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Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In

this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation,

of the Langevin equation perturbed by tempered fractional Brownian motion. However, most

standard tools from the well-studied framework of random dynamical systems cannot be applied to

systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a

non-Markovian framework. We first derive the spectral density function of the considered system

based on the generalized Parseval’s formula and the Wiener-Khinchin theorem. Then we show that

it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-

like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely compa-

rable in scope to the existing theory of Markovian systems but also provide a possible approach to

discern P-bifurcation dynamics in the non-Markovian settings. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4959533]

The nonlinear dynamical systems with random uncer-

tainty occur ubiquitously in nature. The noise perturba-

tion can drastically change the deterministic dynamics

when it acts as a driving term in the equations of consid-

ered objects. The well-known framework of random

dynamical systems (RDS) bridges the gap between

dynamical systems and stochastic analysis, and offers use-

ful tools to solve problems such as stochastic stability, ran-

dom attractor, invariant manifolds, and stochastic

bifurcation. There is a rich literature on the complex

bifurcation dynamics of stochastic systems driven by

Markovian noise (including Gaussian white noise and

L�evy noise) within the framework of RDS. However, there

is no a priori reason to assume that the random forces are

independent over disjoint time intervals, which motivates

us to re-evaluate and improve the crucial results from

Markovian settings to non-Markovian counterparts. It is

very difficult to follow and hard to analyze because of the

long-range correlations of the non-Markovian noise.

Recently, fractional noise has been found to destroy or

induce dynamical bifurcation (D-bifurcation) under the

framework of non-Markovian systems. Unfortunately, it

seems that there is no result available in the literature on

phenomenological bifurcation (P-bifurcation) for non-

Markovian systems. The main difficulties below are two-

fold. First, such systems cannot reduce to a Markovian

case without endowing infinitely many degrees of freedom

and the driving noise cannot be white in the limit of large

time rescalings. Second, one does not have the exact ana-

lytical solution for the steady Fokker-Planck equation of

general non-Markovian systems. Nevertheless, the

well-known Wiener-Khinchin theorem states that the

spectral density and the autocorrelation function form a

Fourier pair for a stationary stochastic process. This actu-

ally offers us an alternative idea to explore P-bifurcation

based on the spectral density. In this paper, we intend to

discern such complex dynamics through Ornstein-

Uhlenbeck process driven by a tempered fractional noise.

We show that such a system shares diverse and interesting

phenomena, that is, the shape of its spectral density

changes between or among explosive-like, unimodal, and

bimodal curves. Consequently, this paper supplies an

effective approach to analyze P-bifurcation dynamics in

the non-Markovian framework.

I. INTRODUCTION

Bifurcation theory provides a strategy for investigating

the qualitative or topological changes in the orbit structure of

parameterized dynamical systems. The basic and key ques-

tion that arises is what one may expect to occur in the

dynamics with a given number of parameters allowed to

vary. The general term “bifurcation” was first introduced by

Henri Poincar�e in mathematics.1 Since then, it has been

developed progressively up to now, and several good books

with an excellent level of background and techniques have

appeared on this subject.2–9 For the deterministic systems,

they are fully determined by the parameter values and initial

conditions, but not with the ensemble of external constraints

acting on the system. Contrary to internal fluctuations, the

fluctuations generated by the environment or the system

parameters cannot be ignored. Obviously, the natural world

is buffeted by stochasticity and actually subjected to noise

perturbations. It is worth noting that the present noise is used

to describe the interaction between the (small) system and its

a)macbzeng@scut.edu.cn.
b)Author to whom correspondence should be addressed. Electronic mail:

qgyang@scut.edu.cn.
c)ychen53@ucmerced.edu
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(large) environment. The driving noise could be white or

colored, Gaussian or non-Gaussian, semimartingale or non-

semimartingale, and Markovian or non-Markovian. In com-

plete analogy to the deterministic case, Arnold established

the so-called stochastic bifurcation theory based on the

framework of random dynamical systems (RDS), which is

tailor-made to cover all important systems under randomness

which are presently of interest.10

In general, there are now two well-established mecha-

nisms, “trajectory based approach” and “distribution based

approach,” to formalize the issue of stochastic bifurcation.

More precisely, the former is called Dynamical bifurcation

(D-bifurcation), which is connected to the stability of an

RDS under an invariant measure and reduces to the deter-

ministic definition of bifurcation in the absence of noise.

