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Abstract

This study investigates data-driven metrics for
quantifying similarity between linear time-invariant
(LTT) systems within the framework of behavioral
system theory. A new index is proposed, which
is based on projection matrices combined with

the Maximum Mean Discrepancy (MMD). In addi-
tion to measuring system similarity, the proposed

approach also supports system change detection,
thereby facilitating improved controller design. The
effectiveness of the proposed metrics is demonstrated

through numerical simulations.

Backgroud

A dynamical system can be seen as a triple
(T, W,8), where T is the time axis, W is the signal
space, and B C W' is the behavior of the system
1]. The complexity of a LTI system is defined as
c = (m(B),L(B)n(B)). The class of all the ¢-
variate L'I'l systems with complexity ¢ is denoted by
L1 For the input/output representation, a trajec-
tory w is given by w = col(u, y) € R™P m-+p = q,
where m and p denote the number of inputs and out-
puts, respectively. A finite length trajectory over the
interval {1, L] is defined as:

w|p = w1)" w2)" - w(L)"
The restricted behavior is then denoted as:
Bl ={w|y € RL(m+p)\w c B}

For a restricted trajectory w|p, an L-blocks Hankel
matrix can be constructed as:

T

w(l)  w(2) w(T — L+ 1)
$op.(wly) = w(2) fw(?)) w(T —SL—— 2) | (1)
w(L) w(L+1) --- w(T)
For LTI systems, when L > {(°B),
image(Hr(w|r)) = Blp if and only if
rank($97) = m(B)L + n(B) |2|.

The column space of the Hankel matrix spans the
restricted behavior. Any finite-length trajectory w|y
of *B can be expressed as a linear combination of the
columns of H7(w|7).
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Methodology

matrices coincide.

The restricted behavior space can be spanned by the column space of ;. Two restricted behavior spaces are
equal if and only if the orthogonal projection matrices onto the column spaces of the corresponding Hankel

Projection-based M MD

Let B1,B, € L1 and B;|; Bs|;, denote restricted behavior spaces with orthogonal projection matrices
onto the corresponding column spaces Py, P,. For o > 0, the distance is defined as:

—1/2

2
d*(B1|1,Bo|r) = det | I + b

Probabilistic Explanation

From the probabilistic perspective, this index coin-
cides with the Maximum Mean Discrepancy (MMD)
between two Gaussian distributions under the RBF
kernel. Let z,2’ ~ N(0, P) and v,y ~ N(0, P)
be independent Samples. Define z; = =z — 2’ ~
N(0,2P,), 22 =x—y ~ NP + P,), and
zwn=1y—1vy ~ N(0,2P). For the Gaussian ker-
nel k(x,x’) = exp| == I/HQ) MMD becomes

T T

> 2] 21 ﬂ 25 2
MMD? = E., |exp(—", )| — 2B, exp(—" 7))
Z?Zg

+ E., lexp(

U

20

(3)

Since the moment generating function of a quadratic

form Z'AZ with Z ~ N(0,C) and C, A = 0 is

L e'” A = det(I — 2t AC) V. (4)
Applying this result with ¢ = —2}‘2, A =1, and

Ce{2P,2P,, P+ P,} yields a closed-form expres-
sion for the MMD), which coincides with the distance
defined in (2).

Since the Gaussian RBFE kernel is characteristic,
MMD defines a metric on probability measures.
Consequently, the proposed index is a metric on re-
stricted behavior spaces.

2
+det ]—|——2P2

~1/2 1 ~1/2
—2det|\I+ (P + P)| . (2)

O O'

Geometric Explanation

The proposed index can also be related to the clas-
sical notion of principal angles. Let U; = range(F;)
with r; = dim(U;), k = dim(U;NUs) be the number
of zero principal angles, m = min(ry — k, ro — k)
the number of nonzero principal angles, o = 1/0?
and £ =ry +1ry — 2k — 2m. Since r = r; = r9, the
expression (2) reduces to
d2(%1|L, %Q‘L) = 2 (1 + 204)_T/2

| - 1 4+ 2a

X |1 — | 1
i=11 4+ 20 + a?sin® O

1/2

(5)
To avoid the collapse of the index in high dimensions,
the normalized index is defined as

d> = d?/(2(1 + 20) "7,
When the principal angles are small, the normalized
index can be approximated as

C s (0). (6)

2(1 + 2a) i=1
In the small-angle regime, this index is the chordal

distance scaled by a factor decided by «, making its
sensitivity tunable and offering more flexibility than

4’ ~

the classical chordal distance.

Simulation Results

Two systems are used in this study:

o System 1: y; = 0.2y, 1 + 0.24y; o9 + 2uy_q,

e System 2: y; = 0.7y;—1 — 0.12y;_9 + us—1.
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(a) Results for the proposed index under different noise levels.
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(b) Results for L-gap under different noise levels.

Figure: Results of the two-sample test under different noise
levels. The horizontal axis represents the noise level a
(standard deviation of the Gaussian noise N (0, a*)), while the

vertical axis shows the corresponding index values.
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