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Abstract

This study investigates data-driven metrics for
quantifying similarity between linear time-invariant
(LTI) systems within the framework of behavioral
system theory. A new index is proposed, which
is based on projection matrices combined with
the Maximum Mean Discrepancy (MMD). In addi-
tion to measuring system similarity, the proposed
approach also supports system change detection,
thereby facilitating improved controller design. The
effectiveness of the proposed metrics is demonstrated
through numerical simulations.

Backgroud

A dynamical system can be seen as a triple
(T,W,B), where T is the time axis, W is the signal
space, and B ⊆ WT is the behavior of the system
[1]. The complexity of a LTI system is defined as
c = (m(B), ℓ(B)n(B)). The class of all the q-
variate LTI systems with complexity c is denoted by
Lq

c. For the input/output representation, a trajec-
tory w is given by w = col(u, y) ∈ Rm+p, m+p = q,
where m and p denote the number of inputs and out-
puts, respectively. A finite length trajectory over the
interval [1, L] is defined as:

w|L =
w(1)T w(2)T · · · w(L)T

T .

The restricted behavior is then denoted as:
B|L = {w|L ∈ RL(m+p)|w ∈ B}.

For a restricted trajectory w|T , an L-blocks Hankel
matrix can be constructed as:

HL(w|T ) =



w(1) w(2) · · · w(T − L + 1)
w(2) w(3) · · · w(T − L + 2)

... ... ...
w(L) w(L + 1) · · · w(T )



. (1)

For LTI systems, when L > ℓ(B),
image(HL(w|T )) = B|L if and only if
rank(HL) = m(B)L + n(B) [2].
The column space of the Hankel matrix spans the
restricted behavior. Any finite-length trajectory w|L
of B can be expressed as a linear combination of the
columns of HL(w|T ).

Methodology

The restricted behavior space can be spanned by the column space of HL. Two restricted behavior spaces are
equal if and only if the orthogonal projection matrices onto the column spaces of the corresponding Hankel
matrices coincide.

Projection-based MMD

Let B1,B2 ∈ Lq
c, and B1|L B2|L denote restricted behavior spaces with orthogonal projection matrices

onto the corresponding column spaces P1, P2. For σ > 0, the distance is defined as:

d2(B1|L,B2|L) = det
I + 2

σ2P1



−1/2
+ det

I + 2
σ2P2



−1/2
− 2 det

I + 1
σ2(P1 + P2)



−1/2
. (2)

Probabilistic Explanation

From the probabilistic perspective, this index coin-
cides with the Maximum Mean Discrepancy (MMD)
between two Gaussian distributions under the RBF
kernel. Let x, x′ ∼ N (0, P1) and y, y′ ∼ N (0, P2)
be independent samples. Define z1 = x − x′ ∼
N (0, 2P1), z2 = x − y ∼ N (0, P1 + P2), and
z3 = y − y′ ∼ N (0, 2P2). For the Gaussian ker-
nel k(x, x′) = exp

 − ∥x−x′∥2

2σ2

, MMD becomes

MMD2 = Ez1

exp(−zT
1 z1

2σ2 )
 − 2Ez2

exp(−zT
2 z2

2σ2 )


+ Ez3

exp(−zT
3 z3

2σ2 )
 .

(3)
Since the moment generating function of a quadratic
form Z⊤AZ with Z ∼ N (0, C) and C, A ⪰ 0 is

E
etZ⊤AZ

 = det(I − 2tAC)−1/2. (4)
Applying this result with t = − 1

2σ2, A = I , and
C ∈ {2P1, 2P2, P1 +P2} yields a closed-form expres-
sion for the MMD, which coincides with the distance
defined in (2).
Since the Gaussian RBF kernel is characteristic,
MMD defines a metric on probability measures.
Consequently, the proposed index is a metric on re-
stricted behavior spaces.

Geometric Explanation

The proposed index can also be related to the clas-
sical notion of principal angles. Let Ui = range(Pi)
with ri = dim(Ui), k = dim(U1∩U2) be the number
of zero principal angles, m = min(r1 − k, r2 − k)
the number of nonzero principal angles, α = 1/σ2

and ℓ = r1 + r2 − 2k − 2m. Since r = r1 = r2, the
expression (2) reduces to

d2(B1|L,B2|L) = 2 (1 + 2α)−r/2

×
1 −


m∏

i=1
1 + 2α

1 + 2α + α2 sin2 θk+i



1/2.

(5)
To avoid the collapse of the index in high dimensions,
the normalized index is defined as

d̃2 = d2/(2(1 + 2α)−r/2).
When the principal angles are small, the normalized
index can be approximated as

d̃2 ≈ α2

2(1 + 2α)
m∑

i=1
sin2(θk+i). (6)

In the small-angle regime, this index is the chordal
distance scaled by a factor decided by α, making its
sensitivity tunable and offering more flexibility than
the classical chordal distance.

Simulation Results

Two systems are used in this study:
• System 1: yt = 0.2yt−1 + 0.24yt−2 + 2ut−1,

• System 2: yt = 0.7yt−1 − 0.12yt−2 + ut−1.
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(a) Results for the proposed index under different noise levels.
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(b) Results for L-gap under different noise levels.

Figure: Results of the two-sample test under different noise
levels. The horizontal axis represents the noise level a
(standard deviation of the Gaussian noise N (0, a2)), while the
vertical axis shows the corresponding index values.
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