And the latter is called Phenomenological bifurcation

(P-bifurcation), where one can search for changes of the

shape of the stationary probability density function of the

stationary measure. However, these two kinds of definitions

may lead to different results. For instance, Baxendale pre-

sented an example of the one-parameter family of stochastic

flow on the two-dimensional torus in which the largest

Lyapunov exponent changes its sign while the shape of sta-

tionary probability density does not depend on the bifurca-

tion parameter.11 In contrary, Crauel and Flandoli analyzed

the effect of additive noise on a pitchfork bifurcation and

found that the largest Lyapunov exponent does not change

its sign while the stationary probability density function does

change its shape from a mono-peak one into double-peak

one at a critical parameter value.12 Therefore, the stochastic

bifurcation theory is still in its infancy. As pointed out in

Ref. 13, these two approaches are not sufficient in the fol-

lowing questions: What has really happened for stochastic

bifurcation? What is the topological property of a stochastic

system? What kind of invariance is suitable for predicting

stochastic bifurcation?

When the driving noise is considered as Gaussian white

noise, the theory of stochastic bifurcation has attracting

increasing interests within the framework of RDS. For the

basic concepts and established results on this issue before

1999, we refer the reader to the monograph10 and the referen-

ces therein and also the review paper.14 Afterwards, the theory

of stochastic bifurcation has been advanced to a new level,15–23

but much more systematic work needs to be done to gain more

insights. When the considered systems are driven by a-stable

L�evy noise, stochastic P-bifurcation was further discussed in

some typical examples. Particularly, P-bifurcation of a simple

dynamical system was numerically analyzed by solving a non-

local Fokker-Planck equation;24 the stochastic bifurcation of a

stochastic Lorenz-Stenflo system with L�evy noise was studied

using the theory of random attractors.25 Noting that both

Gaussian white noise and L�evy noise are Markovian, so the

well-studied general framework of RDS and the corresponding

stationary density function could be applied to understand the

stochastic bifurcation dynamics. When the driving noise is

non-Markovian, however, it seems far more arduous since the

RDS framework is no longer applicable. This situation moti-

vates us to explore such complex dynamics. In this respect, a

recent paper was devoted to stochastic D-bifurcation of the

Black-Scholes model with mixed fractional Brownian motion

(FBM).26 The main results showed that fractional noise not

only destroys but also induces a stochastic bifurcation under

some suitable conditions. Indeed, such dynamics belongs in

the category of D-bifurcation since authors adopted the stabil-

ity change in the considered system. As far as we know, how-

ever, it seems that there is no result available in the literature

on P-bifurcation for non-Markovian systems. So it is interest-

ing and natural to investigate the impact on stochastic

P-bifurcation induced by non-Markovian noise. We will pro-

ceed this topic mainly by way of an instructive example,

namely, tempered fractional Ornstein-Uhlenbeck (TFOU) pro-

cess, whose precise definition can be found in Section II below.

Recently, Meerschaert and Sabzikar have proposed a

new stochastic process, tempered fractional Brownian motion

(TFBM), which multiplies the power law kernel in the mov-

ing average representation of a fractional Brownian motion

(FBM) by an exponentially tempering factor.27 They further

presented some pleasant properties of TFBM, including mov-

ing average and spectral representations, covariance structure

and scaling feature, and indicated an important application to

modeling wind speed near the earth’s surface.

Now let us start by reviewing the definition and some

basic properties of TFBM. Denote fBðtÞgt2R by a two-sided

Brownian motion with mean zero and variance jtj for all

t 2 R. Define an independently scattered Gaussian random

measure B(dx) with control measure m(dx)¼ dx by setting

B½a; b� ¼ BðbÞ � BðaÞ for any real numbers a< b, and then

extending to all Borel sets. For any a< 1/2 and k� 0, a

TFBM is defined by the following integral:

Ba;kðtÞ ¼
ðþ1
�1
½e�kðt�xÞþðt� xÞ�a

þ � e�kð�xÞþð�xÞ�a
þ �BðdxÞ;

(1)

where ðxÞþ ¼ x1fx>0g; 00 ¼ 0 and k is called tempered

parameter. It follows from the Proposition 2.3 in Ref. 27 that

TFBM has the covariance function

Cov Ba;k tð Þ;Ba;k sð Þ
� �

¼ 1

2
C2

t jtj
2H þ C2

s jsj
2H � C2

t�sjt� sj2H
h i

;

