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ABSTRACT

This paper aims to create a physics informed virtual replica
of the hyperspectral image captured by NASA’s Airborne Visible
InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG)
sensor equipped on manned aircraft. Few image samples are
selected from study site around New Mexico, USA from flight
mission ran in 2019. Out of 425 bands, 8 bands are utilized.
For each band, reflectance spectra are chosen from United States
Geological Survey (USGS) based on site specific geographical
features. These spectras are infused during the image generation
process with the correction check using matched filters. More-
over, we include the methane plumes along with other closely
related hydrocarbons during the image generation process. Gen-
erative Adversarial Networks (GANs) architecture is employed
with physics informed loss function for generating realistic and
physically plausible images. Additionally, we also propose a new
light weight dataset for creating the virtual replica of the AVIRIS-
NG sensor on selected 8 bands in the visible light spectrum and
the short-wave infrared region.

Keywords: AVIRIS-NG, GANS, Physics Informed virtual
replicas, Matched Filters

1. INTRODUCTION

AVIRIS-NG [1] was developed by National Aeronautics and
Space Administration - Jet Propulsion Laboratory (NASA-JPL)
to provide continued access to high signal-to-noise ratio imag-
ing spectroscopy measurements in the solar reflected spectral
range. Numerous flight missions were ran in various parts of
the world including North America, Europe, South America, In-
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dia. While the dataset from the hyperspectral sensor has been
widely adopted in landmass classification, crop detection, green
house gas mapping, tar leak detection and other remote sensing
applications, missions using such technology are not only costly
but also demand considerable skilled manpower for meticulous
post-processing and analysis. Moreover, dynamic changes in
geography, environmental conditions, and other critical factors
necessitate repeated monitoring. In this research, we propose to
create synthetic hyperspectral replicas that accurately mimic the
AVIRIS-NG sensor response characteristics, leveraging datasets
from previous missions to simulate and analyze sensor perfor-
mance efficiently without the need for frequent, costly field de-
ployments.

Different methodologies have been adopted to synthesize the
Hyperspectral images (HSI). Jakubowski et al. [2] generated Hy-
perspectral image using the Digital Imaging and Remote Sensing
Image Generation Model (DIRSIG) based on numerous spec-
tral and spatial ground truth measurements. Chang [3] designed
a set of standardized synthetic hyperspectral images with two
types of scenarios, Target Implantation(TI) and Target Embed-
dedness (TE), to simulate how a target can be inserted into the
image background. Badola et al. [4] synthesize AVIRIS-NG
data from widely available Sentinel-2 multispectral data using
the Universal Pattern Decomposition Method (UPDM) spectral
unmixing technique.

Recently, artificial algorithms (AI) algorithms are used for
HSI generation. Generative Adversarial Networks [5] are a type
of artificial intelligence algorithm designed to solve the gener-
ative modeling problem. This algorithm has been widely used
for generation of hyperspectral images [6] with popular Pavia
University [7] and Indian Pines datasets [8]. Another work is
HSIGene [9], HSI generation foundation model which is based on
latent diffusion and supports multi condition control, where Rect-
angular Guided Attention Network (RGAN) is trained for guided
HSI super resolution. Liu et al. [10] proposed Physics-informed
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Deep Adversarial Spectral Synthesis (PDASS) for hyperspectral
generation using GANs. None of these Al based methods employ
the generation of AVIRIS-NG hyperspectral data.

Methane, which traps 80 times more heat than carbon diox-
ide,is a significant green house gas that contributes to climate
change and global warming. We also explore different methane
retrieval algorithms applied to AVIRIS-NG hyperspectral images.
Kuo [11] proposed a model for generating synthetic images of
plumes as viewed from a hyperspectral sensor using DIRSIG.
However, this method does not account for all the physical in-
teractions that occur between the plume and the environment.
Thorpe [12] applied the iterative maximum a posteriori differ-
ential optical absorption spectroscopy (IMAP-DOAS) method
to AVIRIS-NG data and generated gas concentration maps for
methane, carbon dioxide, and water vapor plumes. This method
is computationally expensive. Foote [13] presented a computa-
tionally efficient algorithm that applies sparsity and an albedo
correction to matched filter retrieval of trace gas concentration
path length. HyperSTARCOP [14] improvised on methane re-
trieval using the features from classical methane enhancement
products and outperforms strong matched filter baseline [13].

We selected the HyperSTARCOP study site where strong
methane plume emissions are captured and propose a novel frame-
work to generate a virtual replica of AVIRIS-NG sensor using
a GAN architecture that incorporate the methane spectra from
known methane emission sites, along with 74 other spectras for
7 different classes of materials using a USGS spectral library.
Moreover, we propose a lightweight dataset for AVIRIS-NG im-
age generation using Generative Adversarial Network models.

