonally matrix whose elements
qi j are defined as

qi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(1)i j = aμ
2 cos απ

2 (1−kτβ−1)
(−1) j−i+1

( α
| j−i+1|

)
j = i + M, i = −R, · · · , R − M

q(2)i j = 1
1−kτβ−1

(
bτβ ( j+1)

2 − aμ
2 cos απ

2
(1 + (α

2

)
)
)

j = i + 1, i = −R, · · · , R − 1

q(3)i j = β−kτβ−1

1−kτβ−1 + aμ
cos απ

2 (1−kτβ−1)

(α
1

)
j = i, i = −R, · · · , R

q(4)i j = −1
1−kτβ−1

(
bτβ ( j−1)

2 + aμ
2 cos απ

2
(1 + (α

2

)
)
)

j = i − 1, i = −R + 1, · · · , R
q(5)i j = aμ

2 cos απ
2 (1−kτβ−1)

(−1) j−i+1
( α
|i− j+1|

)
j = i − M, i = −R + M, · · · , R ,

(2.12)
where 2 ≤ M ≤ R, to cover all the elements of the matrix. Now, we discuss the case
0 < α < 1 and 1 < β < 2. Joining the discretization (2.8) with the discretization
(2.4) with the common finite difference rules for finding the approximate solution of
Eq. (2.1) and solving for y(n+1)

j after using the scaling relation (2.10), to get
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y(n+1)
j = bn

1 − kτβ−1
y(0)j + 1

1 − kτβ−1

n∑

m=2

cm y
(n+1−m)
j

+
(

β − kτβ−1

1 − kτβ−1
− aμ

cos απ
2 (1 − kτβ−1)

)
y(n)j

+ 1

1 − kτβ−1

(
aμ

2 cos απ
2

(
α

1

)
− bτβ( j − 1)

2

)
y(n)j−1

+ 1

1 − kτβ−1

(
aμ

2 cos απ
2

(
α

1

)
+ bτβ( j + 1)

2

)
y(n)j+1

+ 1

1 − kτβ−1

aμ

2 cos απ
2

∑

s≥2

(−1)s+1

(
α

s

) (
y(n)j−s + y(n)j+s

)
. (2.13)

Equation (2.13) can be written in the same matrix form (2.11), where the diagonal
elements of the matrix Q are defined in this case as

qi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(1)i j = aμ
2 cos απ

2 (1−kτβ−1)
(−1) j−i+1( α

| j−i |
)

j = i + M, i = −R, · · · , R − M

q(2)i j = 1
1−kτβ−1

(
aμ

2 cos απ
2

(α
1
) + bτβ( j+1)

2

)
j = i + 1, i = −R, · · · , R − 1

q(3)i j = β−kτβ−1

1−kτβ−1 − aμ
cos απ

2 (1−kτβ−1)
j = i, i = −R, · · · , R

q(4)i j = 1
1−kτβ−1

(
aμ

2 cos απ
2

(α
1
) − bτβ( j−1)

2

)
j = i − 1, i = −R + 1, · · · , R

q(5)i j = aμ
2 cos απ

2 (1−kτβ−1)
(−1) j−i+1( α

|i− j |
)

j = i − M, i = −R + M, · · · , R ,

(2.14)

where 2 ≤ M ≤ R. Finally,wediscuss the singular caseα = 1 and1 < β < 2. In this
case, Gorenflo and Mainardi [25] deduced the discretization of D

0

1 from the Cauchy

density p1(x, 0) = 1
π

1
1+x2 . They replaced the factor (−1)s

(α
s

)
, s ∈ Z, in equation

(2.7) and in Eq. (2.8) by −2
π

for s = 0, and 1
π|s|(|s|+1) for s �= 0, s ∈ Z. Substituting

with these factors with the scaling relation (2.10) forα = 1, and finally with common
finite difference rules in Eq. (2.1), then solving for y(n+1)

j , to get

y(n+1)
j = bn

1 − kτβ−1
y(0)j + 1

1 − kτβ−1

n∑

m=2

cm y
(n+1−m)
j +

(
β − kτβ−1

1 − kτβ−1
− 2aμ

π(1 − kτβ−1)

)

y(n)j

+ 1

1 − kτβ−1

(
aμ

2π
− bτβ( j − 1)

2

)

y(n)j−1 + 1

1 − kτβ−1

(
aμ

2π
+ bτβ( j + 1)

2

)

y(n)j+1

+ aμ

π(1 − kτβ−1)

∑

s≥2

1

s(s + 1)

(
y(n)j+s + y(n)j−s

)
. (2.15)

This equation can also be written in the same matrix form (2.11). Where Q is a
matrix whose diagonal elements are defined as



Simulation of the Space–Time-Fractional Ultrasound Waves … 179

qi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q(1)
i j = aμ

π(1−kτβ−1)
1

( j−i)( j−i+1) j = i + M, i = −R, · · · , R − M

q(2)
i j = 1

1−kτβ−1

(
aμ
2π + bτβ( j+1)

2

)
j = i + 1, i = −R, · · · , R − 1

q(3)
i j = β−kτβ−1

1−kτβ−1 − 2aμ
π(1−kτβ−1)

j = i, i = −R, · · · , R
q(4)
i j = 1

1−kτβ−1

(
aμ
2π − bτβ( j−1)

2

)
j = i − 1, i = −R + 1, · · · , R

q(5)
i j = aμ

π(1−kτβ−1)
1

(i− j)(i− j+1) j = i − M, i = −R + M, · · · , R − 1 ,

(2.16)

where 2 ≤ M ≤ R. In what follows, we give the stability of the above studied dif-
ference schemes.

3 The Proof of the Stability

In this section, we give the necessary conditions of stability, for the three previous
cases separately, according to the Gerschorginś theorem. First, we use this theorem
to find the eigenvalues λi , where −R ≤ i ≤ R, of the discrete scheme (2.9), of case
a, from the inequality

|λi − qii | ≤
∑

j �=i

qi j = ρ , −R ≤ j ≤ R . (3.1)

The eigenvalues are contained in circles centered at

{
β − kτβ−1

1 − kτβ−1
+ aμ

cos απ
2 (1 − kτβ−1)

(
α

1

)}
,

with radius

1

1 − kτβ−1

{
bτβ( j + 1) − bτβ( j − 1)

2
− aμ

cos απ
2

(1 +
(

α

2

)
) − aμ

cos απ
2

∞∑

s=3

(−1)s
(

α

s

)}

,

such that

|λi −
{

β − kτβ−1

1 − kτβ−1
+ aμ

cos απ
2 (1 − kτβ−1)

(
α

1

)}

| ≤ 1

1 − kτβ−1

{
bτβ( j + 1) − bτβ( j − 1)

2
− aμ

cos απ
2

(1 +
(

α

2

)
) − aμ

cos απ
2

∞∑

s=3

(−1)s
(

α

s

)}

= ρ ,

(3.2)

and as a result
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1

1 − kτβ−1

{

(β − bτβ − kτβ−1 + 2aμα

cos απ
2

) + aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)}

≤ λi ≤

1

1 − kτβ−1

{

(bτβ − kτβ−1 + β) + aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)}

. (3.3)

But the term
∞∑

s= ∞
(−1)s+1

(α
s

) = 0, then Eq. (3.3) reduces to

1

1 − kτβ−1

(

β − bτβ − kτβ−1 + 2aμα

cos απ
2

)

≤ λi ≤ 1

1 − kτβ−1

(
bτβ − kτβ−1 + β

)
.

(3.4)
So far, as 0 < k < 1 and by taking the limit as τ → 0, one gets

1

1 − kτβ−1

(
bτβ − kτβ−1 + β

) ≈ β ,

and consequently |λ1| ≤ β. For λ2 to satisfy the condition |λ2| ≤ β, the following
condition must be satisfied:

| 1

1 − kτβ−1

(
β − bτβ − kτβ−1 + 2aμα

cos απ
2

)
| ≤ 1

1 − kτβ−1

(
bτβ − kτβ−1 + β

)
.

Solving this inequality, one gets the condition of the stability of this model as

0 ≤ μ ≤
(−β + kτβ−1

aα

)
cos

απ

2
. (3.5)

Second, we use also Gerschorginś theorem to find the eigenvalues λi of the discrete
scheme (2.13) from the inequality (3.1). In this case, the eigenvalues are contained
in circles centered at

{
β − kτβ−1

1 − kτβ−1
− aμ

cos απ
2 (1 − kτβ−1)

}

with radius

1

1 − kτβ−1

{

bτβ + aμ

cos απ
2

(
α

1

)
+ aμ

cos απ
2

∞∑

s=2

(−1)s+1

(
α

s

)}

,

such that
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|λi −
{

β − kτβ−1

1 − kτβ−1
− aμ

cos απ
2 (1 − kτβ−1)

}
| ≤ 1

1 − kτβ−1

{

bτβ + aμ

cos απ
2

(
α

1

)
+ aμ

cos απ
2

∞∑

s=2

(−1)s+1

(
α

s

)}

= ρ , (3.6)

and as a result

1

1 − kτβ−1

{

(β − bτβ − kτβ−1 − 2aμ

cos απ
2

) − aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)}

≤ λi ≤

1

1 − kτβ−1

{

(bτβ − kτβ−1 + β) + aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)}

. (3.7)

But the term
∞∑

s=0
(−1)s+1

(
α
s

) = 0, then Eq. (3.7) reduces to

1

1 − kτβ−1

(

β − bτβ − kτβ−1 − 2aμ

cos απ
2

)

≤ λi ≤ 1

1 − kτβ−1

(
bτβ − kτβ−1 + β

)
.

(3.8)
So far, as 0 < k < 1 and by taking the limit as τ → 0, one gets

1

1 − kτβ−1

(
bτβ − kτβ−1 + β

) ≈ β ,

and consequently |λ1| ≤ β. For λ2 to satisfy the condition |λ2| ≤ β, the following
condition must be satisfied:

| 1

1 − kτβ−1

(
β − bτβ − kτβ−1 − 2aμ

cos απ
2

)
| ≤ 1

1 − kτβ−1

(
bτβ − kτβ−1 + β

)
.

By solving this inequality, one gets the condition of the stability of this model as

0 ≤ μ ≤
(

β − kτβ−1

a

)
cos

απ

2
. (3.9)

Finally, we use the same theorem to find the eigenvalues of the discrete scheme
(2.15) from the inequality (3.1). In this case the eigenvalues are contained in circles
centered at {

β − kτβ−1

1 − kτβ−1
− 2aμ

π(1 − kτβ−1)

}

with radius
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1

1 − kτβ−1

{

bτβ + aμ

π
+ 2aμ

π

∞∑

s=2

1

s(s + 1)

}

,

such that

|λi −
{

β − kτβ−1

1 − kτβ−1
− 2aμ

π(1 − kτβ−1)

}

| ≤ 1

1 − kτβ−1

{

bτβ + aμ

π
+ 2aμ

π

∞∑

s=2

1

s(s + 1)

}

= ρ ,

(3.10)
and as a result

1

1 − kτβ−1

{

(β − bτβ − kτβ−1 − 4aμ

π
) + 2aμ

π
− 2aμ

π

∞∑

s=1

1

s(s + 1)

}

≤ λi ≤

1

1 − kτβ−1

{

(bτβ − kτβ−1 + β) + −2aμ

π
+ 2aμ

π

∞∑

s=1

1

s(s + 1)

}

. (3.11)

But the term
∞∑

s=1

1
s(s+1) = 1, then Eq. (3.11) reduces to

1

1 − kτβ−1

(
β − bτβ − kτβ−1 − 4aμ

π

)
≤ λi ≤ 1

1 − kτβ−1

(
bτβ − kτβ−1 + β

)
.

(3.12)
Again, as k < 1 and by taking the limit as τ → 0, one gets

1

1 − kτβ−1

(
bτβ − kτβ−1 + β

) ≈ β ,

and consequently |λ1| ≤ β. For λ2 to satisfy the condition |λ2| ≤ β, the following
condition must be satisfied:

| 1

1 − kτβ−1

(
β − bτβ − kτβ−1 − 4aμ

π

)
| ≤ 1

1 − kτβ−1

(
bτβ − kτβ−1 + β

)
.

By solving this inequality, one gets the condition of the stability of this model is

0 < μ ≤ π(β − kτβ−1)

2a
. (3.13)

In what follows, we prove the stability of these difference schemes by using the von
Neumann stability condition but we have to put in mind that, the time-fractional
means that the solution depends on all the history of the approximate solutions, i.e.,
y(n+1) depends on y(n), y(n−1), y(n−2), · · · , and back to y(0). In other words, the wave
propagation has a memory. Von Neumann method has the Fourier image

y(n)j = ζ(n)eiκx j , (3.14)
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where ζ = ζ(κ) is a complex number and this method does not depend on the bound-
ary conditions. The approximate solution y(n) is stable if the amplification factor
|ζ|2 ≤ 1. Now, we substitute Eq. (3.14) into Eq. (2.9). To prove the stability, one
has to do it on steps. First, we ignore the coefficients of y(n−1), y(n−2), · · · , y(0),
and substitute Eq. (3.14) on the rest of Eq. (2.9), to get after some mathematical
manipulations

ζ = 1

1 − kτβ−1
{ β − kτβ−1 + bτβ cos(κh) + i jbτβ sin(κh)+

aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)
cos((1 − s)κh) } . (3.15)

Taking the limit as h → 0 and then putting the term
∞∑

s=0
(−1)s+1

(
α
s

) = 0, Eq. (3.15)

reduces to

ζ = 1

1 − kτβ−1

(
β − kτβ−1 + bτβ

)
. (3.16)

Calculate |ζ|2 as

|ζ|2 = 1

(1 − kτβ−1)2

(
β2 − 2βkτβ−1 + k2τ 2β−2 − b2τ 2β

)
. (3.17)

So far, as 0 < k < 1 and by taking the limit as τ → 0, one gets |ζ|2 = β2 > 1.
Second, we take into consideration the dependence of y(n+1) on y(n) and y(n−1), only,
to get after some calculations

ζ2 − 1

1 − kτβ−1
{ β − kτβ−1 + bτβ cos(κh) + i jbτβ sin(κh)+

aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)
cos((1 − s)κh) }ζ + 1

1 − kτβ−1

(
β

2

)
= 0 . (3.18)

After taking the limit as h → 0 and putting
∞∑

s=0
(−1)s+1

(α
s

) = 0, then the above

equation reduces to

ζ2 − 1

1 − kτβ−1
{ β − kτβ−1 + bτβ }ζ + 1

1 − kτβ−1

(
β

2

)
= 0 . (3.19)

The roots of the above equation are
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ζ1,2 = 1

4(τ − kτβ)
{ 2βτ − 2kτβ + 2bτ 1+β∓

√
−8(β2τ − βτ )(τ − 2kτβ) + (2kτβ − 2βτ − 2bτ 1+β)2 } . (3.20)

After some mathematical manipulations and taking the limit as τ → 0, one gets
the roots of the above equation |ζ1|2 = |ζ2|2 ≈ | β(β−1)

2 | ≤ 1 as β ≤ 2. The space
fractional order α has no effect on the stability condition. This proves the stability
condition. The third step is by assuming that y(n+1) depends only on y(n), y(n−1),
and y(n−2). At this step, one gets |ζi |2, i = 1, 2, 3 that are approximately less than
one. In the next step, we add the dependence on y(n−3), and so on till reaching y(0).
At each step, one has to solve the resulted equation and use the previous limits to
get |ζi |2 < 1, i ≥ 1. So far, the scheme (2.9) is stable for the space–time-fractional
order α and β.

