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This paper proposes a new concept of random-order fractional differential equation

model, in which a noise term is included in the fractional order. We investigate both a

random-order anomalous relaxation model and a random-order time fractional

anomalous diffusion model to demonstrate the advantages and the distinguishing

features of the proposed models. From numerical simulation results, it is observed that

the scale parameter and the frequency of the noise play a crucial role in the evolution

behaviors of these systems. In addition, some potential applications of the new models

are presented.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

When characterizing a complex system, most
researchers are accustomed to applying nonlinear differ-
ential equation models. But it is difficult to solve a
nonlinear problem, either numerically or theoretically,
and even more difficult to establish a real nonlinear model
for the complex system. Many assumptions have to be
made artificially or unnecessarily to make practical
engineering problems solvable, leading to loss of some
important information. Since integer order differential
equations cannot precisely describe the experimental and
field measurement data, as an alternative approach,
fractional order differential equation models are now
being widely applied [1,2]. In the last few decades,
fractional calculus has been widely used in tackling
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physical, biological, chemical, financial and physiological
problems [3,4]. In particularly, different kinds of anom-
alous relaxation and diffusion processes have attracted
much attention in fractional order dynamic modeling.

In the fractional order modeling of anomalous relaxa-
tion and diffusion phenomena, a number of scientists
have proposed a variety of fractional order models, which
involve different kinds of fractional derivative definitions
[5,6]. Among these models, one of the successful models is
the distributed-order fractional equation model, which
can be used to describe diffusion processes which exhibit
decelerating/accelerating behaviors in long-time range
[7,8]. In addition, variable-order differential operator is
also proposed to describe the diffusion process in
which diffusion rate changes in the course of space or
time [9–12]. In this study, we will consider the systems
which suffer from some noises (e.g. fluctuations of the
external pressure field in anomalous diffusion system,
voltage fluctuations in the circuits, or unstable tempera-
ture field in the energy dissipation). These noises will
inevitably cause the fluctuations of the considered
systems. The evolution behaviors of considered systems
will also show deviations from those of the constant-order
fractional differential models. How to quantify the
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influence of the noise is important in system character-
ization. Therefore, we propose a fractional differential
equation model in which the differential order includes a
noise term to deal with the above noise effect quantifica-
tion problem. Random-order model is a more generalized
model compared with the simple case of a fractional order
differential equation model with a single constant-order.
Changing the constant-order fractional derivative into the
random-order fractional derivative is an interesting and
useful effort both in theoretical research and engineering
application, as shown in this paper.

For simplicity, we will restrict our attention in the
random-order time fractional differential equation mod-
els, this type of model looks like there are always some
noises in system memory. The investigation in this study
will focus on the system behavior when the fractional
order contains a random noise term.

The structure of this paper is as follows. The definitions
about random-order operators are presented in Section 2.
In Section 3, the anomalous relaxation and diffusion
equation models with time fractional differential order
including random noise term are studied. We further
discuss our findings about random-order equation models
in Section 4. Some remarks are given in Section 5.
2. Definitions of random-order fractional derivative and
integral

First of all, we briefly introduce the definitions of
random-order derivative and integral. Here we only
consider the random-order fractional derivative definition
in Caputo basis, which is obtained via following the form
of variable-order derivative definition [17,18]

tD
a0 þ et

0 f ðtÞ ¼
1

Gð1�ða0þetÞÞ

Z t

0þ

f
0

ðtÞdt
ðt�tÞða0 þ etÞ

þ
ðf ð0þÞ�f ð0�ÞÞt�ða0þ et Þ

Gð1�ða0þetÞÞ
; pðetj0oa0þet o1Þ ¼ 1;

ð1Þ

where pð�Þ is probability density function, a0 2 ð0;1Þ is a
constant, et 2 R

þ is a random noise term which changes
with time and Gð�Þ is Gamma function [9]. Obviously, this
definition represents a derivative order that has no
memory of its history. In addition, we assume the noise
is random with the time evolution. It means that the
memory rate at every time instant is independent, the
system memory rate in this approach therefore jumps
from a0þet1

to a0þet2
to a0þet3

, and so on.
The definition of random-order fractional integral can

be stated as follows:

Ia0þ et

0þ f ðtÞ ¼
1

Gða0þetÞ

Z t

0
ðt�tÞa0þ et�1f ðtÞdt; a0þet 40; 8t40:

ð2Þ

If et ¼ 0, the above definitions (1) and (2) will become
the definitions of constant-order derivative and integral.
It should be pointed that, the properties of the random-
order definitions can be obtained via the similar way in
the constant-order definitions, we do not discuss the
details in this paper [9,10].
3. Random-order fractional relaxation model and
random-order time fractional diffusion model

Recently, fractional kinetic equations have attracted
extensive attention as powerful tools for the description of
anomalous relaxation and diffusion phenomena, see, e.g.
[14–16]. Hereby, in this section, we focus on the anomalous
relaxation and diffusion processes to introduce the random-
order fractional differential equation models.