2. METHODS
2.1 AVIRIS-NG

Airborne Visible Infrared Imaging Spectrometer - Next Gen-
eration (AVIRIS-NG), using a push broom spectral mapping sys-
tem, measures the wavelength range from 380 nanometer (nm)
to 2510 nm with 5 nm spectral resolution. The spatial resolution
or approximate ground sampling is 3 to 8 meter. AVIRIS-NG
L2 data [15] is a product that provides orthocorrected and atmo-
spherically corrected surface reflectance data. This dataset, free
from distortions due to sensor geometry and accounts for solar
irradiance variations and atmospheric absorption effects, has a
total of 425 bands. We use the total of 8 bands, 3 RGB and 5
from Short wave infrared(SWIR).

2.2 Spectral Library and Hyperspectral Image model
United States Geological Survey (USGS) spectral library ver-
sion 7b [16] provides the spectral signatures for seven different
classes: Artificial Materials, Coatings, Liquids, Minerals, Or-
ganic Compounds, Soil and Mixtures, and Vegetation, with a total
of 2457 types of spectra collected from these materials. Based
on the geography, vegetation, landscape, roads and buildings and
other site features, we select spectral signatures for 75 types of
materials. In addition to methane, we also select spectral sig-
natures for nine closely related hydrocarbons, including ethane,
ethylene, pentane, and others, to enhance the specificity and ro-
bustness of our analysis. Since the study location is mostly desert,
10 different species of vegetations are chosen. The exact number

TABLE 1: SELECTION OF SPECTRAL SIGNATURES

Class USGS Ours
Artificial Materials 290 10
Coatings 12 11
Liquids 24 14
Minerals 1276 0
Organic Compounds 360 10
Soils and Mixtures 209 20
Vegetations 286 10
Total 2457 75

of materials chosen for each class is shown in Table 1. The se-
lected reflectance signatures are linearly interpolated across eight
bands of the AVIRIS-NG images, providing each material type
with a distinct spectral signature value across all eight selected
bands.

With the linear mixing model, a single hyperspectral pixel P
can be represented as:

N
P = Z a;r; +n,
i=1

N )
subjectto a; > 0, Za,- =1,
i=1

where N represents the number of endmembers or materials.
P € RL is the observed pixel spectrum of L dimensions, with L
denoting the number of spectral bands. a; is the abundance of the
i-th endmember in a pixel, signifying the fractional contribution
of a specific material. For physical validity, abundance values
must be non negative and sum to one. r; is the spectral signature
of the i-th endmember, and n represents perturbations including
sensor noise and modeling errors.

According to the AVIRIS-NG sensor specifications in
NASA’s COMEX Final Report [17], the instrument achieves a
signal-to-noise ratio (SNR) exceeding 2000 at 600 nm and 1000
at 2200 nm, corresponding to over 66 dB and 60 dB respectively.
It also maintains a radiometric accuracy within 5%, implying a
maximum relative uncertainty of 5%. In our formulation, the
additive noise n is modeled as zero mean Gaussian noise:

n~N(0,%),

where X = diag(o-lz, R O'I%) is adiagonal covariance matrix with
band dependent variances defined by the signal-to-noise ratio:

,  E[P]]

O-[:]OSN—R[/]O, gzl,...,L. (2)

To simulate realistic field conditions with surface variability,
reflectance darkening, and atmospheric distortion, we use conser-
vative empirical SNR values for each of the L = 8 spectral bands.
These include three visible bands (460 nm, 550 nm, 640 nm) with
SNRs of 45 dB each, and five shortwave infrared (SWIR) bands
(2004 nm, 2109 nm, 2310 nm, 2350 nm, 2360 nm) with SNRs of
38, 35, 35, 33, and 33 dB respectively. These values were used
to construct the per band noise model in training.
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Liu et al. [10] employed a generator network that accepts an
RGB image as input to produce an abundance map. Similarly,
our generator function G(/;6,) uses an RGB image 1, extracted
from the original 8 channel AVIRIS-NG hyperspectral image, as
input, where 6, denotes the trainable parameters of the generator.
Hence our final image model becomes:

N
P= Zairl-+n, where a; =G;(I;0,), n~N(0,%). (3)
i=1

2.3 Matched Filters

A matched filter (MF) [18] is an optimal linear filter designed
to maximize the signal-to-noise ratio (SNR) at its output when
detecting the presence of a known signal against background
noise. Additionally, the matched filter can be intuitively viewed
as performing a correlation between the observed spectral sig-
nal and the known target spectrum, effectively identifying pixels
with spectral characteristics closely resembling the target mate-
rial. Ithas been widely applied in hyperspectral imaging due to its
robustness in differentiating target signatures from complex back-
grounds, especially in scenarios with low SNR or subtle spectral
differences.