Now, we prove also the stability of the scheme (2.13) by using the von Neumann
method.We substitute equation (3.14) intoEq. (2.13). First, we ignore the coefficients
of y(n−1), y(n−2), · · · , y(0), and substitute Eq. (3.14) on the rest of equation (2.13), to
get after manipulations

ζ = 1

1 − kτβ−1
{ β − kτβ−1 + bτβ cos(κh) + i jbτβ sin(κh)+

aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)
cos(κsh) } . (3.21)

After taking the limit as h → 0 and putting
∞∑

s=0
(−1)s+1

(α
s

) = 0, Eq. (3.21) reduces

to the same Eq. (3.16) with the same condition |ζ|2 = β2 > 1. Second, we take
into consideration the dependence of y(n+1) on y(n) and y(n−1), only, to get after
calculations

ζ2 − 1

1 − kτβ−1
{ β − kτβ−1 + bτβ cos(κh) + i jbτβ sin(κh)+

aμ

cos απ
2

∞∑

s=0

(−1)s+1

(
α

s

)
cos(κsh) }ζ + 1

1 − kτβ−1

(
β

2

)
= 0 . (3.22)

After taking the limit as h → 0 and putting
∞∑

s=0
(−1)s+1

(
α
s

) = 0, Equation (3.22)

reduces to the same equation as (3.19). Then after somemathematical manipulations,
one gets the roots of the above equation |ζ1|2 = |ζ2|2 ≈ | β(β−1)

2 | ≤ 1 as β ≤ 2. As
before, the space-fractional order α has no effect on the stability condition The
third step is to assume that y(n+1) depends only on y(n), y(n−1), and y(n−2). At this
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step, one gets |ζi |2, i = 1, 2, 3 are approximately less than one. In the next step, we
add the dependence on y(n−3), and so on till reaching y(0). At each step, one has to
solve the resulted equation and use the previous limits, to get |ζi |2 < 1, i ≥ 1. So
far, the scheme (2.13) is stable for the space–time-fractional order α and β.

Finally, we apply vonNeumannmethod to prove the stability of the scheme (2.15).
First, we ignore the coefficients of y(n−1), y(n−2), · · · , y(0), and substitute Eq. (3.14)
on the rest of Eq. (2.15), to get after manipulating

ζ = 1

1 − kτβ−1
{ β − kτβ−1 + bτβ cos(κh) − 2aμ

π
+ i jbτβ sin(κh)+

2aμ

π

∞∑

s=1

1

s(s + 1)
cos(κsh) } . (3.23)

After taking the limit as h → 0 andputting the term
∞∑

s=1

1
s(s+1) = 1, the above equation

reduces to the same Eq. (3.16). That means one gets the condition |ζ|2 = β2 > 1.
Second, we take into consideration the dependence of y(n+1) on y(n) and y(n−1), only,
to get after some calculations

ζ2 − 1

1 − kτβ−1
{ β − kτβ−1 + bτβ cos(κh) − 2aμ

π
+ i jbτβ sin(κh)+

2aμ

π

∞∑

s=1

1

s(s + 1)
cos(κsh) }ζ + 1

1 − kτβ−1

(
β

2

)
= 0 . (3.24)

After taking the limit as h → 0 and putting
∞∑

s=1

1
s(s+1) = 1, Eq. (3.24) reduces to the

same equation as (3.19). Then after some mathematical manipulations, one gets
|ζ1|2 = |ζ2|2 ≈ | β(β−1)

2 | ≤ 1 as β ≤ 2. Again, the space-fractional order α has no
effect on the stability condition. The third step is to assume that y(n+1) depends only

Table 1 The values of parameters which are used in the calculations

Case Figures f (x) α β μ td t f

1 < α < 2 Figures1, 2, 3, 4, 5 and 6 sin( πx
2R+1 ) 2 2 0.9 t = 6 t = 50

Figures1, 2, 3, 4, 5 and 6 sin( πx
2R+1 ) 1.8 1.9 0.97 t = 5 t = 38

Figures7, 8, 9 and 10 sin( πx
2R+1 ) 1.7 1.8 0.9 t = 5 t = 38

Figures11, 12, 13 and 14 sin( πx
2R+1 ) 1.7 2 1 t = 29 t = 48

0 < α < 1 Figures15 and 16 sin( πx
2R+1 ) 0.9 2 0.3 t = 30 t = 30

Figures17 and 18 δ(x) 0.8 1.7 0.4 t = 50 t = 50

α = 1 Figures19 and 20 δ(x) 1 2 0.92 − t = 30

Figures21 and 22 sin( πx
2R+1 ) 1 1.7 0.6 − t = 20
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on y(n), y(n−1), and y(n−2). At this step, one gets |ζi |2, i = 1, 2, 3 are approximately
less than one. In the next step,we add the dependence on y(n−3), and so on till reaching
y(0). At each step, one has to solve the resulted equation and use the previous limits, to
get |ζi |2 < 1, i ≥ 1. So far, the scheme (2.15) is stable for the space–time-fractional
order α and β (Table1).

Fig. 1 t = 1

10 5 5 10

2

1

1

2

Fig. 2 t = 2

10 5 5 10

15

10

5

5

10

15

Fig. 3 t = 5

10 5 5 10

300

200

100

100

200

300
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Fig. 4 t = 10

10 5 5 10

30

20

10
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Fig. 5 t = 35
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15 000

20 000

Fig. 6 t = 38
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Fig. 7 t = 5

10 5 5 10
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200
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Fig. 8 t = 8
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Fig. 9 t = 20
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Fig. 10 t = 38

10 5 5 10

100 000

200 000

300 000

400 000

Fig. 11 t = 5
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200

200

400

600

Fig. 12 t = 29
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100 000

200 000
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Fig. 13 t = 44

10 5 5 10

5.0 106
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2.0 107

2.5 107

3.0 107

3.5 107

Fig. 14 t = 48

10 5 5 10

1 109

2 109

3 109

Fig. 15 t = 10
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500
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Fig. 16 t = 30

10 5 5 10

200 000

100 000

100 000

200 000

Fig. 17 t = 5

10 5 5 10
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500

500

1000

1500

2000

Fig. 18 t = 50
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1 1030

2 1030
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Fig. 19 t = 20

10 5 5 10

2 1022

1 1022

1 1022

2 1022

Fig. 20 t = 30

10 5 5 10

4 1034

2 1034

2 1034

4 1034

6 1034

Fig. 21 t = 10

10 5 5 10

6 1020

4 1020

2 1020

2 1020

4 1020

6 1020
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Fig. 22 t = 20

10 5 5 10

1 1043

5 1042

5 1042

1 1043

4 Convergence to the Stationary Approximate Solutions

We seek to find the stationary approximate solution which does not depend on the
time, i.e., the solution of the space–time-fractional differential equation as t → ∞,
for the above-discussed cases. To do so, we omit the terms depending on the time
in the matrix Eq. (2.11), where Q is defined for each cases in Eqs. (2.12), (2.14),
and (2.16). For these cases, we get the same matrix equation of the form z.H = 0,
i.e., HT .y = 0. The matrix H is obtained from the matrices defined in (2.12), (2.14),
and (2.16) after omitting all the terms depending on t and β. The sum of the rows of
the resulted matrix H is zero. The matrix HT has an eigenvector y∗ of eigenvalue

zero. Our stationary approximation solution ȳ = vy∗ with v = 1/
R∑

j=−R
y∗
j is a vector,

whose elements sum to1.Wesimulate the stationary approximate solutions at Figs. 23
and 24 for the classical case and for 0 < α < 1.

To study the convergence of the approximate solution, we constitute the sequence
d = {d(t1), d(t2), · · · }, where t1 < t2 < · · · → ∞. The numbers d(ti ), i : 1 → 16
is defined as

d(ti ) =
R∑

j=−R

|y j (ti ) − ȳ j | , i = 1, 2, · · · .

The convergent approximate solutions are simulated at Figs. 25, 26 and 27. In these
figures, we plot Log10d against the number of points. We compare Figs. 25, 26 and
27 with Fig. 28 to prove that the convergent approximate solutions of the discussed
cases are related to e−t by the relation d(t) = c1e−c2t , where c1 and c2 are positive
constants related to α and β for each case.
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Fig. 23 α = β = 2

20 10 10 20
x
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0.2
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Fig. 24 0 < α < 1,β = 1.7

5 5
x
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Fig. 25 Convergence
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log10d 1.9, 1.8
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Fig. 26 Convergence

5 10 15
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Fig. 27 Convergence
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Fig. 28 Convergence
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5 Numerical Results and Discussions

In this section, we give the numerical approximate solution for Eq. (2.1). We give the
evolution of y(n) = y(tn) with different values of tn and with different values of the
space-fractional order α and different values of the time-fractional order β. In these
simulations, we have enlarged the x−axis as−10 ≤ x ≤ 10 with h = 0.2.We fix the
value of the attenuation coefficient k = 0.5. The value of μ must satisfy the required
conditions depending on the values of α and β. Since {t0, t1, t2, · · · } = {0, 1, 2, · · · },
then the iteration index n = tn

τ
while τ is calculated from the scaling parameter of

the specified model. We calculate all the numerical results for a = b = 1. In the
following table, we summarize the values of f (x), μ, β, α, td , t f being used in the
numerical results. Here td is the time when the wave is starting to damp and t f is the
time when the wave reaches to the get its stationary solution. For all the values of
the fractional orders α and β, the studied approximate solutions have the same start
for t = 1 till t = 3, i.e., have the same start . For 1 < α < 2, the results show that
the effect of the damping force is much bigger than the external force F(x). Also,
we observe that for the fractional values α and β, the propagating waves reach its
stationary solutions faster than as in the classical case, α = 2 and β = 2, see [9, 18].

The convergence of the approximate solutions (the first norm) are simulated at
Figs. 25, 26, and 27. Figure28 represents the plot of the rapid convergent function
e−t . Then by comparing the last four figures, one can deduce that the approximate
solution of the studied model is convergent for all the values of the fractional orders
α and β.
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1 Introduction

Konhauser polynomial has drawn the attention of several researchers. Recently,
Prajapati et al. [7] introduced a class of polynomials

L(α,β)[
m
q

] (z) = �(αm + β + 1)

m!

[
m
q

]
∑
n=0

(−m)qn

�(αn + β + 1)

zn

n! , (1.1)

where α,β ∈ C;m, q ∈ N,
[
m
q

]
denotes integral part of m

q , Re(β) > −1.

This is generalized form of Konhauser polynomials (Konhauser [5]),

Zμ
m(x; k) = �(km + μ + 1)

m!
n∑
j=0

(−1) j
(
m

j

)
xk j

�(k j + μ + 1)
, (1.2)

where μ > −1.
Note that

L(k,μ)
m (zk) = Zμ

m(z; k). (1.3)

The Laguerre polynomials (Rainville [8]) defined as

Lμ
m(x) = �(m + μ + 1)

m!
n∑
j=0

(−1) j
(
m

j

)
x j

�( j + μ + 1)
, (1.4)

where μ > −1.
This is special case of (1.2) as

Zμ
m(x; 1) = Lμ

m(x). (1.5)

In 1970, Prabhakar [6] defined the generalized Mittag-Leffler function as

Eγ
α,β(z) =

∞∑
n=0

(γ)n zn

�(αn + β) n! , Re(α) > 0. (1.6)

This is an entire function of order (Re(α))−1.
Kilbas et al. [4] studied the relation between (1.2) and (1.6) as

E−m
k,μ+1(z

k) = �(m + 1)

�(km + μ + 1)
Zμ
m(z; k), (1.7)

where m, k ∈ N;μ ∈ C with Re(μ) > −1. If k = 1 then (1.7) reduces to
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E−m
1,μ+1(z) = �(m + 1)

�(m + μ + 1)
Lμ
m(z), m ∈ N;μ ∈ C. (1.8)

In 2007, Shukla and Prajapati [9] introduced generalized Mittag-Leffler function
as

Eγ, q
α, β(z) =

∞∑
n=0

(γ)qn

�(αn + β)

zn

n! , (1.9)

where α,β, γ ∈ C;Re(α) > 0,Re(β) > 0,Re(γ) > 0 and q ∈ (0, 1) ∪ N

In 2014, Prajapati et al. [7] established relation between (1.9) and (1.1) as

E−m,q
k,μ+1(z

k) = �(m + 1)

�(km + μ + 1)
L(k,μ)[

m
q

] (zk). (1.10)

Furthermore, some useful results are obtained in (1.11)–(1.15) (Prajapati et al.
[7]).