(2)

where H¼ 1/2 � a, and

C2
t ¼

2C 2Hð Þ
2kjtjð Þ2H

� 2C H þ 1=2ð Þffiffiffi
p
p 1

2kjtjð ÞH
KH kjtjð Þ; t 6¼ 0;

(3)

in which KHð�Þ is the modified Bessel function of the second

kind, and C2
0 ¼ 0. Generally speaking, when a<�1/2 and

k¼ 0, TFBM (1) does not exist because the integrand in the

right hand of (1) is not square integrable. When �1/2

< a< 1/2 and k¼ 0, TFBM (1) reduces to FBM with Hurst

scaling index H¼ 1/2 � a. There have been numerous

attempts to define a (stochastic) integral with respect to FBM

(see the survey paper28 for more details). When a<�1/2

and k> 0, or when a¼ 0 and k> 0, TFBM (1) is a continu-

ous semimartingale. So the classical Itô stochastic calculus is

applicable to TFBM in these cases. When a 2 ð�1=2; 0Þ [
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ð0=1=2Þ and k> 0, TFBM is neither a semimartingale nor a

Markov process. Inspiring by the seminal work by Pipiras

and Taqqu,29 the theory of stochastic integration for TFBM

has recently been developed based on the tempered frac-

tional calculus.30 It is also worth pointing out that the main

advantage of TFBM is that the tempering parameter can be

chosen arbitrarily light for modifying the power law kernel

to any desired degree of accuracy over a finite interval. This

significant property makes TFBM and its stochastic integrals

natural candidates to modeling realistic data. For example,

the spectral density of FGN blows up at the origin like a

power law, while the spectral density of TFGN follows the

same power law at moderate frequencies, but remains

bounded at very low frequencies, a behavior typically seen

in wind speed data.27

Fractional Langevin equation was shown to describe the

anomalous diffusion in the non-Markovian framework.31

Also, the fractional Langevin equation was applied to model

the financial time series to characterize the inverse power-

law correlation.32 Based on the fractional calculus, the frac-

tional Langevin equation involving both Caputo and

Riemann-Liouville derivatives was introduced by using the

generalized Newtonian law.33 However, these above men-

tioned results focused on the time-fractional Langevin equa-

tion or Langevin equation with a fractional noise.

This paper concentrates on stochastic P-bifurcation

induced by tempered fractional noise. To this end, we will

introduce a concept of a class of stochastic bifurcation based

on the spectral density function. Furthermore, we will prove

and examine the conditions for an emerging explosive-like

unimodal or bimodal curve from the P-bifurcation point

of view. And finally, we will manifest that the tempered

fractional processes possess very diverse and interesting

bifurcation phenomena. In addition to the usual unimodal!
bimodal transition, we shall detect several new transitions

including explosive-like ! unimodal, explosive-like !
bimodal, and explosive-like! unimodal! bimodal.

The remainder of this paper is organized as follows. In

Sec. II, the tempered fractional Ornstein-Uhlenbeck process

is formulated by the idea that simple system with complex

dynamics. In Sec. III, the main results are stated and proved

in details through the spectral density function as the assigned

bifurcation parameter varies. Some relevant remarks are

also provided to discuss the implications and extensions of

the obtained results. Finally, the conclusions are drawn in

Sec. IV.

II. MODEL DERIVATION

In statistical physics, the classical Ornstein-Uhlenbeck

(OU) process is understood to describe the velocity of a mas-

sive Brownian particle under the influence of friction. This

stochastic process with parameters q> 0 and r> 0 solves

the following equation:34

dXðtÞ ¼ �qXðtÞdtþ rdBðtÞ; (4)

where 1/q and r2 represent, respectively, the relaxation time

and the diffusion constant, and B(t) is a standard one-

dimensional Brownian motion. By the Langevin’s hypothesis

and Newton’s second law, the OU process (4) can be rewrit-

ten as the Langevin equation,35

m
dV tð Þ

dt
¼ �cV tð Þ þ F tð Þ;

with relaxation time and diffusion constant

1

q
¼ Dm

kBT
; r ¼

ffiffiffiffi
2

D

r
kBT

m
;

in which V(t) denotes the velocity of the Brownian particle

of mass m and diffusion coefficient D at absolute tempera-

ture T, c denotes the damping constant, kB is the

Boltzmann’s constant, and F(t) is a noise term representing

the effect of the collisions with the molecules of the fluid.