We compute the matched filter output, yyr(P), for each
pixel by comparing the pixel spectral data vector, P, to the known
target spectrum, s;, adjusted by the background statistics (mean
p and covariance X):

(P—-)"'= (s, — )
(s = )2 (s, — p) )

The known target spectrum s; is derived from a USGS spec-
tral library as shown in Table 1.

ymr(P) = 4

2.4 Network Architecture

Generative Adversarial Networks (GANSs) [5] have an ideal
architecture that contain both a generator and discriminator to
be applied for synthetic hyperspectral image generation. The de-
tailed diagram for the network architecture is shown in (Figure 1).
The RGB portion of the hyperspectral image was extracted and
fed into the generator network whose output is the abundance
map. The abundance map for each object type in each pixel lo-
cation is multiplied with the corresponding spectral signatures to
generate the hyperspectral image, shown mathematically in (3).
A U-net architecture [19] is employed as a generator function.
Spatial and spectral discriminators are used, where the spatial
discriminator evaluates the spatial authenticity of generated hy-
perspectral images, and the spectral discriminator assesses the
spectral fidelity by distinguishing generated spectral signatures
from the real ones, thereby enhancing the overall quality of syn-
thesized hyperspectral images.

Multiple loss terms were included to train the GAN effec-
tively to ensure accurate hyperspectral image reconstruction. The
generator loss combines three distinct components: the pixel-
wise reconstruction loss (L1 loss), the cosine similarity loss for
spectral shape alignment, and the matched filter (MF) loss to
enhance detection accuracy of target spectral signatures.

FIGURE 1: NETWORK ARCHITECTURE

Let xéér), and xr(eizl denote the generated and real hyperspectral
images respectively, each having dimensions (C, H, W), where
C is the number of spectral channels, and H, W represent spatial

dimensions. N is the batch size.

L1 Loss The L1 loss evaluates pixel wise absolute differences
between generated and real hyperspectral images, promoting pre-
cise reconstruction of spectral intensities:

N
1 (GIENG)
L= Z}} lxgon = x|l (5)

Cosine Similarity Loss The cosine similarity loss measures
the alignment between spectral vectors at each pixel location,
ensuring generated spectra closely match the shape and direction
of real spectra:

N (@) (@)
1 Xgen "X, oul
Fcos=1-— Z — (6)
NS lxgonllbe |
Matched Filter Loss The matched filter loss was calculated by
comparing the matched filter responses of the generated and real
images; ensuring the accurate spectral representation of specific

target materials,
1 X . .
Laar = Amr - 5 D Iwer (egen) = yar (g3 ()
i=1

where the matched filter response for a pixel spectrum P is com-
puted in (4). Out of 75 different material types, we selected 11
target spectrum s;, which are highly abundant in the desert type
geography for computing the matched filter loss. Namely, the
selected target spectrum object types are sand, desert varnish,
concrete road, asphalt road, sheet metal, painted aluminum, roof,
water, black brush, juniper, and methane. These material types
can be seen in the study site discussed in next section.
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Spectral Angle Loss The Spectral Angle Mapper (SAM) loss
measures the spectral similarity between generated and real hy-
perspectral images by computing the angle between their spectral
vectors at each pixel. This loss ensures that the generated spec-
tra align closely with the real spectra in terms of their angular
orientation, which is critical for maintaining spectral fidelity in

hyperspectral imaging:
x(l h,w) x(i,h,w)
gen real
Lsam = NHW Z Z ( )| ) ) 8)
1w Ixgen™ X, 0q |l

where xéie’,lf ) and xileill “) are the spectral vectors at pixel (&, w)

for the i-th generated and real images, respectively, and N, H, W
denote the batch size, height, and width of the images.

Spectral Correlation Loss The spectral correlation loss eval-
uates the correlation between spectral bands of the generated and
real hyperspectral images, promoting consistency in inter band
relationships. It is defined as:

gSpecCorr =1- NCZZ

i=1 c=

Zh | Zy—l (i,c,h,w) —(l c))(x(i,c,h,w) —(l c))

Xgen Xgen real real

Z w (1 c.hw) _ _(1 c))2 Z w (i,c,h,w) —(l c)
h=1 Law=1Xgen Xgen h=1 wl real real

)
where xé‘ez) and x:;CI) are the mean intensities of the c-th

channel for the i-th generated and real images, respectively,

~(i,e) _ 1 H w _(i,c,h,w) _(i,c) _

computed as Xgen' = W Zihel Zuw=1Xgen and X, =
w _(i,c,h,w) .