L(α,β)[
m
q

] (t) = (αm + β)

1∫

0

zβ−1L(α,β−1)[
m
q

] (t zα)dz (1.11)

(z − t)βL(α,β)[
m
q

] (
(z − t)α

) = �(αm + β + 1)

�(αm + β − γ + 1)�(γ)
×

z∫

t

(z − u)γ−1(u − t)β−γL(α,β−γ)[
m
q

] (
(u − t)α

)
du, (1.12)

where α,β, γ ∈ C with Re(β) > Re(γ) > −1,

∞∑
m=0

(γ)mL
(α,β)[
m
q

] (z)tm

�(αm + β + 1)
= (1 − t)−γEγ,q

α,β+1

(
z(−t)q

(1 − t)q

)
, |t | < 1 (1.13)

where α,β, γ ∈ C with Re(β) > −1 and q ∈ N,

∞∑
m=0

L(α,β)[
m
q

] (zα)tm

�(αm + β + 1)
= etW (α;β + 1; zα(−t)q), (1.14)

where α,β ∈ C with Re(β) > −1 and q ∈ N,
and

L(k,β)[
m
q

] (zk) =
(
z

y

)km m∑
r=0

(β + 1)km
(β + 1)km−kr

[( y
z

)k − 1
]r

r ! L(k,β)[
m−r
q

](yk), (1.15)

where k ∈ N and β ∈ C with Re(β) > −1.
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In 2010, Maged Gumaan Bin-Saad [1] investigated Hermite–Konhauser polyno-
mial as

k H
μ
m(x, y; z) = m!

m∑
n=0

[ m−n
2 ]∑

r=0

(−1)n+r xr ykn+μzm−n−2r

n!r !(m − n − 2r)!�(kn + μ + 1)
, (1.16)

and the relation betweenKonhauser polynomial andHermite–Konhauser polynomial
as

Zμ
m(x; k) = x−μ�(km + μ + 1)

m! k H
μ
m(0, x; 1). (1.17)

Konhauser [5] obtained mixed recurrence relation, differential equation, and pure
recurrence relation of (1.2) as (1.18)–(1.20)

xDZμ
m(x; k) = mkZμ

m(x; k) − k(km − k + μ + 1)k Z
μ
m−1(x; k), (1.18)

Dk[xμ+1DZμ
m(x; k)] = xμ+1DZμ

m(x; k) − mkxμZμ
m(x; k), (1.19)

k∑
i=0

(
k

i

)
[Dk−i xμ+1][Di+1Zμ

m(x; k)] = −kxμ(km − k + c + 1)k Z
μ
m−1(x; k). (1.20)

Srivastava [10] gives another form of Zμ
m(y; k) as

Zμ
m(x; k) =

(
x

y

)km m∑
r=0

(
μ + km

kr

)
(kr)!
r !

[( y

x

)k − 1

]r

Zμ
m−r (y; k). (1.21)

The recurrence relations, differential equations, pure recurrence relations, finite sum-
mation formulae, and Laplace transforms of (1.2) studied by Srivastava [12] as (1.22)
to (1.30)

DZμ
m(x; k) = −kxk−1Zμ+k

m−1(x; k), (1.22)

(x1−k D)n Zμ
m(x; k) = (−k)n Zμ+kn

m−n (x; k), m ≥ n ≥ 0, (1.23)

xDZμ
m(x; k) = (mk + μ)Zμ−1

m (x; k) − μZμ
m(x; k), (1.24)

Zμ
m(x; k) − Zμ−1

m (x; k) = k�(km + μ)

�(k(m − 1) + μ + 1)
Zμ
m−1(x; k), (1.25)

xk Zμ+k
m (x; k) = (km + μ + 1)k Z

μ
m(x; k) − (m + 1)Zμ

m+1(x; k), (1.26)

kxk Zμ+k
m (x; k) = μZμ

m+1(x; k) − (km + μ + k)Zμ−1
m+1(x; k), (1.27)
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Zμ
m(δx; k) =

m∑
j=0

(
μ + km

k j

)
δk(m− j)(1 − δk) j Zμ

m− j (x; k), (1.28)

L{tν Zμ
m(xt; k); s} = (μ + 1)km�(ν + 1)

sν+1m! k+1Fk

[ −m, ν+1
k , ν+2

k , ..., ν+k
k ;

μ+1
k ,

μ+2
k , ...,

μ+k
k ;

( x

s

)k]
, (1.29)

Re(s) > 0, Re(ν) > −1;
if ν = μ then (1.29) reduces to

L{tμZμ
m(xt; k); s} = �(km + μ + 1)

skm+μ+1
(sk − xk)m, (1.30)

where Re(s) > 0, Re(μ) > −1.
In 1970, Prabhakar [6] gives relations as follows:

Dn
[
xμ+n Zμ+n

m (x; k)] = �(km + μ + n + 1)

�(km + μ + 1)
xμZμ

m(x; k), μ > −1, (1.31)

I ν[zμZμ
m(z; k)] = �(km + μ + 1)

�(km + μ + ν + 1)
zμ+ν Zμ+ν

m (z; k), (1.32)

Re(μ) > −1, Re(ν) > −Re(μ + 1), where for suitable f and complex ν, I ν f (x)
denotes the ν th-order fractional integral (or fractional derivative) of f (x). He also
obtained

xk(γ−1)Zμ
m(x; k) = �(km + μ + 1)

(γ)m2πi

∫

C

tm+γ−1Eγ
k, μ+1(x

k − t)

(t − xk)m+1
dt, (1.33)

where C is a circle: | t − xk | = ε, for small radius ε.
In 1976, Karande and Thakare [3], studied the relation

σ

[
Zμ
m(z; k)

(1 + μ)km

]
= − Zμ

m−1(z; k)
kk(1 + μ)k(m−1)

, (1.34)

where σ = z−k+1

k
D

k∏
i=1

(
θ

k
+ μ + i

k
− 1

)
, θ = zD = z

d

dz
.

Orthogonal property of Konhauser polynomials is given by Konhauser [5] as

∞∫

0

e−z zμZμ
m(z; k)Yμ

n (z; k)dz = �(km + μ + 1)

�(m + 1)
δmn, ∀m, n ∈ {0, 1, 2, ...} (1.35)

where δmn is Kronecker’s delta.
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Srivastava [10] derived summation formulae as

∞∑
m=0

Zμ
m(x; k)

( y
k

)km
tm

(1 + μ)km
= exp

(( y

k

)k
t

)
0Fk

[
−; μ + 1

k
,
μ + 2

k
, ...,

μ + k

k
;−

( xy

k2

)k
t

]
, (1.36)

and ∞∑
m=0

Zμ
m(x; k)

( y
k

)km
tm

(1 + μ)km
= exp

({( y

k

)k −
( x

k

)k}
t

) ∞∑
m=0

Zμ
m(y; k)

( x
k

)km
tm

(1 + μ)km
(1.37)

Srivastava [11] proved bilateral generating function as

∞∑

m=0

m!Zμ
m (x; k)Yα−lm

m (y; l)tm
�(μ + km + 1)

= (1 + t)
−1+ α+1

l e(x[1−(1+t)
1
l ])H

[
x(1 + t)

1
l ,

−yk t
(1+t)

]
, (1.38)

where H [x, t] =
∞∑

m=0

Y α−lm
m (x; l)tm

�(μ + km + 1)
.

Srivastava [12] studied generating function for Konhauser polynomials as

∞∑
m=0

Zμ
m (z; k) (γ)mtm

(1 + μ)km
= (1 − t)−γ

1Fk

[
γ; μ + 1

k
,
μ + 2

k
, ...,

μ + k

k
;
( x

k

)k t

t − 1

]
(1.39)

and a summation formula as

∞∑
m=0

(
m + n

m

)
Zμ
m+n(z; k)tm

(1 + μ)k(m+n)
=

∞∑
m=n

(
m

n

)
tm−n

m!
(−zk )m

(1 + μ)km
1F1 [m + 1;m − n + 1; t] (1.40)

In 1981, Karande and Patil [2] obtained double integral in the form of orthogonal
property

∞∫

0

∞∫

0

e−(x+y)xμyν Zμ+ν+1
m (x + y; k)Y μ+ν+1

n (x + y; k)dxdy,

=
{

�(1 + μ)�(1 + ν)(μ + ν + 2)km
m! if n = m

0 if m �= n.
(1.41)

2 Mixed Recurrence Relations

Consider (1.18)

xDZμ
m(z; k) = mkZμ

m(z; k) − k(km − k + μ + 1)k Z
μ
m−1(z; k),
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this can be written as

xD
�(km + μ + 1)

�(m + 1)
E−m
k,μ+1(z

k) = mk
�(km + μ + 1)

�(m + 1)
E−m
k,μ+1(z

k)

− k
�(km − k + μ + 1 + k)

�(km − k + μ + 1)

�(km − k + μ + 1)

�(m)
E−m+1
k,μ+1 (zk),

i.e., xDE−m
k,μ+1(z

k) = mk[E−m
k,μ+1(z

k) − E−m+1
k,μ+1 (zk)]. (2.1)

From (1.20), we have

k∑
i=0

(
k

i

)
[Dk−i zμ+1][Di+1Zμ

m(z; k)] = −kzμ(km − k + μ + 1)k Z
μ
m−1(z; k),

this gives

k∑
i=0

(
k

i

)
[Dk−i zμ+1][Di+1�(km + μ + 1)

�(m + 1)
E−m
k,μ+1(z

k)]

= −kzμ �(km − k + μ + 1 + k)

�(km − k + μ + 1)

�(km − k + μ + 1)

�(m)
E−m+1
k,μ+1 (zk),

i.e.,
k∑

i=0

(
k

i

)
[Dk−i zμ+1][Di+1E−m

k,μ+1(z
k)] = −kmzμE−m+1

k,μ+1 (zk). (2.2)

Now, consider (1.22),

DZμ
m(z; k) = −kzk−1Zμ+k

m−1(z; k),

this reduces to

D
�(km + μ + 1)

�(m + 1)
E−m
k,μ+1(z

k) = −kzk−1�(km − k + μ + k + 1)

�(m)
E−m+1
k,μ+k+1(z

k),

the simplification gives

DE−m
k,μ+1(z

k) = −kmzk−1E−m+1
k,μ+k+1(z

k). (2.3)

Consider (1.23),
(z1−k D)p Zμ

m(z; k) = (−k)p Zμ+kp
m−p (z; k),

this leads to
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(z1−k D)pE−m
k,μ+1(z

k) = (−k)p
�(m + 1)

�(m − p + 1)
E−m+p
k,μ+kp+1(z

k). (2.4)

Consider (1.24)

zDZμ
m(z; k) = (mk + μ)Zμ−1

m (z; k) − μZμ
m(z; k),

this gives

zDE−m
k,μ+1(z

k) = E−m
k,μ (zk) − μE−m

k,μ+1(z
k). (2.5)

Consider (1.31)

Dn
[
xμ+n Zμ+n

m (x; k)] = �(km + μ + n + 1)

�(km + μ + 1)
xμZμ

m(x; k)

with Re(μ) > −1.
Using (1.7), this reduces to

Dn
[
xμ+n E−m

k,μ+n+1(z
k)

]
= xμE−m

k,μ+1(z
k). (2.6)

Consider (1.32)

I ν[zμZμ
m(z; k)] = �(km + μ + 1)

�(km + μ + ν + 1)
zμ+ν Zμ+ν

m (z; k).

Using (1.7), this can be written as

I ν[zμE−m
k,μ+1(z

k)] = zμ+νE−m
k,μ+ν(z

k). (2.7)

From (1.34), we have

σ

[
Zμ
m(z; k)

(1 + μ)km

]
= − Zμ

m−1(z; k)
kk(1 + μ)k(m−1)

.

this gives

σ

[
E−m
k,μ+1(z

k)�(μ + 1)

�(m + 1)

]
= −�(km − k + μ + 1)E−m+1

k,μ+1 (zk)

�(m)kk(1 + μ)k(m−1)
,

this reduces to

σ
[
E−m
k,μ+1(z

k)
]

= −m

kk
E−m+1
k,μ+1 (zk). (2.8)
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3 Pure Recurrence Relations

In this section, the authors obtained some recurrence relations.
Consider (1.25)

Zμ
m(z; k) − Zμ−1

m (z; k) = k�(km + μ)

�(k(m − 1) + μ + 1)
Zμ
m−1(z; k),

this follows

(km + μ)E−m
k,μ+1(z

k) − E−m
k,μ (zk) = kmE−m+1

k,μ+1 (zk). (3.1)

Consider (1.26)

zk Zμ+k
m (z; k) = (km + μ + 1)k Z

μ
m(z; k) − (m + 1)Zμ

m+1(z; k),

this leads to

zk E−m
k,μ+k+1(z

k) = E−m
k,μ+1(z

k) − E−m−1
k,μ+1 (zk). (3.2)

Consider (1.27)

kzk Zμ+k
m (z; k) = μZμ

m+1(z; k) − (km + μ + k)Zμ−1
m+1(z; k),

this gives

(m + 1)kzk E−m
k,μ+k+1(z

k) = μE−m−1
k,μ+1 (zk) − E−m−1

k,μ (zk). (3.3)

4 Differential Equation

Consider (1.19)

Dk[zμ+1DZμ
m(z; k)] = zμ+1DZμ

m(z; k) − kmzμZμ
m(z; k).

Using (1.7), this follows

Dk[zμ+1DE−m
k,μ+1(z

k)] = zμ+1DE−m
k,μ+1(z

k) − mkzμE−m
k,μ+1(z

k). (4.1)
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5 Finite Summation Formulae

From (1.10) and (1.15), we have

E−m,q
k,β+1(z

k) =
(
z

y

)km m∑
r=0

(
m

r

)[(
y

z

)k

− 1

]r

E−m+r,q
k,β+1 (yk), (5.1)

where k ∈ N and β ∈ C with Re(β) > −1.
Now, consider (1.21)

Zμ
m(z; k) =

(
z

y

)km m∑
r=0

(
μ + km

kr

)
(kr)!
r !

[(
y

z

)k

− 1

]r

Zμ
m−r (y; k).

Using (1.7), this can be written as

E−m
k,μ+1(z

k) =
(
z

y

)km m!
(km + μ)!

m∑
r=0

(μ + km)!
(kr)!(μ + km − kr)!

(kr)!
r !