Noting that the OU process (4) becomes a driftless

Brownian motion with diffusion constant r2 under the limit q
! 0. Setting the initial condition n ¼ r

Ð 0

�1 exp ðqsÞdBðsÞ,
the stationary solution of (4) is given by

XðtÞ ¼ r
ðt

�1
e�qðt�sÞdBðsÞ;

which is an almost surely continuous, centered Gaussian

Markov process.

Recently, there has been a growing interest in studying

stochastic systems driven by fractional Brownian motion

(FBM) in view of their applications to long memory property.

Cheridito et al. proposed the so-called fractional Ornstein-

Uhlenbeck (FOU) process, which is the solution of the

following fractional Langevin equation,36

dYðtÞ ¼ �qYðtÞdtþ rdBHðtÞ; (5)

where BH(t) is a standard FBM with Hurst parameter

0<H< 1. Similarly, the almost surely continuous process,

YðtÞ ¼ r
ðt

�1
e�qðt�sÞdBHðsÞ;

solves (5) with initial condition n ¼ r
Ð 0

�1 exp ðqsÞdBHðsÞ.
Indeed, Y(t) is a stationary, centered Gaussian, but non-

Markov process when H 6¼ 1/2.

Now we are ready to introduce the Langevin equation

driven by a TFBM of the form

dZðtÞ ¼ �qZðtÞdtþ rdBa;kðtÞ; (6)

where Ba,k(t) is a TFBM defined in (1). In particular, if a¼ 0

and k¼ 0, (6) becomes OU process (4); if �/12< a< 1/2 and

k¼ 0, (6) reduces to FOU process (5), where a¼ 1/2 � H. By

applying the Conjugate method,36 one can obtain a unique

almost surely continuous solution of (6) as

ZðtÞ ¼ r
ðt

�1
e�qðt�sÞdBa;kðsÞ;

under the initial condition

n ¼ r
ð0

�1
eqsdBa;kðsÞ:

084310-3 Zeng, Yang, and Chen Chaos 26, 084310 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  183.62.57.174 On: Wed, 03 Aug

2016 06:33:36



Herein, we call fZðtÞgt2R a tempered fractional Ornstein-
Uhlenbeck (TFOU) process. Noting that when q ! 0, TFOU

reduces to TFBM, therefore we assume that r> 0, q� 0,

k� 0, and �1/2< a< 1/2 through the rest of the paper.

Although the framework of the stochastic integral with

respect to the TFBM was established in Ref. 30, the corre-

sponding Itô formula and Fokker-Planck-Kolmogorov equa-

tion of TFBM-driving stochastic systems are still open. The

key technical difficulties are due to the non-local kernel t2H

and the modified Bessel function of the second kind kv(z) in

the covariance function of the TFBM. Consequently, the

classical stochastic tools cannot be directly applied to study

P-bifurcation, which is concerned with change in the shape

of the stationary probability densities when the parameters

vary. Since the TFOU is stationary stochastic process, its

spectral density and the autocorrelation form a Fourier pair

by the well-known Wiener-Khinchin theorem.37 This fact

motivates us to open a possible way to discuss the P-

bifurcation based on the spectral density function.

Our task in Section III is to determine the stochastic

bifurcation phenomena of (6) with the help of its spectral

density function.

III. MAIN RESULTS AND REMARKS

Obviously there are two more free parameters, Hurst

exponent H and tempered factor k, in TFBM-driving sto-

chastic differential equations than the Itô (or Stratonovich)

counterpart. For instance, one can choose the coefficient

parameter q as the bifurcation parameter while fix the Hurst

parameter H and tempered factor k. And, of course, we could

choose H or k as the bifurcation parameter but fix the other

two parameters.

Recall that in the Markov framework, the concept of

P-bifurcation was used to describe the transition from a

unimodal (mono-peak) to a bimodal (double-peaks) or

crater-like form in the stationary density. This leads to the

following definition of P-bifurcation, which is intentionally

kept as close as possible to the definition of P-bifurcation in

Ref. 10.

Definition III.1. A parameterized stochastic system is
called to undergo a bifurcation of spectral density if there
exists “qualitative change” in the shape of its spectral den-
sity when a bifurcation parameter varies.

Remark III.1. The bifurcation of spectral density
belongs in the category of P-bifurcation.