W poye h=1 2=l Yreal and C is th<? number of spectral cl}an-

nels. This loss enhances the preservation of spectral correlations

across bands.

Combined Generator Loss The individual losses are com-
bined to define the final generator loss function as follows:
26 = AL + AcosLcos (10)
+ /lMFgMF + /lSAMS/PSAM + ﬂSpecCorrgSpecCorw
The hyperparameters Ar1, Acos, AmF, Asam, and Aspeccorr
control the contribution of each loss term to the overall optimiza-
tion objective.

The adversarial losses from the spatial and spectral discrim-
inators were optionally included during training to further en-
hance spatial realism and spectral fidelity. The spatial and spec-
tral discriminators’ detailed loss equations are standard binary
cross-entropy (BCE) formulations, as described in the literature
for GANs [5]. This combination ensures robust synthesis of
hyperspectral imagery that closely resembles authentic spectral
distributions and spatial textures.

Spatial Discriminator Loss The spatial discriminator loss en-
sures spatial realism of generated hyperspectral images by distin-
guishing between real and generated image pairs:

1
gDS,m = 5 [SfBCE(Dspa(xreal)a 1) +S£BCE(Dspa(xgen)’ 0)] .
(11)

Spectral Discriminator Loss The spectral discriminator loss
assesses spectral fidelity by distinguishing real spectral signatures
from generated ones:

1
gDspe = z [gBCE (Dspe(xreal)’ 1) + gBCE(Dspe (xgen)70)]
(12)

3. EXPERIMENT

In this section, we discuss about the study location for
AVIRIS-NG replica generation, data preprocessing, and exper-
iment setup used to train our model.

3.1 Study Site

The dataset [1] we choose is around Carlsbad region in south-
eastern New Mexico, USA. This region is known for its proximity
to oil and gas extraction sites, which aligns with our context of
capturing the methane plumes in generated Hyperspectral replica.
The reason for selecting this site is mainly because of known
methane emission sources as predicted by HyperSTARCOP [14].

Shown in Figure 2 (a) are superimposed data samples from
the AVIRIS-NG flight locations highlighting points of interest
within a desert setting. While Figure 2 (b) displays a zoomed

> in superimposed data sample view with enhanced perspective of

material types such as roads, desert, sand, vegetation, buildings
and other land features as well as a methane plume in orange.

3.2 Data Preprocessing

The original AVIRIS-NG hypercube is of dimension =
25000 x 1500 x 425, spectral bands ranging from 380 nm to
2510 nm with 5 nm interval. We choose the flight paths from
2019 where the flight paths show abundance of methane emis-
sion from HyperSTARCOP [14] and extract 8 bands out of these
425 bands. The reason for choosing only 8 bands is that these
selected channels are in RGB and SWIR spectrum and the spec-
tral signature of the material types in the selected flight paths
fall in the same spectrum. Additionally, reducing the number
of bands significantly reduces the dataset complexity and com-
putation time. The chosen band wavelengths are in the visible
spectrum (460 nm, 550 nm, 640 nm) and the remaining in Short-
wave infrared (SWIR) spectrum (2004 nm, 2109 nm, 2310 nm,
2350 nm, 2360 nm). We also resize the spatial dimension to
512 x 512, resulting in total of 56 tiles of shape 512 x 512 x 8.
Out of these data tiles, 50 are used for training and rest are used
for testing. RGB bands are extracted and fed into the generator
network as input. The total size of this dataset is 0.5 GB.

3.3 Experiment Setup

The value for hyperparamter Ay is set to 100, Acos to
1000, Asap to 100, Aspeccorr t0 0.4, and Apsr to 1 based on
few random experimentation. The model was trained on an Intel
Core 19-14900K processor with 64 GB of system memory. GPU
acceleration was provided by two NVIDIA GeForce RTX 4090
GPUs, each equipped with 24 GB of dedicated video memory,
totaling 48 GB of GPU memory utilized during training. The
model is trained for a total of 1500 epochs. To address the risk of
overfitting, given the small dataset size of 0.5 GB with 56 tiles,
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(a)

(b)

FIGURE 2: STUDY SITES SHOWING (a) THE LOCATION OF
OIL AND GAS EXTRACTION AREA, AND (b) HYPERSPEC-
TRAL DATA HIGHLIGHTING METHANE PLUME [14] ALONG
WITH OTHER GEOGRAPHICAL FEATURES.