[(
y

z

)k

− 1

]r
�(km − kr + μ + 1)

�(m − r + 1)
E−m+r
k,μ+1 (yk).

Finally, we arrived at

E−m
k,μ+1(z

k) =
(
z

y

)km m∑
r=0

(
m

r

) [(
y

z

)k

− 1

]r

E−m+r
k,μ+1 (yk). (5.2)

Consider (1.28)

Zμ
m(δz; k) =

m∑
j=0

(
μ + km

k j

)
(k j)!
j ! δk(m− j)(1 − δk) j Zμ

m− j (z; k).

By using (1.7), this leads to

E−m
k, μ+1((δz)

k) =
m∑
j=0

�(m + 1)

j !�(m − j + 1)
δk(m− j)(1 − δk) j E−m+ j

k,μ+1 (zk),

this follows:

E−m
k, μ+1((δz)

k) =
m∑
j=0

(
m

j

)
δk(m− j)(1 − δk) j E−m+ j

k,μ+1 (zk). (5.3)
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6 Integral Representation and Orthogonal Property

Keeping α = k ∈ N and replacing t by t k in (1.11), we have

L(k,β)[
m
q

] (t k) = (km + β)

1∫

0

zβ−1L(k,β−1)[
m
q

] (t z)k)dz.

By using (1.10), this reduces to

E−m,q
k,β+1(t

k) =
1∫

0

tβ−1E−m,q
k,β ((t z)k)dz. (6.1)

Consider (1.12)

(z − t)βL(α,β)[
m
q

] (
(z − t)α

) = �(αm + β + 1)

�(αm + β − γ + 1)�(γ)
×

z∫

t

(z − u)γ−1(u − t)β−γL(α,β−γ)[
m
q

] (
(u − t)α

)
du, (6.2)

where β, γ ∈ C with Re(β) > Re(γ) > −1 and α ∈ N.
Using (1.10), this gives

(z − t)βE−m,q
k,β+1

(
(z − t)α

) = 1

�(γ)

z∫

t

(z − u)γ−1(u − t)β−γE−m,q
k,β−γ+1

(
(u − t)α

)
du. (6.3)

Let C is a circle | t − xk | = ε for small radius ε, consider (1.33)

xk(γ−1)Zμ
m(x; k) = �(km + μ + 1)

(γ)m2πi

∫

C

tm+γ−1Eγ
k, μ+1(x

k − t)

(t − xk)m+1
dt.

Using (1.7), the above equation can be written in the form

xk(γ−1)E−m
k,μ+1(z

k) = �(m + 1)

(γ)m2πi

∫

C

tm+γ−1Eγ
k, μ+1(x

k − t)

(t − xk)m+1
dt. (6.4)

From (1.35) and (1.7), we have
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∞∫

0

e−z zμE−m
k,μ+1(z

k)Y μ
n (z; k)dz = δmn, ∀m, n ∈ {0, 1, 2, ...}. (6.5)

Consider (1.41)

∞∫

0

∞∫

0

e−(x+y)xμyν Zμ+ν+1
m (x + y; k)Y μ+ν+1

n (x + y; k)dxdy

=
{

�(1 + μ)�(1 + ν)(μ + ν + 2)km
m! if n = m

0 if m �= n

By using (1.7), this immediately follows:

∞∫

0

∞∫

0

e−(x+y)xμyνE−m
k,μ+ν+2((x + y)k)Y μ+ν+1

n (x + y; k)dxdy

=
{
B(1 + μ, 1 + ν) if n = m
0 if m �= n

where B(m, n) is the usual beta function.

7 Laplace Transform

From equation (1.29), we have

L{tν Zμ
m(zt; k); s} = (μ + 1)km�(ν + 1)

sν+1m! k+1Fk

[−m, ν+1
k , ν+2

k , ..., ν+k
k ;

μ+1
k ,

μ+2
k , ...,

μ+k
k ;

( z
s

)k
]

.

This immediately leads to

L
{
tνE−m

k,μ+1((zt)
k); s

}
= �(ν + 1)

�(μ + 1)sν+1 k+1Fk

[−m, ν+1
k , ν+2

k , ..., ν+k
k ;

μ+1
k ,

μ+2
k , ...,

μ+k
k ;

( z
s

)k
]

.

If μ = ν, then the above equation follows:

L
{
tνE−m

k,ν+1((zt)
k); s} = (sk − zk)n

skm+ν+1
.

If k = 1, then the above results reduces in the form of Laguerre polynomials.
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8 Generating Functions

Keeping α = k ∈ N and replacing z by zk in (1.13) gives

∞∑
m=0

(γ)mL
(k,β)[
m
q

] (zk)tm

�(km + β + 1)
= (1 − t)−γEγ,q

k,β+1

(
zk(−t)q

(1 − t)q

)
, |t | < 1. (8.1)

By using (1.10), this gives

∞∑
m=0

(γ)mE
−m,q
k,β+1(z

k)
tm

m! = (1 − t)−γEγ,q
k,β+1

(
zk(−t)q

(1 − t)q

)
, |t | < 1 (8.2)

where β, γ ∈ C with Re(β) > −1 and k, q ∈ N.
Keeping α = k ∈ N then (1.14) yields

∞∑
m=0

L(k,β)[
m
q

] (zk)
tm

�(km + β + 1)
= etW (k;β + 1; zk(−t)q), (8.3)

where β ∈ C with Re(β) > −1 and k, q ∈ N,
Using (1.10), (8.3) can be written in the form

∞∑
m=0

E−m,q
k,β+1(z

k)
tm

m! = etW (k;β + 1; zk(−t)q). (8.4)

Again from (1.38) and (1.7), we have

∞∑
m=0

E−m
k,μ+1(z

k)Yα−lm
m (y; l)tm = (1 + t)−1+ α+1

l e(x[1−(1+t)
1
l ])H

[
x(1 + t)

1
l ,

−yk t

(1 + t)

]
,

where H [x, t] =
∞∑

m=0

Y α−lm
m (x; l)tm

�(μ + km + 1)
.

From (1.39) and (1.7), we get

∞∑
m=0

E−m
k,μ+1(z

k )(γ)mt
m = (1 − t)−γ

�(1 + μ)
1Fk

[
γ; μ + 1

k
,
μ + 2

k
, ...,

μ + k

k
;
( x

k

)k t

t − 1

]
. (8.5)
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9 Miscellaneous

Equations (1.17) and (1.7) gives

E−m
k,μ+1(z

k) = x−μ
k H

μ
m(0, x; 1).

Consider (1.36)

∞∑
m=0

Zμ
m(x; k)

( y
k

)km
tm

(1 + μ)km
= exp

(( y

k

)k
t

)
0Fk

[
−; μ + 1

k
,
μ + 2

k
, ...,

μ + k

k
; −

( xy

k2

)k
t

]
.

By using (1.7), the above equation can be written as

∞∑
m=0

E−m
k,μ+1(z

k)
( y

k

)km �(μ + 1)tm

m! = exp

(( y

k

)k
t

)
0Fk

[
−; μ + 1

k
,
μ + 2

k
, ...,

μ + k

k
;−

( xy

k2

)k
t

]
.

From (1.37) and (1.7), we have

∞∑
m=0

E−m
k,μ+1(x

k )
( y

k

)km tm

m! = exp

({( y

k

)k −
( x

k

)k}
t

) ∞∑
m=0

E−m
k,μ+1(y

k )
( x

k

)km tm

m! . (9.1)

Consider (1.40)

∞∑
m=0

(
m + n

m

)
Zμ
m+n(z; k)tm

(1 + μ)k(m+n)
=

∞∑
m=n

(
m

n

)
tm−n

m!
(−zk)m

(1 + μ)km
1F1 [m + 1;m − n + 1; t] .

Using (1.7), the above equation yields

∞∑
m=0

E−(m+n)
k,μ+1 (zk)

tm

m! =
∞∑

m=n

tm−n

(m − n)!
(−zk)m

�(km + μ + 1)
1F1 [m + 1;m − n + 1; t] .

The simplification gives

∞∑
m=0

E−(m+n)
k,μ+1 (zk)

tm

m! =
∞∑
j=0

1F1 [ j + n + 1; j + 1; t] (−zk) j+n

�(k( j + n) + μ + 1)

t j

j ! . (9.2)
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An Effective Numerical Technique Based
on the Tau Method for the Eigenvalue
Problems

Maryam Attary and Praveen Agarwal

Abstract We consider the (presumably new) effective numerical scheme based on
the Legendre polynomials for an approximate solution of eigenvalue problems. First,
a new operational matrix, which can be represented by a sparse matrix defined by
using the Tau method and orthogonal functions. Sparse data is by nature more com-
pressed and thus requires significantly less storage. A comparison of the results for
some examples reveals that the presented method is convenient and effective, also
we consider the problem of column buckling to show the validity of the proposed
method.

Keywords Eigenvalue problems · Legendre polynomials · Numerical treatment

Mathematics Subject Classifications 65L15, 65L05, 65L10, 65N35.

1 Introduction

A special class of boundary-value problems are eigenvalue problems. They are used
in a wide variety of engineering contexts beyond boundary-value problems and play
a very important role in many scientific fields such as vibrations, elasticity, and other
oscillating systems. A simple context to illustrate how eigenvalues occur in physical
problems is the mass–spring system. Detailed description and application of these
problems may be found in [3] and references therein.

M. Attary
Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

P. Agarwal (B)
Department of Mathematics, ANAND International College of Engineering, Jaipur 303012, India
e-mail: goyal.praveen2011@gmail.com

Department of Mathematics, Harish Chandra Research Institute, Chhatnag Road, Jhunsi 211019,
Allahabad, India

International Center for Basic and Applied Sciences, Jaipur 302029, India

© Springer Nature Singapore Pte Ltd. 2019
P. Agarwal et al. (eds.), Fractional Calculus, Springer Proceedings
in Mathematics & Statistics 303, https://doi.org/10.1007/978-981-15-0430-3_12

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-0430-3_12&domain=pdf
mailto:goyal.praveen2011@gmail.com
https://doi.org/10.1007/978-981-15-0430-3_12


216 M. Attary and P. Agarwal

The numerical solvability of eigenvalue problems and other related equations
has been considered by several authors. In [5], a software package has been intro-
duced and discussed, which deals with the computation of the eigenvalue of Strum–
Liouville problems. Gamel et al. [4] were concerned with the Chebyshev method for
solving eigenvalue problems of fourth order of ODEs.

Due to the good approximation properties of spectralmethods, thesemethods have
been discussed intensively in recent years. A special case of them is the Tau method,
which has been applied for the numerical solution of many operator equations.

In this paper, we intend to introduce a new Tau approach by using Legendre
polynomials to solve the following eigenvalue problems:

u(k)(x) + λ2u(x) = 0, k = 2 or 4, (1.1)

�k−1
r=0α j,r u

(r)(cr ) = 0, j = 1, ..., k. (1.2)

s.t.

cr =
{−1, r = 0,
1, o.w.

where α j,r ∈ R are constants, (r = 0, · · · , k − 1) and λ is a solution to be deter-
mined.

The rest of the article is organized as follows: In Sect. 2, we describe some pre-
liminaries of the Legendre polynomials and their properties. Section3 explains the
new scheme and introduces matrix representation of the method for problem (1.1).
To clarify the efficiency of the method, the proposed algorithm is applied to some
numerical experiments and also the obtained results are comparedwith some existing
methods in the literature.

2 Basic Definitions of the Legendre Polynomials

We recall some definitions, which are required for the present study (see, for example,
[1]).

Definition 2.1 The starting point of Legendre polynomials is Rodrigues formula,
which is introduced as

Pn(x) = 1

2nn!
dn

dxn
(x2 − 1)n,

the orthogonality of Legendre polynomials in [−1, 1] with r(x) = 1 can be shown.

Definition 2.2 The Legendre polynomials Pn(x) satisfy the recurrence relation:

Pn+1(x) = 1

n + 1
[(2n + 1)x Pn(x) − nPn−1(x)], n = 1, 2, · · · . (2.1)
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Also, Legendre polynomials Pn(x) can be represented in the following recurrence
form:

P0(x) = P
′
1(x),

Pn(x) = 1

2n + 1
[P ′

n+1(x) − P
′
n−1(x)], n = 1, 2, · · · . (2.2)

Using Rodrigues’ formula, the orthogonality of Legendre polynomials can be
obtained as follow

∫ 1

−1
Pm(x)Pn(x)dx =

{
0, m �= n,

2
2n+1 m = n.

Since the Legendre polynomials are defined on the interval [−1, 1], for using
these polynomials on the interval [a, b], we convert it to [−1, 1] by introducing

x = b − a

2
t + b + a

2
.

3 Numerical Treatment of the Problem

In this section, we replace the differential part of Eq. (1.1) by an operational matrix.
Our main result is asserted by Theorem 1.

Theorem 1 Let Pi (x) be a Legendre polynomials in [−1, 1]. Suppose that functions
u(x) and u

′
(x) can be expressed as

u(x) =
∞∑
i=0

ai Pi (x) = aPx , (3.1)

u
′
(x) =

∞∑
i=0

b1,i Pi (x) = b1Px , (3.2)

where a = [a0, a1, a2, . . .]T , b1 = [b1,0, b1,1, b1,2, . . .]T and Px = [P0, P1, P2, · · · ].
Then we have:

u
′
(x) = Mapx , (3.3)

where

M =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0 · · ·
0 0 3 0 3 0 3 · · ·
0 0 0 5 0 5 0 · · ·
0 0 0 0 7 0 7 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

.
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Proof Taking the derivative of (3.1) and due to (3.2), we can write

∞∑
i=1

ai P
′
i (x) =

∞∑
i=0

b1,i Pi (x) = b1,0P0(x) +
∞∑
i=1

b1,i Pi (x). (3.4)

Using (2.2), we rewrite the above relation as

∞∑
i=1

ai P
′
i (x) = b1,0P

′
1(x) +

∞∑
i=1

b1,i
2i + 1

[P ′
i+1(x) − P

′
i−1(x)]. (3.5)

Therefore

a1 = b1,0 − b1,2
5

, a2 = b1,1
3

− b1,3
7

, . . . , an = b1,n−1

2n − 1
− b1,n+1

2n + 3
, . . . , (3.6)

and so

b1,n =
∞∑

i=n+1

(2n + 1)λn,i ai , s.t. λn,i =
{
1, i + n odd,

0, o.w.
(3.7)

(3.7) can be transformed to the following matrix form:

b1 = Ma, (3.8)

where

M =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0 · · ·
0 0 3 0 3 0 3 · · ·
0 0 0 5 0 5 0 · · ·
0 0 0 0 7 0 7 · · ·
...