Following the developed theory of stochastic integrals

for TFBM,30 one could construct a generalized isometry for-

mula similar to Lemma 2.1 in Ref. 36 since the covariance

function (2) of a TFBM is valid. However, this formula is

much complicated due to the requirement of computing the

first and second derivatives of the Bessel function term (3).

Alternatively, we utilize the harmonizable representation of

the integral with a TFBM, and then obtain the spectral den-

sity function by using the generalized Parseval’s formula

(i.e., Theorem 3.15 in Ref. 30) and the Wiener-Khinchin

theorem.37

Lemma III.1. TFOU process (6) admits the following
spectral density function:

h xð Þ ¼ r2C 1� að Þ2ffiffiffiffiffiffi
2p
p 1

q2 þ x2

x2

k2 þ x2ð Þ1�a : (7)

Proof. The Fourier transform of a function f(t) is defined

as

bf xð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

e�ixtf tð Þdt;

and the inverse Fourier transform as

f
^

tð Þ ¼ 1ffiffiffiffiffiffi
2p
p

ðþ1
�1

eixtf xð Þdx:

Then the autocorrelation function yields that

rZ tð Þ¼E Z 0ð ÞZ tð Þ
� �

¼E r
ð0

�1
eqs1 dBa;k s1ð Þ

 !
r
ðt

�1
e�q t�s2ð ÞdBa;k s2ð Þ

� �" #

¼r2e�qtE

ðþ1
�1

1fs1�0ge
qs1 dBa;k s1ð Þ

 !"

�
ðþ1
�1

1fs2�tge
qs2 dBa;k s2ð Þ

 !#

¼r2C 1�að Þ2e�qt

ðþ1
�1

d1fx�0geqx d1fx�tgeqx

� x2

k2þx2ð Þ1�a dx

¼r2C 1�að Þ2

2p

ðþ1
�1

eixt 1

q2þx2

x2

k2þx2ð Þ1�a dx:

This shows that (7) holds and therefore the proof of Lemma

III.1 is complete. �

In order to discern the P-bifurcation phenomena of (6),

we discuss first the singularity and extrema of spectral den-

sity h(x) in a straightforward way.

Case 1: When k¼q¼ 0 and a 2 (�1/2, 1/2), h(x) has

singularity at x*¼ 0, due to

h xð Þ ¼ r2C 1� að Þ2ffiffiffiffiffiffi
2p
p 1

x2�2a
; 1 < 2� 2a < 3:

Case 2: When k¼ 0, q> 0 and a 2 (�1/2, 0), h(x) also

has singularity at x*¼ 0, since

h xð Þ ¼ r2C 1� að Þ2ffiffiffiffiffiffi
2p
p 1

q2 þ x2

1

x�2a
; 0 < �2a < 1:

Case 3: For other nonsingular cases, it is easy to observe

that

h0 xð Þ ¼ r2C 1� að Þ2ffiffiffiffiffiffi
2p
p a� 1ð Þk4 þ aq2x2 þ q2k2

� �
x

q2 þ x2ð Þ2 k2 þ x2ð Þ2�a :
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By the First Derivative Test, we further have

(3a) q¼ 0, k> 0 and �1/2< a< 1/2: h(x) has a unique

global maxima at x*¼ 0;

(3b) q> 0, k¼ 0 and a¼ 0: h(x) has a unique global max-

ima at x*¼ 0;

(3c) q> 0, k¼ 0 and 0< a< 1/2: h(x) has a unique global

minima at x*¼ 0 and two global maxima at x�

¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ð1� aÞ

p
q;

(3d) q> 0, k> 0 and �1/2< a< 1/2: h(x) has a unique

global minima at x*¼ 0 and two global maxima at

x� ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaq2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q2 þ 4ð1� aÞk2

q
qÞ=ð2� 2aÞ

r
.

With these discussions at hand, we are now ready to pre-

sent our main result of bifurcation of spectral density of non-

Markovian system (6).

Theorem III.1. Assume that parameters a and q are
fixed, then

(i) if �1/2< a< 1/2 and q¼ 0, model (6) undergoes P-
bifurcation at k*¼ 0;

(ii) if �1/2< a� 0 and q> 0, model (6) undergoes P-
bifurcation at k*¼ 0;

(iii) if 0< a< 1/2 and q> 0, there is no P-bifurcation in
model (6).

Proof. Based on the discussion of the singularity and

extrema of spectral density hðxÞ, we establish the corre-

sponding proofs of these three cases, respectively.