several stabilization techniques were employed. The learning
rate for the generator starts at 10™#, while the discriminators use
1073, both following a cosine annealing schedule with a decay
period of 800 epochs, starting after 400 epochs, and reaching a
minimum of 10~7. This gradual decay ensures smooth conver-
gence and prevents large updates late in training that could lead
to overfitting. The generator’s multi-objective loss, combining
L1, cosine, matched filter, spectral angle, and spectral correla-
tion terms with their respective weights, acts as a regularizer to
balance optimization objectives. Band wise Gaussian noise, cal-
ibrated to AVIRIS-NG’s signal-to-noise ratio specifications (45
dB for RGB bands and 38 to 33 dB for SWIR bands), was added to
the generated images as a form of data augmentation to enhance
generalization. Additionally, the Adam optimizer uses 5; = 0.9
and B, = 0.999, adjusted to improve training stability, and a con-
ditional training strategy allows delaying discriminator updates,
although in this setup, they were applied from the start to further
stabilize GAN training.

RESULTS AND DISCUSSION

After successfully training the model, we ran the inference
on the test images using the model trained for 1500 epochs. Six
of the original images and the corresponding generated images
are presented in Figure 3 (top row). Moreover, to evaluate the
performance of the model, various test metrics are used to com-
pute the reconstruction accuracy of the generated hyperspectral
cube. These values are shown in Table 2.

TABLE 2: RECONSTRUCTION METRICS FOR ALL 8 SYNTHE-
SIZED BANDS

Indicators  Value

RMSE 5333.23
MRAE 69.64
SAM 0.466
MSSIM 0.569
MPSNR  37.40
spec corr  0.625
FSIM 0.955

The reconstruction accuracy of the hyperspectral images,
evaluated over six test samples, is quantified by several met-
rics that together highlight the performance of the proposed ap-
proach. The RMSE (Root Mean Square Error) value of 5333.23
and MRAE (Mean Relative Absolute Error) of 69.64 reflect the
challenges in achieving pixelwise accuracy, attributed to the high
dimensionality, dynamic range of the data, noise added and the
diversity of material types. The Spectral Angle Mapper (SAM)
value of 0.466 indicates good spectral fidelity, as the angular
difference between reconstructed and reference spectra remains
relatively small. The Mean Structural Similarity Index Mea-
sure (MSSIM) of 0.569 suggests moderate structural similarity,
while the Mean Peak Signal to Noise Ratio (MPSNR) of 37.40
dB indicates an acceptable signal-to-noise ratio(SNR). Notably,
the spectral correlation of 0.625 shows improved preservation of
inter band relationships, and the high Feature Similarity Index
Measure (FSIM) of 0.955 demonstrates excellent retention of key
perceptual features.

Overall, these results reflect the effectiveness of the enhanced
loss function, incorporating SAM and spectral correlation losses,
in improving spectral fidelity and inter band consistency. While
the higher RMSE and MRAE suggest areas for further optimiza-
tion, the current method establishes a robust benchmark for syn-
thesizing AVIRIS-NG hyperspectral images using a lightweight
dataset with 8 bands in the RGB and SWIR spectrum.

4. CONCLUSION

A novel physics-informed GAN framework is presented for
generating virtual replicas of AVIRIS-NG hyperspectral images
using a lightweight dataset with selected RGB and SWIR bands.
The integration of spectral signatures from a USGS spectral li-
brary v7b and a matched filter loss has enabled the model to cap-
ture essential spectral characteristics, as demonstrated by promis-
ing evaluation metrics such as a low SAM and high FSIM and
spectral correlation. Despite moderate RMSE and MRAE,which
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FIGURE 3: REAL IMAGES ON TOP ROW(RGB BANDS) AND CORRESPONDING SYNTHESIZED IMAGES ON BOTTOM ROW(RGB

BANDS)

are also effects of added noise, these results underscore the po-
tential of the proposed approach to deliver realistic and physically
plausible hyperspectral reconstructions.

As part of the future work, we plan to implement this architec-
ture on the full 425 bands and use advanced filtering techniques,
which capture the spectral signatures of the materials with im-
proved overall reconstruction accuracy. Moreover, we also plan to
incorporate material specific filtering techniques, such as green-
house gas filters, water level indicators, vegetation indicators,
etc., in order to capture and detect such material types.
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APPENDIX A. DATASET AND MODEL

The dataset can be accessed at Kaggle: https://www.kaggle.

com/datasets/sachingiri348/aviris-ng-hyperspectral-data

The trained model can be accessed at: https://www.kaggle.

com/models/sachingiri348/physics-informed- gan-for-aviris-ng
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