...
...

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦

.

Due to the last equation, (3.2) can be written as

u
′
(x) = b1Px = MaPx . (3.9)

�
Lemma 1 Let u(n)(x) = ∑∞

i=0 bn,i Pi (x) = bnPx , be a Legendre polynomiyal with
bn = [bn,0, bn,1, bn,2, . . .]T , and M is a matrix, which is defined in Theorem1. Then
we have

u(n)(x) = MnaPx . (3.10)

Proof According to Theorem 1, the validity of Lemma 1 for n= 1 is obvious. From
(2.2), we can write

p′
i (x) = 1

2i + 1
[P ′′

i+1(x) − P
′′
i−1(x)].
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Given the assumption, it follows that

u(2)(x) =
∞∑
i=0

b2,i Pi (x) = b2Px . (3.11)

Using the given scheme in Theorem 1, we conclude

b2 = Mb1, (3.12)

Due to (3.8) and the last equation, we get b2 = M2a. Therefore, by repeating this
scheme, it follows that bn = Mna.

Finally,
u(n)(x) = MnaPx . (3.13)

�

We are now ready to obtain the algebraic form of the eigenvalue problems (1.1)
based on the operational matrix of the Legendre polynomials. We define um(x) as
an approximation function of the exact solution u(x) as follows:

um(x) =
m∑
i=0

ai Pi (x) = amPx,m . (3.14)

First, we consider the following form of (1.1):

u(2)(x) + λ2u(x) = 0. (3.15)

We define u(2)
m (x) as an approximation function of the exact solution u(2)(x) as

follows:
u(2)
m (x) = M2

mamPx,m, (3.16)

where Mm and M2
m are finite forms of M and M2, respectively.

Also boundary conditions of (3.15) can be written as

{
α1,0

∑m
i=0 ai Pi (−1) + α1,1

∑m
i=0 ai P

′
i (1) = 0,

α2,0
∑m

i=0 ai Pi (−1) + α2,1
∑m

i=0 ai P
′
i (1) = 0,

(3.17)

or equivalently ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑m
i=0 ai [α1,0Pi (−1) + α1,1P

′
i (1)]︸ ︷︷ ︸

di,1

= 0,

∑m
i=0 ai [α2,0Pi (−1) + α2,1P

′
i (1)]︸ ︷︷ ︸

di,2

= 0.
(3.18)

Due to (3.14) and (3.16), Eq. (3.15) rewritten as
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M2
mamPx,m + λ2ImamPx,m = 0. (3.19)

Since (3.15) has two boundary conditions, we need to remove the last two equations
from (3.19) and replace boundary conditions (3.18) instead of them.

Due to orthogonality of {Pi (x)}∞i=0 and using simple computations, we derive

⎧⎨
⎩
M

2
mam = −λ2Imam,

di,1am = 0,
di,2am = 0,

(3.20)

whereM
2
m and Im are obtained by removing the last two rows ofM2

m and Im , respec-
tively. Also, Im is a m+1-dimensionl identity matrix.

(3.20) can be symbolically expressed as

Ham = λ2Gam, (3.21)

where H and G are defined as

H =
⎡
⎣M

2
m

di,1
di,2

⎤
⎦ , G =

⎡
⎣−Im

0
0

⎤
⎦ . (3.22)

In the following, we consider another form of (1.1)

u(4)(x) + λ2u(x) = 0. (3.23)

In a similar manner, let u(4)
m (x) be an approximation function of the exact solution

u(4)(x) as follows:
u(4)
m (x) = M4

mamPx,m, (3.24)

whereM4
m be a finite form ofM4. by substituting (3.14) and (3.24) in (3.23), we have

M4
mamPx,m + λ2ImamPx,m = 0. (3.25)

Also boundary conditions of (3.23) can be written as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑m
i=0 ai [α1,0Pi (−1) + α1,1P

′
i (1) + α1,2P

′′
i (1) + α1,3P

′′′
i (1)]︸ ︷︷ ︸

ei,1

= 0,

∑m
i=0 ai [α2,0Pi (−1) + α2,1P

′
i (1) + α2,2P

′′
i (1) + α2,3P

′′′
i (1)]︸ ︷︷ ︸

ei,2

= 0,

∑m
i=0 ai [α3,0Pi (−1) + α3,1P

′
i (1) + α3,2P

′′
i (1) + α3,3P

′′′
i (1)]︸ ︷︷ ︸

ei,3

= 0,

∑m
i=0 ai [α4,0Pi (−1) + α4,1P

′
i (1) + α4,2P

′′
i (1) + α4,3P

′′′
i (1)]︸ ︷︷ ︸

ei,4

= 0.

(3.26)

These boundary conditions should be applied in Eq. (3.25), so we conclude

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M
4
mam = −λ2Imam,

ei,1am = 0,
ei,2am = 0,
ei,3am = 0,
ei,4am = 0,

(3.27)

or equivalently
�am = λ2�am, (3.28)

where � and � are defined as

� =

⎡
⎢⎢⎢⎢⎣

M
4
m

ei,1
ei,2
ei,3
ei,4

⎤
⎥⎥⎥⎥⎦ , � =

⎡
⎢⎢⎢⎢⎣

−Im
0
0
0
0

⎤
⎥⎥⎥⎥⎦ . (3.29)

The same as before, M
4
m and Im are obtained by removing the last four rows of

M4
m and Im , respectively. Finally, due to (3.21) and (3.28), the values of λ can be

computed.

4 Numerical Results

In this section, we present some examples to show the accuracy of the proposed
method. These examples are solved by Legendre polynomials. Numerical results are
compared with some existing numerical methods. Obtained results are reported in
Tables1, 2, 3, 4, and 5.

Example 1 Consider the following second-order eigenvalue problem:

u
′′
(x) + λ2u(x) = 0, (4.1)
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with the conditions:
u(0) = 0,

u
′
(1) + u(1) = 0,

and the exact solution for λ is λ = − tan λ.

Here, we consider computational details of the presented method for Example 1.
As we pointed out, the Legendre polynomials are defined in the interval [−1, 1]. So
(4.1), which is stated on the interval [0, 1], will be converted to the interval [−1, 1]
by choosing x = 1

2 (t + 1) or t = 2x − 1.
Therefore, above example can be written as

⎧⎪⎨
⎪⎩

( dt
dx )

2 d2u
dt2 + λ2u = 0,

u(−1) = 0,

(( dt
dx )

du

dt
)(1) + u(1) = 0,

or ⎧⎪⎨
⎪⎩
4 d2u
dt2 + λ2u = 0,

u(−1) = 0,

2
du

dt
(1) + u(1) = 0

by choosing m = 5, for numerical implimentation of the proposed method, we will
obtain the following matrices :

M5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1
0 0 3 0 3 0
0 0 0 5 0 5
0 0 0 0 7 0
0 0 0 0 0 9
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, M2
5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 3 0 10 0
0 0 0 15 0 42
0 0 0 0 35 0
0 0 0 0 0 63
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 3 0 10 0
0 0 0 15 0 42
0 0 0 0 35 0
0 0 0 0 0 63
1 −1 1 −1 −1 1
1 3 7 13 21 31

⎤
⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

According to (3.21), we obtain the following values of λ:

λ = [−,−, 16.3648, 8.54625, 4.92652, 2.02877].
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Table 1 Numerical results of Example 1, using proposed method

λi m = 5 m = 6 m = 7 m = 8 m = 9 Exact sol.

λ1 2.02877 2.02876 2.02876 2.02876 2.02876 2.02876

λ2 4.92652 4.9145 4.9132 4.91318 4.91318 4.91318

λ3 8.54625 8.06465 7.9931 7.97981 7.97877 7.97867

λ4 16.3648 12.391 11.3681 11.1517 11.0946 11.0855

Table 2 Numerical results of Example 2, using the proposed method

λi m = 14 m = 15 m = 17 Exact sol.

λ1 237.72106753 237.72106753 237.72106753 237.72106753

λ2 2496.48743849 2496.48743786 2496.48743786 2496.48743786

λ3 10867.583360842 10867.5824827024 10867.582217387 10867.58221698

λ4 31782.7593574787 31780.1535527804 31780.096714447 31780.09645408

The obtained numerical results for different values ofm have been reported inTable1.
Our proposedmethod has produced highly numerical results and the reported results,
show that we can obtain good numerical results for m ≥ 9.

Example 2 Consider the following fourth-order eigenvalue problem:

u(4)(x) − λu(x) = 0 (4.2)

with the conditions:
u(0) = u

′
(0) = 0,

u
′′
(1) = u(1) = 0,

and the exact solution for λ is tan
√

λ − tanh
√

λ = 0.

We have reported the obtained results for m = 14, 15, 17, in Table2. Also, as we
expected the reported results show that high accuracy is obtained in comparison to
the numerical results in [2] and [6]. Table3 represents that we can achieve better
results for a lower values of m.

Example 3 To show the validity of the proposed method, consider the problem of
column buckling. A slender column which is subjected to a concentric axial com-
pressive load, P, as it shown in Fig. 1, and is simply supported at its both ends. The
equation representing the bending of the column is

u(2)(x) = M

E I
, (4.3)
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Table 3 Numerical results of Example 2, using the proposed method

λi Presented method m = 22

m = 18 m = 21 Method in [2] Method in [6]

λ1 237.72106753 237.72106753 237.72106753 237.72106753

λ2 2496.48743786 2496.48743786 2496.48743784 2496.48743843

λ3 10867.58221698 10867.58221698 10867.59367145 10867.58221699

λ4 31780.09651687 31780.09645408 31475.48355038 31780.09650785

Table 4 Numerical results of Example 3, using proposed method

λi Presented method Method in [3] Analytical sol.

m = 6 m = 8 h = 3/4 h = 3/5

λ1 1.0472 1.0472 1.0205 1.0301 1.0472

λ2 2.10198 2.09443 1.8856 1.9593 2.0944

λ3 3.18373 3.14225 2.4637 2.6967 3.1416

λ4 6.49987 4.31943 − 3.1702 4.1888

λ5 9.06094 5.53544 − − 5.2360

where u(2)(x) specifies the curvature, M is the bending moment, E is the modulus
of elasticity, and I is the moment of inertia of the cross section about its neutral
axis. Corresponding to Fig. 1b, it is clear that the total moment at the free side of the
column is equal to M = −Pu, by substituting the moment into the equation (4.3),
the following second-order differential equation for Euler buckling will be obtained:

u(2)(x) + k2u(x) = 0, (4.4)

where

k2 = P

E I
,

with the conditions:
u(0) = 0, u(L) = 0,

and k = nπ

L
are the eigenvalues for the column.

For this example, we take E = 10 × 109 pa, I = 1.25 × 10−5 m4, and L = 3. The
numerical results can be seen from Table5. Table4 shows our results in comparison
with the results of [3]. By increasing m, additional eigenvalues are determined and
the previously determined values become progressively more accurate.
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Fig. 1 a A slender rod. b A free- body diagram of a rod

Table 5 Numerical results of Example 3

λi m = 10 m = 12 m = 14

λ1 1.0472 1.0472 1.0472

λ2 2.0944 2.0944 2.0944

λ3 3.1416 3.1416 3.1416

λ4 4.1933 4.1888 4.1888

λ5 5.2540 5.2364 5.2360

5 Conclusion

In this research, a numerical technique based on the Tau method was presented for
solving the eigenvalue problems. This method converts eigenvalue problems into
a system of algebraic equations. The comparison of the obtained results with the
other numerical methods and the exact solution indicates that the desired accuracy
is obtained. By using some modifications, the proposed method can be applied to
solve other ordinary differential equations.
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On Hermite–Hadamard-Type
Inequalities for Coordinated Convex
Mappings Utilizing Generalized
Fractional Integrals

Hüseyin Budak and Praveen Agarwal

Abstract In this chapter, we obtain the Hermite–Hadamard-type inequalities for
coordinated convex function via generalized fractional integrals, which generalize
some important fractional integrals such as the Riemann–Liouville fractional inte-
grals, the Hadamard fractional integrals, and Katugampola fractional integrals. The
results given in this chapter provide a generalization of several inequalities obtained
in earlier studies.

Keywords Hermite–Hadamard’s inequalities · Generalized fractional integral ·
Coordinated convex · Integral inequalities
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26B25.

1 Introduction

The Hermite–Hadamard inequality discovered by Hermite and Hadamard see, e.g.,
[13, 28], p. 137) is one of the most well-established inequalities in the theory of
convex functions with a geometrical interpretation and many applications. These
inequalities state that if f : I → R is a convex function on the interval I of real
numbers and a, b ∈ I with a < b, then
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f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x)dx ≤ f (a) + f (b)

2
. (1.1)

Both inequalities hold in the reverse direction if f is concave. We note that Hermite–
Hadamard inequalitymay be regarded as a refinement of the concept of convexity and
it follows easily from Jensen’s inequality. Hermite–Hadamard inequality for convex
functions has received renewed attention in recent years and a remarkable variety of
refinements and generalizations have been studied (see, for example, [3, 14–16, 18,
20, 27, 34, 35, 40, 47, 48]).

A formal definition for coordinated convex function may be stated as follows:

Definition 1 A function f : � → R is called coordinated convex on �, for all
(x, u), (y, v) ∈ � and t, s ∈ [0, 1], if it satisfies the following inequality:

f (t x + (1 − t) y, su + (1 − s) v) (1.2)

≤ ts f (x, u) + t (1 − s) f (x, v) + s(1 − t) f (y, u) + (1 − t)(1 − s) f (y, v).

The mapping f is a coordinated concave on � if the inequality (1.2) holds in
reverse direction for all t, s ∈ [0, 1] and (x, u), (y, v) ∈ �.

In [12], Dragomir proved the following inequalities which is Hermite–Hadamard-
type inequalities for coordinated convex functions on the rectangle from the plane
R

2.