(i) When �1=2 < a < 1=2 and q¼ 0, the non-Markovian

system (6) has a singular point at x� ¼ 0 if k¼ 0,

however, this singular point becomes the unique

global maxima if k> 0. More precisely, hðxÞ explo-

des for k¼ 0 in the neighborhood of x� ¼ 0, but it is

unimodal for k> 0. Therefore, hðxÞ evolves from

explosive-like to unimodal as k increases from zero

to positive. This implies that model (6) undergoes

P-bifurcation at k� ¼ 0.

(ii) This case is divided into two situations. First, when

�1=2 < a < 0 and q > 0, the non-Markovian system

(6) has a singular point at x� ¼ 0 if k¼ 0, however,

this singular point becomes the unique global minima

and there are two more global maxima at x�

¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaq2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2q2 þ 4ð1� aÞk2

q
qÞ=ð2� 2aÞ

r
if

k> 0. Second, when a¼ 0 and q > 0, the non-

Markovian system (6) has a unique global maxima at

x� ¼ 0 if k¼ 0, but this point becomes the unique

global minima and there are two more global maxima

at x� ¼ 6kq if k> 0. Then, in the former situation,

hðxÞ explodes for k¼ 0 in the neighborhood of

x� ¼ 0, but it is unimodal for k> 0. That is, hðxÞ
evolves from explosive-like to unimodal as k
increases from zero to positive. And in the latter situa-

tion, hðxÞ is unimodal for k¼ 0, but it is bimodal for

k> 0. That is, hðxÞ evolves from unimodal to

bimodal as k increases from zero to positive. Both sit-

uations mean that model (6) undergoes P-bifurcation

at k� ¼ 0.

(iii) When 0 < a < 1=2 and q > 0, there are a unique

minima and two global maxima in (6) for all k � 0.

Then hðxÞ is always bimodal, and thus there is no P-

bifurcation. �

Theorem III.2. Assume that parameters a and k are
fixed, then

(i) if �1=2 < a < 0 and k¼ 0, there is no P-bifurcation
in model (6);

(ii) if 0 � a < 1=2 and k¼ 0, model (6) undergoes P-
bifurcation at q� ¼ 0;

(iii) if �1=2 < a < 1=2 and k> 0, model (6) undergoes
P-bifurcation at q� ¼ 0.

Proof. Similar to the proof of Theorem III.1, we also

construct the proof as follows.

(i) When �1=2 < a < 0 and k¼ 0, hðxÞ always explo-

des in the neighborhood of x� ¼ 0 for all q � 0. Thus

there is no P-bifurcation in model (6) in this case.

(ii) This case is divided into two situations. First, when

a¼ 0 and k¼ 0, hðxÞ evolves from explosive-like to

unimodal as q increases from zero to positive. And in

another situation, hðxÞ evolves from explosive-like to

bimodal as q increases from zero to positive. Both sit-

uations imply that model (6) undergoes P-bifurcation

at q� ¼ 0.

(iii) When �1=2 < a < 1=2 and k > 0; hðxÞ evolves from

unimodal to bimodal as q increases from zero to posi-

tive. Thus, model (6) undergoes P-bifurcation at q� ¼ 0.

�

Theorem III.3. Assume that parameters q and k are
fixed, then

(i) if q¼ 0 and k¼ 0, there is no P-bifurcation in model
(6);

(ii) if q > 0 and k¼ 0, model (6) undergoes P-bifurcation
at a� ¼ 0;

(iii) if q � 0 and k> 0, there is no P-bifurcation in model
(6).

Proof. Based on the proof procedure in Theorems III.1

and III.2, it is also straightforward to establish the proof as

follows.

(i) When q¼ 0 and k¼ 0, this claim holds since hðxÞ is

always explode-like.

(ii) When q > 0 and k¼ 0, hðxÞ evolves from explosive-

like to unimodal to bimodal as a increases on the open

interval (�1/2, 1/2). This indicates the required result.

(iii) Since hðxÞ is always unimodal for q¼ 0 and k> 0,

and it is bimodal for q > 0 and k> 0, respectively.