3.1. Random-order fractional relaxation model

Since a large number of experimental data, including
data from mechanical, dielectric, volumetric, and mag-
netic relaxation, reaction kinetics, dynamic light and
quasielastic neuron scattering exhibits the ‘‘anomalous’’
relaxation behavior, the fractional generalization of
classical relaxation equation is proposed to depict this
particular behavior [4]. The single constant-order frac-
tional relaxation equation is stated as below

tD
a0
� uðtÞ ¼ �luðtÞ; 0oa0o1; ð3Þ

where u(t) is a field variable, a0 is fractional differential
order, l is a positive coefficient denoting the inverse of
some characteristic time.

Based on (3), we propose the fractional relaxation
equation with differential order including random noise
term et:

Da0þ et
� uðtÞ ¼ �luðtÞ;

pðetj0oa0þet o1Þ ¼ 1;

uð0Þ ¼ 1:

8><
>: ð4Þ

In the above equation, we assume the random noise
term et has no memory of past values of itself. Meanwhile, it
can be known that the differential order also has no
memory of its history from the expression (1) [9,18].
Therefore, we can perform the numerical simulation of (4)
with the similar way of variable-order differential equation.
In this study, we employ the Predictor-Corrector scheme to
perform the numerical simulation of random-order frac-
tional relaxation equation. The detailed description and
convergence proof of this scheme can refer to [19,20]. The
code for this method can be found in the Matlab Center [21].

Next, we consider the selection of random noise term,
here we simply employ two types of random noises: the
first one is uniform type noise which can be generalized
by Matlab function, the second one is Gaussian type noise
with mean value 0. For convenience, we apply the Box–
Muller method to generate Gaussian type noise [22,23]

x¼ 2g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ln u1

p
sinf; ð5Þ

where f¼ pðu2�1=2Þ;u1;u2 2 ð0;1Þ are uniform random
numbers, g is the scale parameter.

The uniform type noise and the Gaussian type noise
are shown in Fig. 1. Assuming l¼ 0:5 and a0 ¼ 0:5 in (4),
the relaxation behavior of random-order fractional
relaxation model can be observed in Figs. 2–4.

From Figs. 2–4, we find that the system behavior
exhibits more and more fluctuations with the time
evolution. It demonstrates that the random noise plays
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Fig. 1. Uniform type noise et 2 ð�0:01;0:01Þ and Gaussian type noise g¼ 0:01 in (5), time step Dt ¼ 0:1.
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more and more important role in relaxation process with
time evolution. Furthermore, the system behavior of
random-order model with a0þet and scale parameter g
is much more complex than that with differential orders
a07g. The relaxation curve of random-order model is not
limited between the relaxation curves of constant-order
models with differential orders: a0þg and a0�g, no
matter under uniform type noise or Gaussian type noise.
Moreover, the system behavior will exhibit more fluctua-
tions with larger scale parameter under the uniform type
noise or Gaussian type noise, it can be partly confirmed by
comparing Figs. 2 and 3. In addition, from the comparison
of Figs. 2 and 4, It can be observed that the system
behavior under the Gaussian type noise is more complex
than that under uniform type noise with same scale
parameter g¼ 0:02. It is also pointed out that the decay
curve is also influenced by the frequency of the noise,
when the frequency of the noise (f ¼ 1=Dt, Dt is time step)
changes from small to large, the behavior of the system
shows more and more fluctuations. Therefore, the fre-
quency of the random noise is also an important factor to
determine the system behavior.

3.2. Random-order time fractional diffusion model

Fractional diffusion equations account for typical anom-
alous features which are observed in many systems,
e.g. the processes of dispersive transport in amorphous
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semiconductors, disordered media, liquid crystals, turbu-
lence, biopolymers, proteins, biosystems and some other
systems [24].