Theorem 1 Suppose that f : � → R is a coordinated convex, then we have the
following inequalities:

f

(
a + b

2
,

c + d

2

)
≤ 1

2

⎡
⎢⎣ 1

b − a

b∫
a

f

(
x,

c + d

2

)
dx + 1

d − c

d∫
c

f

(
a + b

2
, y

)
dy

⎤
⎥⎦

≤ 1

(b − a)(d − c)

b∫
a

d∫
c

f (x, y) dydx (1.3)

≤ 1

4

⎡
⎢⎣ 1

b − a

b∫
a

f (x, c)dx + 1

b − a

b∫
a

f (x, d)dx

+ 1

d − c

d∫
c

f (a, y)dy + 1

d − c

d∫
c

f (b, y)dy

⎤
⎥⎦

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

The above inequalities are sharp. The inequalities in (1.3) hold in reverse direction
if the mapping f is a coordinated concave mapping.
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For the other Hermite–Hadamard-type inequalities for coordinated convex func-
tions, please refer to [2, 4, 24, 26, 41, 44].

In the following, we give the definition of Riemann–Liouville fractional integrals:

Definition 2 Let f ∈ L1[a, b]. The Riemann–Liouville fractional integrals Jα
a+ f

and Jα
b− f of order α > 0 with a ≥ 0 are defined by

Jα
a+ f (x) = 1

�(α)

x∫
a

(x − t)α−1 f (t)dt, x > a

and

Jα
b− f (x) = 1

�(α)

b∫
x

(t − x)α−1 f (t)dt, x < b

respectively. Here, �(α) is the Gamma function and J 0
a+ f (x) = J 0

b− f (x) = f (x).

More details on Riemann–Liouville fractional integrals, one can see
[19, 23, 25, 30].

It is remarkable that Sarikaya et al. [32] first gave the following interesting inte-
gral inequalities ofHermite–Hadamard-type involvingRiemann–Liouville fractional
integrals.

Theorem 2 Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈
L1 [a, b] . If f is a convex function on [a, b], then the following inequalities for
fractional integrals hold:

f

(
a + b

2

)
≤ �(α + 1)

2 (b − a)α
[
Jα

a+ f (b) + Jα
b− f (a)

] ≤ f (a) + f (b)

2
(1.4)

with α > 0.

Moreover, Hermite–Hadamard-type inequality for coordinated convex functions
utilizing Riemann–Liouville fractional integrals is obtained by Sarıkaya in [36]. One
can find some recent Hermite–Hadamard inequalities for the function of one and two
variables via Riemann–Liouville fractional integrals in [1, 5–11, 17, 22, 31, 33, 37–
39, 45, 49, 50].

Hadamard fractional integrals are as follows:

Definition 3 Let f ∈ L1 ([a, b]) . The Hadamard fractional integrals Hα
a+ f, and

Hα
b− f of order α > 0 with a ≥ 0 are defined by

Hα
a+ f (x) := 1

�(α)

x∫
a

(
ln

x

t

)α−1 f (t)

t
dt, x > a,
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and

Hα
b− f (x) := 1

�(α)

b∫
x

(
ln

t

x

)α−1 f (t)

t
dt, x < b,

respectively.

Recently, some papers are devoted to Hermite–Hadamard inequalities via
Hadamard fractional integrals, see [29, 42, 43, 51, 52].

Now we give following generalized fractional integrals:

Definition 4 Let g : [a, b] → R be an increasing and positive monotone function
on (a, b] having a continuous derivative g′(x) on (a, b). The left-side (I α

a+;g f (x))
and right-side (I α

b−;g f (x)) fractional integral of f with respect to the function g on
[a, b] of order α < 0 are defined by

I α
a+;g f (x) = 1

�(α)

x∫
a

g′(t) f (t)

[g(x) − g(t)]1−α
dt, x > a

and

I α
b−;g f (x) = 1

�(α)

b∫
x

g′(t) f (t)

[g(t) − g(x)]1−α
dt, x < b

respectively.

Jleli and Samet establish following Hermite–Hadamard inequalities:

Theorem 3 ([21]) Let g : [a, b] → R be an increasing and positive monotone func-
tion on (a, b], having a continuous derivative g′(x) on (a, b) and let α > 0. If f is
a convex function on [a, b] , then

ϕ

(
a + b

2

)
≤ �(α + 1)

4 [g(b) − g(a)]α
[
I α
a+;g�(b) + �α

b−;g f (a)
] ≤ ϕ (a) + f (b)

2
(1.5)

where �(x) = ϕ(x) + ϕ̃(x) and ϕ̃(x) = ϕ(a + b − x) for x ∈ [a, b].

Hadamard fractional integrals of a function with two variables can be given as
follows:

Definition 5 Let f ∈ L1 ([a, b] × [c, d]) . The Hadamard fractional integrals
Jα,β

a+,c+ f, Jα,β
a+,d− f, Jα,β

b−,c+ f and Jα,β
b−,d− f of order α,β > 0 with a, c ≥ 0 are

defined by

Jα,β
a+,c+ f (x, y) := 1

�(α)�(β)

x∫
a

y∫
c

(
ln

x

t

)α−1 (
ln

y

s

)β−1 f (t, s)

ts
dsdt, x > a, y > c,
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Jα,β
a+,d− f (x, y) := 1

�(α)�(β)

x∫
a

d∫
y

(
ln

x

t

)α−1
(
ln

s

y

)β−1 f (t, s)

ts
dsdt, x > a, y < d,

Jα,β
b−,c+ f (x, y) := 1

�(α)�(β)

b∫
x

y∫
c

(
ln

t

x

)α−1 (
ln

y

s

)β−1 f (t, s)

ts
dsdt, x < b, y > c,

and

Jα,β
b−,d− f (x, y) := 1

�(α)�(β)

b∫
x

d∫
y

(
ln

t

x

)α−1 (
ln

y

s

)β−1 f (t, s)

ts
dsdt, x < b, y < d,

respectively.

Now, we give following generalized fractional integral operators:

Definition 6 Let g : [a, b] → R be an increasing and positive monotone function
on (a, b], having a continuous derivative g′(x) on (a, b) and let w : [c, d] → R

be an increasing and positive monotone function on (c, d], having a continuous
derivative w′(y) on (c, d). Let f ∈ L1([a, b] × [c, d]). The generalized fractional
integral operators for functions of two variables are defined by

J α,β
a+,c+;g,w

f (x, y) := 1

�(α)�(β)

x∫
a

y∫
c

g′(t)
[g(x) − g(t)]1−α

w′(s)
[w(y) − w(s)]1−β

f (t, s)dsdt, x > a, y > c,

J α,β
a+,d−;g,w

f (x, y) := 1

�(α)�(β)

x∫
a

d∫
y

g′(t)
[g(x) − g(t)]1−α

w′(s)
[w(s) − w(y)]1−β

f (t, s)dsdt, x > a, y < d,

J α,β
b−,c+;g,w

f (x, y) := 1

�(α)�(β)

b∫
x

y∫
c

g′(t)
[g(t) − g(x)]1−α

w′(s)
[w(y) − w(s)]1−β

f (t, s)dsdt, x < b, y > c,

and

J α,β
b−,d−;g,w

f (x, y) := 1

�(α)�(β)

b∫
x

d∫
y

g′(t)
[g(t) − g(x)]1−α

w′(s)
[w(s) − w(y)]1−β

f (t, s)dsdt, x < b, y < d.

Similar to the above definitions, we can give the following integrals:

J α
a+;g f

(
x,

c + d

2

)
:= 1

�(α)

x∫
a

g′(t)
[g(x) − g(t)]1−α

f

(
t,

c + d

2

)
dt, x > a,
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J α
b−;g f

(
x,

c + d

2

)
:= 1

�(α)

b∫
x

g′(t)
[g(t) − g(x)]1−α

f

(
t,

c + d

2

)
dt, x < b,

J β
c+;w f

(
a + b

2
, y

)
:= 1

�(β)

y∫
c

w′(t)
[w(y) − w(s)]1−β

f

(
a + b

2
, y

)
ds, y > c,

and

J β
d−;w f

(
a + b

2
, y

)
:= 1

�(β)

y∫
c

w′(t)
[w(s) − w(y)]1−β

f

(
a + b

2
, y

)
ds, y < d,

If we choose g(t) = tρ

ρ
andw(s) = sσ

σ

ρ
in Definition 6, thenwe have the following

Katugampola fractional integrals for functionwith twovariables similar to definitions
given by Yaldiz in [46]:

Definition 7 Let f ∈ L1([a, b] × [c, d]). The Katugampola fractional integrals for
function with two variables are defined by

ρ,σIα,β
a+,c+ f (x, y) := ρ1−ασ1−β

�(α)�(β)

x∫
a

y∫
c

tρ−1

[xρ − tρ]1−α

sσ−1

[yσ − sσ]1−β
f (t, s)dsdt, x > a, y > c,

ρ,σIα,β
a+,d− f (x, y) := ρ1−ασ1−β

�(α)�(β)

x∫
a

d∫
y

tρ−1

[xρ − tρ]1−α

sσ−1

[sσ − yσ]1−β
f (t, s)dsdt, x > a, y < d,

ρ,σIα,β
b−,c+ f (x, y) := ρ1−ασ1−β

�(α)�(β)

b∫
x

y∫
c

tρ−1

[tρ − xρ]1−α

sσ−1)

[yσ − sσ]1−β
f (t, s)dsdt, x < b, y > c,

and

ρ,σIα,β
b−,d− f (x, y) := ρ1−ασ1−β

�(α)�(β)

b∫
x

d∫
y

tρ−1

[tρ − xρ]1−α

sσ−1

[sσ − yσ]1−β
f (t, s)dsdt, x < b, y < d.

The aim of this study is to establish Hermite–Hadamard-type integral inequalities
for a coordinated convex function involving generalized fractional integrals. The
results presented in this paper provide extensions of those given in earlier works.
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2 Main Results

Let f : � = [a, b] × [c, d] → R.First, we define the following functionswhichwill
be used frequently:

f̃1(x, y) = f (a + b − x, y),

f̃2(x, y) = f (x, c + d − y),

f̃3(x, y) = f (a + b − x, c + d − y),

G(x, y) = f (x, y) + f̃2(x, y) (2.1)

H(x, y) = f (x, y) + f̃1(x, y)

K (x, y) = f̃1(x, y) + f̃3(x, y)

L(x, y) = f̃2(x, y) + f̃3(x, y)

F(x, y) = f̃1(x, y) + f̃2(x, y) + f̃3(x, y) + f (x, y)

= G(x, y) + H(x, y) + K (x, y) + L(x, y)

2

for (x, y) ∈ [a, b] × [c, d].

Theorem 4 Let g : [a, b] → R be an increasing and positive monotone function on
(a, b], having a continuous derivative g′(x) on (a, b) and let w : [c, d] → R be an
increasing and positive monotone function on (c, d], having a continuous derivative
w′(y) on (c, d). If f : � → R is a coordinated convex on �, then for α,β > 0 the
following Hermite–Hadamard-type inequality hold:

f

(
a + b

2
,

c + d

2

)
(2.2)

≤ �(α + 1)�(β + 1)

16 [g(b) − g(a)]α [w(d) − w(c)]β

×
[
J α,β

a+,c+;g,w
F(b, d) + J α,β

a+,d−;g,w
F(b, c) + J α,β

b−,c+;g,w
F(a, d) + J α,β

b−,d−;g,w
F(a, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
,

where the function F is defined as in (2.1).

Proof Since f is a coordinated convex mapping on �, we have

f

(
u + v

2
,

p + q

2

)
≤ f (u, p) + f (u, q) + f (v, p) + f (v, q)

4
(2.3)

for (u, p), (v, q) ∈ �.Now, for t, s ∈ [0, 1] , let u = ta + (1 − t)b, v = (1 − t)a +
tb, p = cs + (1 − s)d and q = (1 − s)c + sd. Then we have
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f

(
a + b

2
,

c + d

2

)
(2.4)

≤ 1

4
f (ta + (1 − t)b, cs + (1 − s)d) + 1

4
f (ta + (1 − t)b, (1 − s)c + sd)

+1

4
f ((1 − t)a + tb, cs + (1 − s)d) + 1

4
f ((1 − t)a + tb, (1 − s)c + sd).

Multiplying both sides of (2.4) by

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
,

and integrating the resulting inequality with respect to t, s over (0, 1) × (0, 1) , we
get

(b − a) (d − c)

�(α)�(β)
f

(
a + b

2
,

c + d

2

) 1∫
0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
dsdt

≤ (b − a) (d − c)

4�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f (ta + (1 − t)b, cs + (1 − s)d)dsdt

+ (b − a) (d − c)

4�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f (ta + (1 − t)b, (1 − s)c + sd)dsdt

+ (b − a) (d − c)

4�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f ((1 − t)a + tb, cs + (1 − s)d)dsdt

+ (b − a) (d − c)

4�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f ((1 − t)a + tb, (1 − s)c + sd)dsdt.

By a simple calculation, we have

1∫
0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
dsdt = [g(b) − g(a)]α [w(d) − w(c)]β

αβ(b − a)(d − c)
.

Using the change of variables τ = (1 − t)a + tb and η = (1 − s)c + sd, we obtain
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[g(b) − g(a)]α [w(d) − w(c)]β

�(α + 1)�(β + 1)
f

(
a + b

2
,

c + d

2

)

≤ 1

4�(α)�(β)

1∫
0

1∫
0

g′ (τ )

[g(b) − g (τ )]1−α

w′ (η)

[w(d) − w (η)]1−β
f (a + b − τ , c + d − η)dηdτ

+ 1

4�(α)�(β)

1∫
0

1∫
0

g′ (τ )

[g(b) − g (τ )]1−α

w′ (η)

[w(d) − w (η)]1−β
f (a + b − τ , η)dηdτ

+ 1

4�(α)�(β)

1∫
0

1∫
0

g′ (τ )

[g(b) − g (τ )]1−α

w′ (η)

[w(d) − w (η)]1−β
f (τ , c + d − η)dηdτ

+ 1

4�(α)�(β)

1∫
0

1∫
0

g′ (τ )

[g(b) − g (τ )]1−α

w′ (η)

[w(d) − w (η)]1−β
f (τ , η)dηdτ

= 1

4

[
J α,β

a+,c+;g,w
f̃3(b, d) + J α,β

a+,c+;g,w
f̃1(b, d) + J α,β

a+,c+;g,w
f̃2(b, d) + J α,β

a+,c+;g,w
f (b, d)

]

= 1

4
J α,β

a+,c+;g,w
F(b, d).