Therefore this claim is true in this case. �

Remark III.2. Actually, the triple ða; q; kÞ could be
divided in twelve situations:

X1 ¼ a; q; kð Þj � 1

2
< a < 0; q ¼ 0; k ¼ 0

	 

;

X2 ¼ a; q; kð Þj � 1

2
< a < 0; q ¼ 0; k > 0

	 

;
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X3 ¼ a; q; kð Þj � 1

2
< a < 0; q > 0; k ¼ 0

	 

;

X4 ¼ a; q; kð Þj � 1

2
< a < 0; q > 0; k > 0

	 

;

X5 ¼ fða; q; kÞja ¼ 0; q ¼ 0; k ¼ 0g;
X6 ¼ fða; q; kÞja ¼ 0; q ¼ 0; k > 0g;

X7 ¼ fða; q; kÞja ¼ 0; q > 0; k ¼ 0g;
X8 ¼ fða; q; kÞja ¼ 0; q > 0; k > 0g;

X9 ¼ a; q; kð Þj0 < a <
1

2
; q ¼ 0; k ¼ 0

	 

;

X10 ¼ a; q; kð Þj0 < a <
1

2
; q ¼ 0; k > 0

	 

;

X11 ¼ a; q; kð Þj0 < a <
1

2
; q > 0; k ¼ 0

	 

;

X12 ¼ a; q; kð Þj0 < a <
1

2
; q > 0; k > 0

	 

:

Then the above results are illustrated in Table I.

We next conduct numerical simulations to illustrate our

results. It is evident from (7) that the noise intensity r is one

multiple for hðxÞ. Thus when the positive noise intensity r
increases, the spectral density hðxÞ just becomes flatter (or

less spiky) for fixed parameters a, q, and k, and its number

and the shape do not change. So we take r¼ 1 without

generality in the following simulation. On the other hand,

since �1=2 < a < 1=2; q � 0, and k � 0, we choose a
¼ �1=4; 0; 1=4; q ¼ 0; 1, and k ¼ 0; 1, and thus it yields 12

different types ða; q; kÞ. By setting the iterated interval

x 2 ½�100; 100�, iterated points as 2� 108, the spectral den-

sity function (7) is shown in Fig. 1. In particular, Figs.

1(a)–1(l) correspond to situations Xi; i ¼ 1; 2;…; 12, respec-

tively. Also, we magnify each situation to look at the details

of a small region [�4, 4]. Here, we observe that hðxÞ is

explosive-like for X1;X3;X5;X9, unimodal for X2;X6;
X7;X10, and bimodal for X4;X8;X11;X12. And this is more

evident within the small interval [�4, 4].

Alternatively, we can also summarize the bifurcation

transitions in a more precise way. We use a directed node-

link diagram layout with Graphviz,38 a popular open-source

graph drawing package developed at AT&T Labs, to show

the relationship among these bifurcation transitions. Let us

now set off the attributes of necessary nodes and edges.

More specifically, the nodes X1;X3;X5;X9 are assigned

shape triangle filled with a shade of red, the nodes X2;X6;
X7;X10 are specified shape circle filled with a shade of

lightskyblue, and the nodes X4;X8;X11;X12 are appointed

shape doublecircle filled with a shade of lightgreen.

Different shapes and colors of the shade are used to distin-

guish the three kurtosis: explosive-like, unimodal, bimodal.

Besides, the edge labeled k is drawn as a dashed line to rep-

resent undergoing bifurcation by varying k, the edge labeled

q is set as a dotted line to represent undergoing bifurcation

by varying q, and the edge labeled a is established as a solid

line to represent undergoing bifurcation by varying a.

Moreover, edge points are listed left-to-right regardless of

the orientation of the edge. Based on the above settings of

the attributes of nodes and edges, we make the edges from

node Xi to node Xj to depict the transition between these

kurtosis shape according to Theorems III.1, III.2, and III.3,

where i; j ¼ 1; 2;…; 12. Then the required nodes and edges

are created with the tool dot, and the corresponding layout

(bifurcation diagram) is illustrated in Fig. 2.

Remark III.3. From the above theoretical and numerical
results, the non-Markovian system (6) possesses very diverse
and interesting bifurcation phenomena. In addition to the usual
unimodal ! bimodal transition, we also detect several new
transitions including explosive-like! unimodal, explosive-like
! bimodal and explosive-like! unimodal! bimodal.

Remark III.4. P-bifurcation under Brownian motion

(Theorem III.2 (ii) with a¼ 0): in this situation TFOU pro-
cess (6) reduces to the classical OU process (4), and there is
only one bifurcation parameter q. Our obtained results imply
that the P-bifurcation occurs with the transition from
explosive-like to unimodal.

