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Abstract

The increasing integration of data-driven intelligence and au-
tomation is reshaping modern control and optimization, call-
ing for frameworks that are adaptive, interpretable, and robust.
This work investigates a bidirectional synthesis between control
theory and optimization, unifying advances in machine learning,
digital twins, and robust control analysis. Two complementary
perspectives are explored: learning for control and control for
learning. In learning for control, the focus is on data-driven
and self-optimizing control architectures for complex and uncer-
tain systems. Control laws and setpoints are adapted in real
time using high-performance optimization, including gradient-
based and derivative-free methods. Paradigms such as self-
optimizing control, run-to-run control, and iterative learning con-
trol are studied within a hierarchical framework supported by
digital twins, enabling real-time analytics, scenario testing, and
continuous system updates. In control for learning, optimization
algorithms are treated as dynamical systems. Control-theoretic
tools—Lyapunov methods, dissipativity theory, and robust con-
trol analysis—are employed to characterize convergence, robust-
ness, and acceleration, and to design optimization algorithms
with finite- or fixed-time guarantees. Overall, this work bridges
control and optimization to enable smart, self-optimizing engi-
neering systems and to develop control-inspired learning algo-
rithms with provable performance and robustness.
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Data-Driven Control (1)

Figure: The framework of Virtual Reference Feedback Tuning.

Example: Control of a Rotary Flexible Joint

Figure: Data-Driven Based Control of rotary Flexible Joint.

Self-Optimizing Control

▶ The development and evaluation of a Self Optimizing Control
framework based on derivative-free optimization algorithms
for the performance improvement of a stable closed-loop sys-
tem by adjusting the parameter of the closed-loop controller
according to a performance cost function.

Figure: The Architecture of Self-Optimizing Control.

Continuous-Time Optimization (2; 3)

Continuous-Time Optimization through the Lens of
Dynamical Systems

Example: Accelerated optimization in ML with a proportional-integral-derivative controller (4)

Finite-Time Convergent Algorithms (5; 6)

▶ Control-Theoretic Foundations of Finite-Time Optimization.
▶ Bridging Control Theory and Machine Learning.

Figure: Beyond Asymptotics: Bridging Exponential and Finite/Fixed-Time Convergence of Gradient
Flows.

Figure: Comparison of several optimization algorithms for training deep neural networks on MNIST
dataset. The Fixed-time Algorithms outperforms Adam and NAG optimizers on various performance measures.

Algorithms As Feedback Systems (7)

Algorithm Main Formulation Diagram

Gradient Descent xk+1 = ΠC (x
k − η∇Φ(xk))

xk+1 = uk1
y k1 = xk − ηuk2
y k2 = xk

uk1 = ΠC (y
k
1 )

uk2 = ∇Φ(y k2 )

Nesterov Accelerated
Gradient

y k = xk + β(xk − xk−1)

xk+1 = y k − η∇Φ(y k)

xk+1
1 = (1 + β)xk1 − βxk2 − ηuk

xk+1
2 = xk1

uk = ∇Φ(y k)

General Algorithm

ξk+1 = Aξk + Buk

θk = Cξk + Duk

uk = ϕ(θk)

ξk+1 = Aξk + Buk

θk = Cξk + Duk

uk = ϕ(θk)

Algorithm Analysis via Robust Control Theory

Optimal Control Meets Optimization

We derive gradient descent from Pontryagin’s Maximum Principle (PMP), revealing a unifying view
between optimal control and iterative optimization.

Figure: Deriving Gradient Descent via PMP.
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