That is, we have

[g(b) − g(a)]α [w(d) − w(c)]β

�(α + 1)�(β + 1)
f

(
a + b

2
,

c + d

2

)
≤ 1

4
J α,β

a+,c+;g,w F(b, d). (2.5)

Similarly, multiplying both sides of (2.4) by

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w ((1 − s)c + sd) − w(c)]1−β

and integrating the obtained inequality with respect to t, s over (0, 1) × (0, 1) , we
obtain

[g(b) − g(a)]α [w(d) − w(c)]β

�(α + 1)�(β + 1)
f

(
a + b

2
,

c + d

2

)
≤ 1

4
J α,β

a+,d−;g,w F(b, c). (2.6)

Moreover, multiplying both sides of (2.4) by

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g ((1 − t)a + tb) − g(s)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β

and

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g ((1 − t)a + tb) − g(s)]1−α

w′ ((1 − s)c + sd)

[w ((1 − s)c + sd) − w(c)]1−β
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then integrating the established inequalities with respect to t, s over (0, 1) × (0, 1) ,

we have the following inequalities:

[g(b) − g(a)]α [w(d) − w(c)]β

�(α + 1)�(β + 1)
f

(
a + b

2
,

c + d

2

)
≤ 1

4
J α,β

b−,c+;g,w F(a, d) (2.7)

and

[g(b) − g(a)]α [w(d) − w(c)]β

�(α + 1)�(β + 1)
f

(
a + b

2
,

c + d

2

)
≤ 1

4
J α,β

b−,d−;g,w F(a, c), (2.8)

respectively.
Summing the inequalities (2.5)–(2.8), we get

f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)�(β + 1)

16 [g(b) − g(a)]α [w(d) − w(c)]β

×
[
J α,β

a+,c+;g,w
F(b, d) + J α,β

a+,d−;g,w
F(b, c) + J α,β

b−,c+;g,w
F(a, d) + J α,β

b−,d−;g,w
F(a, c)

]
.

This completes the proof of first inequality in (2.2).
For the proof of the second inequality in (2.2), since f is a coordinated convex,

we have

f (ta + (1 − t)b, cs + (1 − s)d) + f (ta + (1 − t)b, (1 − s)c + sd) (2.9)

+ f ((1 − t)a + tb, cs + (1 − s)d) + f ((1 − t)a + tb, (1 − s)c + sd)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d).

Multiplying both sides of (2.9) by

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
,

and integrating the resulting inequality with respect to t, s over (0, 1) × (0, 1) , we
get

(b − a) (d − c)

�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f (ta + (1 − t)b, cs + (1 − s)d)dsdt

+ (b − a) (d − c)

�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f (ta + (1 − t)b, (1 − s)c + sd)dsdt
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+ (b − a) (d − c)

�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f ((1 − t)a + tb, cs + (1 − s)d)dsdt

+ (b − a) (d − c)

�(α)�(β)

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
f ((1 − t)a + tb, (1 − s)c + sd)dsdt

≤ (b − a) (d − c)

�(α)�(β)
[ f (a, c) + f (a, d) + f (b, c) + f (b, d)]

×
1∫

0

1∫
0

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β
dsdt.

Then, we get

J α,β
a+,c+;g,w

f̃3(b, d) + J α,β
a+,c+;g,w

f̃1(b, d) + J α,β
a+,c+;g,w

f̃2(b, d) + J α,β
a+,c+;g,w

f (b, d)

≤ [ f (a, c) + f (a, d) + f (b, c) + f (b, d)]
[g(b) − g(a)]α [w(d) − w(c)]β

�(α + 1)�(β + 1)
,

that is,

�(α + 1)�(β + 1)

[g(b) − g(a)]α [w(d) − w(c)]β
J α,β

a+,c+;g,w
F(b, d) ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d).

(2.10)
Similarly, multiplying both sides of (2.9) by

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g(b) − g ((1 − t)a + tb)]1−α

w′ ((1 − s)c + sd)

[w ((1 − s)c + sd) − w(c)]1−β
,

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g ((1 − t)a + tb) − g(a)]1−α

w′ ((1 − s)c + sd)

[w(d) − w ((1 − s)c + sd)]1−β

and

(b − a) (d − c)

�(α)�(β)

g′ ((1 − t)a + tb)

[g ((1 − t)a + tb) − g(a)]1−α

w′ ((1 − s)c + sd)

[w ((1 − s)c + sd) − w(c)]1−β

integrating the resulting inequalities with respect to t, s over (0, 1) × (0, 1) , we
establish the following inequalities:

�(α + 1)�(β + 1)

[g(b) − g(a)]α [w(d) − w(c)]β
J α,β

a+,d−;g,w
F(b, c) ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d),

(2.11)
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�(α + 1)�(β + 1)

[g(b) − g(a)]α [w(d) − w(c)]β
J α,β

b−,c+;g,w
F(a, d) ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d),

(2.12)
and

�(α + 1)�(β + 1)

[g(b) − g(a)]α [w(d) − w(c)]β
J α,β

b−,d−;g,w
F(a, c) ≤ f (a, c) + f (a, d) + f (b, c) + f (b, d),

(2.13)
respectively.
By adding the inequalities (2.10)–(2.13), we have the inequality:

�(α + 1)�(β + 1)

[g(b) − g(a)]α [w(d) − w(c)]β
(2.14)

×
[
J α,β

a+,c+;g,w
F(b, d) + J α,β

a+,d−;g,w
F(b, c) + J α,β

b−,c+;g,w
F(a, d) + J α,β

b−,d−;g,w
F(a, c)

]
≤ 4 [ f (a, c) + f (a, d) + f (b, c) + f (b, d)]

If we divide the both sides of inequality (2.14) by 16, then we have the second
inequality in (2.2).

This completes the proof. �

Remark 1 If we choose g(t) = t and w(s) = s in Theorem 4, then we have the
following inequalities for Riemann–Liouville fractional integrals

f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)�(β + 1)

4 (b − a)α (d − c)β

[
Jα,β

a+,c+ f (b, d) + Jα,β
a+,d− f (b, c) + Jα,β

b−,c+ f (a, d) + Jα,β
b−,d− f (a, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

which are proved by Sarikaya in [36].

Corollary 1 Under assumption of Theorem 4 with g(t) = ln t and w(s) = ln s, then
we have the following inequalities for Hadamard fractional integrals:

f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)�(β + 1)

16
[
ln b

a

]α [
ln d

c

]β
[
Jα,β

a+,c+ F(b, d) + Jα,β
a+,d− F(b, c) + Jα,β

b−,c+ F(a, d) + Jα,β
b−,d− F(a, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Corollary 2 Under assumption of Theorem 4 with g(t) = tρ

ρ
and w(s) = sσ

σ
, then

we have the following inequalities for Katugampola fractional integrals:
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f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)�(β + 1)ρασβ

16 [bρ − aρ]α [dσ − cσ ]β

[
ρ,σIα,β

a+,c+ F(b, d) + ρ,σIα,β
a+,d− F(b, c) + ρ,σIα,β

b−,c+ F(a, d) + ρ,σIα,β
b−,d− F(a, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Theorem 5 Let g : [a, b] → R be an increasing and positive monotone function on
(a, b], having a continuous derivative g′(x) on (a, b) and let w : [c, d] → R be an
increasing and positive monotone function on (c, d], having a continuous derivative
w′(y) on (c, d). If f � → R is a coordinated convex on �, then for α,β > 0 the
following Hermite–Hadamard-type inequality holds:

f

(
a + b

2
,

c + d

2

)
(2.15)

≤ �(α + 1)

8 [g(b) − g(a)]α

[
J α

a+;g H

(
b,

c + d

2

)
+ J α

b−;g H

(
a,

c + d

2

)]

+ �(β + 1)

8 [w(d) − w(c)]β

[
J β

c+;wG

(
a + b

2
, d

)
+ J β

d−;wG

(
a + b

2
, c

)]

≤ �(α + 1)�(β + 1)

16 [g(b) − g(a)]α [w(d) − w(c)]β

×
[
J α,β

a+,c+;g,w
F(b, d) + J α,β

a+,d−;g,w
F(b, c) + J α,β

b−,c+;g,w
F(a, d) + J α,β

b−,d−;g,w
F(a, c)

]

≤ �(α + 1)

16 [g(b) − g(a)]α

[
J α

a+;g H (b, c) + J α
a+;g H (b, d) + J α

b−;g H (a, c) + J α
b−;g H (a, d)

]

+ �(β + 1)

16 [w(d) − w(c)]β

[
J β

c+;wG (a, d) + J β
c+;wG (b, d) + J β

d−;wG (a, c) + J β
d−;wG (b, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

where the function H, F, and G are defined as in Eq. 2.1.

Proof Since f is a coordinated convex on�, if we define the mapping h1
x : [c, d] →

R, h1
x (y) = f (x, y), then h1

x (y) is convex for all x ∈ [a, b] and H 1
x (y) = h1

x (y) +
h̃1

x (y) = f (x, y) + f̃2(x, y) = G(x, y). If we apply the inequalities (1.5) for the
convex function h1

x (y), then we have

h1x

(
c + d

2

)
≤ �(β + 1)

4 [w(d) − w(c)]β

[
J β

c+;w H1
x (d) + J β

d−;w H1
x (c)

]
≤ h1x (c) + h1x (d)

2
,

that is,
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f

(
x,

c + d

2

)
(2.16)

≤ β

4 [w(d) − w(c)]β

⎡
⎣

d∫
c

w′(y)

[w(d) − w(y)]1−β
G(x, y)dy +

d∫
c

w′(y)

[w(y) − w(c)]1−β
G(x, y)dy

⎤
⎦

≤ f (x, c) + f (x, d)

2
.

Multiplying the inequalities (2.16) by

α

[g(b) − g(a)]α
g′(x)

[g(b) − g(x)]1−α
,

and
α

[g(b) − g(a)]α
g′(x)

[g(x) − g(a)]1−α
,

then by integrating the obtained results with respect to x from a to b, we get

�(α + 1)

[g(b) − g(a)]α
J α

a+;g f

(
b,

c + d

2

)
(2.17)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

a+,c+;g,wG(b, d) + J α,β
a+,d−;g,wG(b, c)

]

≤ �(α + 1)

2 [g(b) − g(a)]α
[J α

a+;g f (b, c) + J α
a+;g f (b, d)

]
,

and

�(α + 1)

[g(b) − g(a)]α
J α

b−;g f

(
a,

c + d

2

)
(2.18)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

b−,c+;g,wG(a, d) + J α,β
b−,d−;g,wG(a, c)

]

≤ �(α + 1)

2 [g(b) − g(a)]α
[J α

b−;g f (a, c) + J α
b−;g f (a, d)

]
,

respectively.
On the other hand, since f is a coordinated convex on �, if we define the map-

ping h2
x : [c, d] → R, h2

x (y) = f̃1(x, y), then h2
x (y) is convex for all x ∈ [a, b] and

H 2
x (y) = h2

x(y) + h̃2
x (y) = f̃1(x, y) + f̃3(x, y) = K (x, y). If we apply the inequal-

ities (1.5) for the convex function h2
x (y), then we have

h2x

(
c + d

2

)
≤ �(β + 1)

4 [w(d) − w(c)]β

[
J β

c+;w H2
x (d) + J β

d−;w H2
x (c)

]
≤ h2x (c) + h2x (d)

2
,
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i.e.,

f̃1

(
x,

c + d

2

)
(2.19)

≤ β

4 [w(d) − w(c)]β

⎡
⎣

d∫
c

w′(y)

[w(d) − w(y)]1−β
K (x, y)dy +

d∫
c

w′(y)

[w(y) − w(c)]1−β
K (x, y)dy

⎤
⎦

≤ f̃1(x, c) + f̃1 (x, d)

2
.

Similarly, multiplying the inequalities (2.19) by

α

[g(b) − g(a)]α
g′(x)

[g(b) − g(x)]1−α
,

and
α

[g(b) − g(a)]α
g′(x)

[g(x) − g(a)]1−α
,

then by integrating the obtained results with respect to x from a to b, we get

�(α + 1)

[g(b) − g(a)]α
J α

a+;g f̃1

(
b,

c + d

2

)
(2.20)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

a+,c+;g,w K (b, d) + J α,β
a+,d−;g,w K (b, c)

]

≤ �(α + 1)

2 [g(b) − g(a)]α
[J α

a+;g f̃1 (b, c) + J α
a+;g f̃1 (b, d)

]
,

and

�(α + 1)

[g(b) − g(a)]α
J α

b−;g f̃1

(
a,

c + d

2

)
(2.21)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

b−,c+;g,w K (a, d) + J α,β
b−,d−;g,w K (a, c)

]

≤ �(α + 1)

2 [g(b) − g(a)]α
[J α

b−;g f̃1 (a, c) + J α
b−;g f̃1 (a, d)

]
,

respectively.
Moreover, ifwedefine themappingh1

y : [a, b] → R, h1
y(x) = f (x, y), thenh1

y(x)

is convex for all y ∈ [c, d] and H 1
y (x) = h1

y(x) + h̃1
y(x) = f (x, y) + f̃1(x, y) =

G(x, y). Applying the inequalities (1.5) for the convex function h1
y(x), then we

have
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h1
y

(
a + b

2

)
≤ �(α + 1)

4 [g(b) − g(a)]α
[J α

a+;g H 1
y (b) + J α

b−;w H 1
y (a)

] ≤ h1
y (a) + h1

y (b)

2
,

that is,

f

(
a + b

2
, y

)
(2.22)

≤ α

4 [g(b) − g(a)]α

⎡
⎣

b∫
a

g′(x)

[g(b) − g(x)] 1−α
H(x, y)dx +

b∫
a

g′(x)

[g(x) − g(a)] 1−α
H(x, y)dx

⎤
⎦

≤ f (a, y) + f (b, y)

2
.