Remark III.5. P-bifurcation under fractional Brownian

motion (Theorem III.2 (ii) with 0< a< 1/2 and Theorem III.3
(ii)): in these situations, TFOU process (6) becomes FOU pro-
cess (5), and the parameters q and a have been chosen as
bifurcation parameter. It has been shown that the former
undergoes a P-bifurcation with the transition from explosive-
like to unimodal, while the latter evolves from explosive-like to
unimodal to bimodal.

Remark III.6. The adopted approach in Theorem III.1
needs to fix the parameters a and q, so it is impossible to
study the stochastic bifurcation phenomena of models (4)
and (5), since there is no bifurcation parameter in this situa-
tion. However, stochastic P-bifurcation does occur in model
(6) under some appropriate conditions by choosing the tem-
pered parameter k as bifurcation parameter.

Remark III.7. As stated in Theorem III.2 (ii) above, P-
bifurcation does occur in OU process (4) and FOU process
(5), discussed in Remarks III.4 and III.5, respectively. Since
TFOU process (6) includes models (4) and (5) as special
cases, (6) shares the same bifurcation phenomena in
Theorem III.2 (ii). In addition, there is one more free positive
parameter k, and thus TFOU process (6) exhibits more com-
plex bifurcation dynamics in comparison to models (4) and
(5), given in Theorem III.2 (iii) to supply more details.

Remark III.8. It is necessary to point out that we limit
ourselves to detecting P-bifurcation as a single active
parameter varies. As a matter of fact, one can extend our
results to codimension one (two) P-bifurcations when two
(three) parameters are designated to be active. As an exam-
ple, there is codimension one P-bifurcation as active param-
eter pair ðq; kÞ changes from (0, 0) to (1, 1) for fixed
�1=2 < a < 1=2, and codimension two P-bifurcation occurs

TABLE I. The relationship between ða; q; kÞ and hðxÞ.

ða; q; kÞ hðxÞ

X1 [ X3 [ X5 [ X9 Explosive-like

X2 [ X6 [ X7 [ X10 Unimodal

X4 [ X8 [ X11 [ X12 Bimodal
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when active parameter triple ða; q; kÞ shifts from (�1/4, 0, 0)
to (1/4, 1, 1). This extension is straightforward and can be
obtained by simply rereading the paper carefully.

IV. CONCLUSION

To effectively characterize the P-bifurcation of non-

Markovian systems, we have proposed a new approach based

on the spectral density function, which opens a possible way

to understand the theory of stochastic P-bifurcation from a

Markovian framework to a non-Markovian framework. We

have demonstrated that the TFOU process exhibits very

diverse and interesting bifurcation phenomena. Our approach

in this paper not only results in unambiguously recovering

the usual unimodal! bimodal transition within Markovian

FIG. 1. Spectral density (7) with different triple ða;q; kÞ.
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framework but also leads to the benefits of detecting several

new transitions including explosive-like ! unimodal,

explosive-like ! bimodal, and explosive-like ! unimodal

! bimodal under the framework of non-Markovian systems.

Note that the classical Kolmogorov 5/3 spectral model

was proposed for turbulence in the inertial range,39 and then

FBM with H¼ 1/3 was shown to exhibit the Kolmogorov

spectrum, which indicates that FBM provides a stochastic

process model for turbulence in the inertial range.40

Recently, TFBM was demonstrated to fit turbulent velocity

data over the entire frequency range.41 Based on the spectral

density of the current model, we can recover the

Kolmogorov spectrum with special triple ða; q; kÞ. Hence,

the current model can provide another alternative model for

turbulence. Additionally, TFGN can be considered as the

Yaglom noise, which is the tempered fractional integral of a

white noise, but different from the time-fractional or space-

fractional turbulence model. The former considers the mem-

ory effect from the external random environment to exhibit

the Kolmogorov spectrum, while the latter involves the

memory effect from the internal dynamical evolution. Both

of them can recover the Kolmogorov spectrum for

turbulence.

The proposed method could apply to a wider class of the

nonlinear stochastic differential equations within the non-

Markovian framework provided that the corresponding spec-

tral density is available. We also provide some remarks on

possible extension of our results to situations (codimension

one P-bifurcation and codimension two P-bifurcation) that

are not covered here, so much more work needs to be done

to gain more insights into this issue. Last but not least, we do

believe that it may fertilize the well-studied stochastic bifur-

cation theory from one side, and it can open a possible way

to discern the theory of stochastic bifurcation within the non-

Markovian framework from the other.
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