To exploit the characteristics of random-order time
fractional diffusion model, we consider the following
time fractional diffusion equation which depicts the sub-
diffusion process

@a0þ et;x uðx; tÞ

@ta0þ et;x
¼ K

@2uðx; tÞ

@x2
; pðet;xj0oa0þet;xo1Þ ¼ 1;

uð0; tÞ ¼ uðL; tÞ ¼ 0; t40;

uðx;0Þ ¼ sinðxp=LÞ; 0oxoL;

8>>><
>>>:

ð6Þ

where K is generalized diffusion coefficient, u(x,t) represents
mass or other quantities of interest, a0þet;x is the time
derivative order and et;x is random noise term, pð�Þ denotes
probability density function. We should point out that,
Kobelev et al. have investigated variable-order diffusion
model with weak-memory derivative order a0þeðt; xÞ in
[25], where weak memory term eðt; xÞ is a depending
function of time and coordinate, and eðt; xÞ should satisfy
eðt; xÞ51 which is needed for theoretical analysis. The new
model (6) has extended et;x to be a random-noise term which
is random with time or location and et;x is not limited by
et;x51. Next, we will accomplish the numerical simulation
by finite difference method to illustrate the performance of
the random-order time fractional diffusion model. Let K=1.0
and L=10.0 in (6), we adopt Gaussian type noise in the time
fractional order term and employ the Crank–Nicholson
scheme for the discretization of above diffusion Eq. (6).
The Crank–Nicholson scheme can be verified to be stable and
efficient by the methods presented in [26,27]. Then, we can
draw the sub-diffusion curve which is shown in Fig. 5. In this
numerical simulation, for different time instants, if m4nZ0,
then the following inequality should be satisfied

Z L

0
uðx; tmÞdxr

Z L

0
uðx; tnÞdx: ð7Þ
From the diffusion image shown in Fig. 5, one can
observe that though the diffusion trend is similar with the
constant-order fractional diffusion model, the new model
exhibits more fluctuations than constant-order model. We
can also observe obvious fluctuations characteristics of
the diffusion curve from Fig. 6. In addition, the frequencies
of the noise (ft ¼ 1=Dt and fx ¼ 1=Dx, Dt and Dx are time
and space steps) are also important factors to determine
the diffusion behavior. This feature is same with the
random-order fractional relaxation model.
4. Discussions

4.1. Physical implications

In usual anomalous physical cases, the considered
system may be influenced by small noise or the noise
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term plays a negligible role, so we can neglect the
effect of noise term when analyzing the system behavior.
In these cases, the extensively applied constant-order
fractional dynamic model is sufficient. On the other
hand, if the system endures un-negligible noise, in
order to fully estimate the system and analyze the
long time system behavior under noise field, the random-
order fractional derivative model is a very suitable
approach.

From the statement in Section 3, we have found that
the random-order fractional differential equation can be
employed to describe the anomalous relaxation and
diffusion processes enduring random noise. In addition,
different types of random noise will produce diverse
system behaviors. In this study, we have shown that if the
random noise obey uniform distribution, the influence of
the noise term is easy to estimate. Whereas, if the random
noise obeys Gaussian distribution, the evolution behavior
of the system is rather complex.
4.2. Potential applications

In many cases of the relaxation or diffusion processes,
the experimental or field measurement data do not match
the constant-order fractional equation models [28–31]. The
reason for this issue may lie in the measurement technology
or system error, but the underlying reason may lie in that
the constant-order fractional equation model has its own
limitations. It cannot characterize the fluctuation feature of
system. However, the random-order fractional differential
equation model can well capture this characteristic. So
employing random-order fractional differential equation
model is helpful in fully understanding such kinds of
stochastic systems.

Based on the above discussions, we believe that this
new model will be helpful in estimating the stability of
the system and useful in system control. The potential
applications will relate to the pollution control, system
stability analysis, finance and stock market modeling
etc. [13].
5. Conclusive remarks

In this study, we offer a concise introduction to
the random-order fractional differential equation model.
The analysis and numerical simulation in this study have
shown that the new model can characterize some
anomalous relaxation or diffusion processes enduring
random noise. In summary, we believe that the random-
order fractional differential equation model can serve as a
useful tool for the characterization of complex stochastic
processes in the real world.

However, further investigations are needed to estab-
lish fast numerical methods for the random-order frac-
tional differential equation model. Furthermore, in order
to better reflect the real world system, the random noise
term in which the scale parameter is dependent on the
time and space should also be considered in the further
investigation.
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