Multiplying the inequalities (2.22) by

β

[w(d) − w(c)]β
w′(y)

[w(d) − w(y)]1−β

and
β

[w(d) − w(c)]β
w′(y)

[w(y) − w(c)]1−β

then integrating the established results with respect to y from c to d, we obtain the
following inequalities:

�(β + 1)

[w(d) − w(c)]β
J β

c+;w f

(
a + b

2
, d

)
(2.23)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

a+,c+;g,w H(b, d) + J α,β
b−,c+;g,w H(a, d)

]

≤ �(β + 1)

2 [w(d) − w(c)]β

[
J β

c+;w f (a, d) + J β
c+;w f (b, d)

]
,

and

�(β + 1)

[w(d) − w(c)]β
J β

d−;w f

(
a + b

2
, c

)
(2.24)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

a+,d−;g,w H(b, c) + J α,β
b−,d−;g,w H(a, c)

]

≤ �(β + 1)

2 [w(d) − w(c)]β

[
J β

d−;w f (a, c) + J β
d−;w f (b, c)

]
,

respectively.
Furthermore, if we define the mapping h2

y : [a, b] → R, h2
y(x) = f̃2(x, y), then

h2
y(x) is convex for all y ∈ [c, d] and H 2

y (x) = h2
y(x) + h̃2

y(x) = f̃2(x, y) +
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f̃3(x, y) = L(x, y). Applying the inequalities (1.5) for the convex function h2
y(x),

then we have

h2
y

(
a + b

2

)
≤ �(α + 1)

4 [g(b) − g(a)]α
[J α

a+;g H 2
y (b) + J α

b−;w H 2
y (a)

] ≤ h2
y (a) + h2

y (b)

2
,

i.e.,

f̃2

(
a + b

2
, y

)
(2.25)

≤ α

4 [g(b) − g(a)]α

⎡
⎣

b∫
a

g′(x)

[g(b) − g(x)] 1−α
L(x, y)dx +

b∫
a

g′(x)

[g(x) − g(a)] 1−α
L(x, y)dx

⎤
⎦

≤ f̃2(a, y) + f̃2 (b, y)

2
.

Similarly, multiplying the inequalities (2.25) by

β

[w(d) − w(c)]β
w′(y)

[w(d) − w(y)]1−β

and
β

[w(d) − w(c)]β
w′(y)

[w(y) − w(c)]1−β
,

then integrating the obtained results with respect to y from c to d, we obtain the
following inequalities:

�(β + 1)

[w(d) − w(c)]β
J β

c+;w f̃2

(
a + b

2
, d

)
(2.26)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

a+,c+;g,w L(b, d) + J α,β
b−,c+;g,w L(a, d)

]

≤ �(β + 1)

2 [w(d) − w(c)]β

[
J β

c+;w f̃2 (a, d) + J β
c+;w f̃2 (b, d)

]

and

�(β + 1)

[w(d) − w(c)]β
J β

d−;w f̃2

(
a + b

2
, c

)
(2.27)

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

[
J α,β

a+,d−;g,w L(b, c) + J α,β
b−,d−;g,w L(a, c)

]

≤ �(β + 1)

2 [w(d) − w(c)]β

[
J β

d−;w f̃2 (a, c) + J β
d−;w f̃2 (b, c)

]
,

respectively.
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Summing the inequalities (2.17), (2.18), (2.20), (2.21), (2.23), (2.24), (2.26) and
(2.27), we have the following inequalities:

�(α + 1)

[g(b) − g(a)]α

[
J α

a+;g f

(
b,

c + d

2

)
+ J α

b−;g f

(
a,

c + d

2

)

+J α
a+;g f̃1

(
b,

c + d

2

)
+ J α

b−;g f̃1

(
a,

c + d

2

)]

+ �(β + 1)

[w(d) − w(c)]β

[
J β

c+;w f

(
a + b

2
, d

)
+ J β

d−;w f

(
a + b

2
, c

)

+J β
c+;w f̃2

(
a + b

2
, d

)
+ J β

d−;w f̃2

(
a + b

2
, c

)]

≤ �(α + 1)�(β + 1)

4 [g(b) − g(a)]α [w(d) − w(c)]β

×
[
J α,β

a+,c+;g,w
G(b, d) + J α,β

a+,d−;g,w
G(b, c) + J α,β

b−,c+;g,w
G(a, d) + J α,β

b−,d−;g,w
G(a, c)

+J α,β
a+,c+;g,w

K (b, d) + J α,β
a+,d−;g,w

K (b, c) + J α,β
b−,c+;g,w

K (a, d) + J α,β
b−,d−;g,w

K (a, c)

+J α,β
a+,c+;g,w

H(b, d) + J α,β
b−,c+;g,w

H(a, d) + J α,β
a+,d−;g,w

H(b, c) + J α,β
b−,d−;g,w

H(a, c)

+J α,β
a+,c+;g,w

L(b, d) + J α,β
b−,c+;g,w

L(a, d) + J α,β
a+,d−;g,w

L(b, c) + J α,β
b−,d−;g,w

L(a, c)
]

≤ �(α + 1)

2 [g(b) − g(a)]α

[
J α

a+;g f (b, c) + J α
a+;g f (b, d) + J α

b−;g f (a, c) + J α
b−;g f (a, d)

+J α
a+;g f̃1 (b, c) + J α

a+;g f̃1 (b, d) + J α
b−;g f̃1 (a, c) + J α

b−;g f̃1 (a, d)
]

+ �(β + 1)

[w(d) − w(c)]β

[
J β

c+;w f (a, d) + J β
c+;w f (b, d) + J β

d−;w f (a, c) + J β
d−;w f (b, c)

+J β
c+;w f̃2 (a, d) + J β

c+;w f̃2 (b, d) + J β
d−;w f̃2 (a, c) + J β

d−;w f̃2 (b, c)
]
.

That is, we have

�(α + 1)

[g(b) − g(a)]α

[
J α

a+;g H

(
b,

c + d

2

)
+ J α

b−;g H

(
a,

c + d

2

)]

+ �(β + 1)

[w(d) − w(c)]β

[
J β

c+;wG

(
a + b

2
, d

)
+ J β

d−;wG

(
a + b

2
, c

)]

≤ �(α + 1)�(β + 1)

2 [g(b) − g(a)]α [w(d) − w(c)]β

×
[
J α,β

a+,c+;g,w
F(b, d) + J α,β

a+,d−;g,w
F(b, c) + J α,β

b−,c+;g,w
F(a, d) + J α,β

b−,d−;g,w
F(a, c)

]

≤ �(α + 1)

2 [g(b) − g(a)]α

[
J α

a+;g H (b, c) + J α
a+;g H (b, d) + J α

b−;g H (a, c) + J α
b−;g H (a, d)

]

+ �(β + 1)

2 [w(d) − w(c)]β

[
J β

c+;wG (a, d) + J β
c+;wG (b, d) + J β

d−;wG (a, c) + J β
d−;wG (b, c)

]

which completes the proof of the second and third inequalities in (2.15).
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On the other hand, from the first inequality in (1.5), we have

ϕ

(
a + b

2

)
(2.28)

≤ α

4 [g(b) − g(a)]α

⎡
⎣

b∫
a

g′(x)

[g(b) − g(x)]α
[ϕ(x) + ϕ(a + b − x)] dx

+
b∫

a

g′(x)

[g(x) − g(a)]α
[ϕ(x) + ϕ(a + b − x)] dx

⎤
⎦ .

Since f is a coordinated convex on �, by using the inequality (2.28), we obtain

f

(
a + b

2
,

c + d

2

)
(2.29)

≤ α

4 [g(b) − g(a)]α

⎡
⎢⎣

b∫
a

g′(x)

[g(b) − g(x)]α

[
f

(
x,

c + d

2

)
+ f

(
a + b − x,

c + d

2

)]
dx

+
b∫

a

g′(x)

[g(x) − g(a)]α

[
f

(
x,

c + d

2

)
+ f

(
a + b − x,

c + d

2

)]
dx

⎤
⎥⎦

= �(α + 1)

[g(b) − g(a)]α

[
J α

a+;g H

(
b,

c + d

2

)
+ J α

b−;g H

(
a,

c + d

2

)]
,

and similarly we have

f

(
a + b

2
,

c + d

2

)
(2.30)

≤ β

4 [w(d) − w(c)]β

⎡
⎢⎣

d∫
c

w′(y)

[w(d) − w(y)]α

[
f

(
a + b

2
, y

)
+ f

(
a + b

2
, c + d − y

)]
dy

+
d∫

c

w′(y)

[w(y) − w(c)]α

[
f

(
a + b

2
, y

)
+ f

(
a + b

2
, c + d − y

)]
dy

⎤
⎥⎦

= �(β + 1)

[w(d) − w(c)]β

[
J β

c+;wG

(
a + b

2
, d

)
+ J β

d−;wG

(
a + b

2
, c

)]
.

Combining the inequalities (2.29) and (2.30), we obtain the first inequality in (2.15).
From the second inequality in (1.5), we have
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α

4 [g(b) − g(a)]α

⎡
⎣

b∫
a

g′(x)

[g(b) − g(x)]α
[ϕ(x) + ϕ(a + b − x)] dx (2.31)

+
b∫

a

g′(x)

[g(x) − g(a)]α
[ϕ(x) + ϕ(a + b − x)] dx

⎤
⎦

≤ ϕ(a) + ϕ(b)

2
.

By using the inequality (2.31), we obtain the following inequalities:

�(α + 1)

4 [g(b) − g(a)]α
[J α

a+;g H (b, c) + J α
b−;g H (a, c)

] ≤ f (a, c) + f (b, c)

2
, (2.32)

�(α + 1)

4 [g(b) − g(a)]α
[J α

a+;g H (b, d) + J α
b−;g H (a, d)

] ≤ f (a, d) + f (b, d)

2
, (2.33)

�(β + 1)

4 [w(d) − w(c)]β

[
J β

c+;wG (a, d) + J β
d−;wG (a, c)

]
≤ f (a, c) + f (a, d)

2
(2.34)

and

�(β + 1)

4 [w(d) − w(c)]β

[
J β

c+;wG (b, d) + J β
d−;wG (b, c)

]
≤ f (b, c) + f (b, d)

2
.

(2.35)
Combining the inequalities (2.32)–(2.35), we obtain the last inequality in (2.15).

This completes the proof completely. �
Remark 2 If we choose g(t) = t and w(s) = s in Theorem 5, then we have the
following inequalities for Riemann–Liouville fractional integrals:

f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)

4 (b − a)α

[
Jα
a+ f

(
b,

c + d

2

)
+ Jα

b− f

(
a,

c + d

2

)]

+ �(β + 1)

4 (d − c)β

[
Jβ
c+ f

(
a + b

2
, d

)
+ Jβ

d− f

(
a + b

2
, c

)]

≤ �(α + 1)�(β + 1)

4 (b − a)α (d − c)β

[
Jα,β
a+,c+ f (b, d) + Jα,β

a+,d− f (b, c) + Jα,β
b−,c+ f (a, d) + Jα,β

b−,d− f (a, c)
]

≤ �(α + 1)

8 (b − a)α

[
Jα
a+ f (b, c) + Jα

a+ f (b, d) + Jα
b− f (a, c) + Jα

b− f (a, d)
]

+ �(β + 1)

8 (d − c)β

[
Jβ
c+ f (a, d) + Jβ

c+ f (b, d) + Jβ
d− f (a, c) + Jβ

d− f (b, c)
]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
,

which are proved by Sarikaya in [36].
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Corollary 3 Under assumption of Theorem 4 with g(t) = ln t and w(s) = ln s, then
we have the following inequalities for Hadamard fractional integrals

f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)

8
[
ln b

a

]α

[
Jα

a+ H

(
b,

c + d

2

)
+ Jα

b− H

(
a,

c + d

2

)]

+ �(β + 1)

8
[
ln d

c

]β

[
Jβ

c+G

(
a + b

2
, d

)
+ Jβ

d−G

(
a + b

2
, c

)]

≤ �(α + 1)�(β + 1)

16
[
ln b

a

]α [
ln d

c

]β

[
Jα,β

a+,c+ F(b, d) + Jα,β
a+,d−F(b, c) + Jα,β

b−,c+F(a, d) + Jα,β
b−,d− F(a, c)

]

≤ �(α + 1)

16
[
ln b

a

]α

[
Jα

a+ H (b, c) + Jα
a+ H (b, d) + Jα

b− H (a, c) + Jα
b− H (a, d)

]

+ �(β + 1)

16
[
ln d

c

]β

[
Jβ

c+G (a, d) + Jβ
c+G (b, d) + Jβ

d−G (a, c) + Jβ
d−G (b, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

Corollary 4 Under assumption of Theorem 4 with g(t) = tρ

ρ
and w(s) = sσ

σ
, then

we have the following inequalities for Katugampola fractional integrals:

f

(
a + b

2
,

c + d

2

)

≤ �(α + 1)ρα

8 [bρ − aρ]α

[
ρIα

a+ H

(
b,

c + d

2

)
+ ρIα

b− H

(
a,

c + d

2

)]

+ �(β + 1)σβ

8 [dσ − cσ ]β

[
σIβ

c+G

(
a + b

2
, d

)
+ σIβ

d−G

(
a + b

2
, c

)]

≤ �(α + 1)�(β + 1)ρασβ

16 [bρ − aρ]α [dσ − cσ ]β

[
ρ,σIα,β

a+,c+ F(b, d) + ρ,σIα,β
a+,d− F(b, c) + ρ,σIα,β

b−,c+ F(a, d) + ρ,σIα,β
b−,d− F(a, c)

]

≤ �(α + 1)ρασβ

16 [bρ − aρ]α
[
ρIα

a+ H (b, c) + ρIα
a+ H (b, d) + ρIα

b− H (a, c) + ρIα
b− H (a, d)

]

+ �(β + 1)σβ

16 [dσ − cσ ]β

[
σIβ

c+G (a, d) + σIβ
c+G (b, d) + σIβ

d−G (a, c) + σIβ
d−G (b, c)

]

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.
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