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Abstract

This paper presents an application of Iterative
Learning Control (ILC) methodology to the tem-
perature profile control of a Batch Chemical Reactor.
The D-type and P-type ILC schemes are applied and
compared. The feedback assisted (FA) ILC and the
ILC with current iteration tracking error (CITE) are
discussed together with the high-order ILC schemes.
The effectiveness of the proposed schemes is demon-
strated by simulation studies using a simplified poly-
merization reactor model.
Keywords: Batch-Process Control; Temperature
Profile Tracking; Iterative Learning Control;

1 Introduction

Most large-scale chemical engineering processes have
traditionally been operated in a continuous manner.
However, batch processes, particularly batch chemical
reactors, have drawn increasing attentions from
industries.

A typical batch reactor is shown in Fig. 1.
Reactant is charged into the vessel. Steam is fed into
the jacket to bring the reaction mass up to a specified
temperature. Then cooling water is added to the
jacket to remove the exothermic heat of reaction such
that the reactor temperature can follow the prescribed
temperature profile.

It is well known that it is difficult for a conventional
control to track a given trajectory (pattern) in a
finite time (batch duration) interval. An Iterative
Learning Control, on the other hand, is able to
utilize the system’s repetition to compensate or reject
uncertainties and disturbances and hence able to
track the prescribed trajectory in a finite interval.
In particular, the control efforts of the current batch
incorporate the control efforts and tracking errors of
the previous batch.

In this paper, through intensive simulation studies,
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Figure 1: A Chemical Batch Reactor

a number of ILC schemes are investigated for the tem-
perature profile tracking control of a batch polymer-
ization process. The simplified plant model is given
in Section 2. Among the ILC schemes, a feedback-
feedforward structure, which is either feedback-assisted
ILC or ILC with current iteration tracking error.
High-order ILC is used and the effectiveness is demon-
strated. It is shown in this paper that the ILC schemes
with feedback or high-order updating are effective for
batch reactor control.

2 A Batch Reactor Model

A simplified batch polymerization reaction model [4]
is used for the simulation study in which the jacket
effect is neglected. A more complete batch reactor
model can be found in [5]. An equivalent thermal flow
Q is from manipulating the valves for steam or cooling
water flow control. The valves are under split range
control so that steam valve and cooling water valve can
not be opened simultaneously. Hence Q is regarded as
a total control. The reaction equations are given as
follows:
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where c , xM and p are the concentrations of initiator,
monomer and polymer respectively; T is the temper-



ature inside the reactor ( ◦K ). Q′ is assumed to be 0
which means that no additional initiator is added dur-
ing the reaction, i.e., all reactants have been filled in
the reactor at the beginning. Reaction rate constants
ki, i ∈ {d, p, t} are functions of T where d, p, t represent
the phases of beginning, growing and stopping.

ki = ki0 exp(− Ei

RT
), i = d, p, t. (2)

The relevant constants in (1) and (2) are given in
[4]. The initial states are c(0) = 200, xM (0) = 500,
p(0) = 0 and T (0) = 300 ◦K .

A well planned temperature profile Td(t) is given as

Td(t) =

{

Te

tm
t, if 0 ≤ t ≤ tm;

Te, if tm ≤ t ≤ te,
(3)

with settings te = 2 hr.; tm = 1 hr. and Te = 435 ◦K .

For comparative purpose, a simple P-type feedback
controller

Q(t) = Kpe(t), e(t)
△
= Td(t) − T (t) (4)

is first applied and the responses are shown in Fig. 2.
Clearly, a conventional controller is hard to track the
temperature profile in a finite time interval.

T(t), Kp=5;                  
Td(t), desired temp. profile;
T(t), Kp=10.                 
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Figure 2: Responses for simple P-controllers

3 Iterative Learning Control

Schemes

The basic idea of ILC is to update the control signal of
the whole tracking period [0, T ] in a pointwise manner.
In the following we briefly introduce four ILC schemes
used for temperature control of the batch polymeriza-
tion reaction.

3.1 D-type ILC

The D-type ILC input signals are updated by using
the derivative of the tracking error in the previous it-
eration. In this case, the ILC updating law is given
by

Qi+1 = Qi + Kdėi(t), ėi(t)
△
= Ṫd − Ṫi (5)

where Kd is the learning gain which is to be properly
chosen such that ei → 0 as i → ∞. The convergence
condition is that [3]

‖1 − CBKd‖ < 1 (6)

where B and C are input distribution matrix and out-
put matrix respectively. In (1), the system input is Q
and output is T , hence CB = 1. Kd should be selected
to satisfy the condition | 1 − Kd |< 1.

3.2 High-order ILC

It is quite intuitive that if more of the previous
control efforts and tracking errors are used, better
ILC performance can be expected.

It is interesting to investigate the ILC laws in the
iteration number i-direction. The conventional ILC
updating law [3]

ui+1(t) = ui(t) + Γėi(t)

along the ILC iteration number i-direction is obviously
a pure integral controller. Suppose the initial control
u0(t) = 0, then

ui+1(t) = Γ

i
∑

j=0

ėj(t),

which is an integrator of ė(t) in the i-direction. If we
use a PI controller in the i-direction

ui+1(t) = k′

P ėi(t) + k′

I

i
∑

j=0

ėj(t),

the corresponding ILC updating law takes the form

ui+1(t) = ui(t) + Γėi(t) + Γ1ėi−1(t)

where Γ = k′

P + k′

I and Γ1 = −k′

P . By using the
difference ėi(t) − ėi−1(t) as the approximation of the
derivative along the i-direction, a PID controller in i-
direction

ui+1(t) = k′

P ėi(t) + k′

I

i
∑

j=0

ėj(t) + k′

D(ėi(t) − ėi−1(t))

will result in the following ILC updating law

ui+1(t) = ui(t) + Γėi(t) + Γ1ėi−1(t) + Γ2ėi−2(t).

where Γ = k′

P + k′

I + k′

D, Γ1 = −k′

P − 2k′

D and
Γ2 = k′

D. This is a high-order iterative learning
controller. The above arguments indicate that the
high-order ILC is capable of giving better ILC perfor-
mance than the traditional integral controller.

In general, an N -th order D-type ILC updating law
is

Qi+1 = Qi +

N
∑

j=1

Kdj
ėi−j+1(t) (7)



where the learning gains should satisfy that the roots
of (8) are inside the unit circle.

(1 − CBKd1
)z−1 −

N
∑

j=2

CBKdj
z−j = 0 (8)

where z is one step shifting operator. According to [6],
a sufficient condition is given by

| 1 − CBKd1
| +

N
∑

j=2

| CBKdj
|< 1. (9)

3.3 P-type Iterative Learning Feed-
back Control

From [7], it is clear that better ILC performance can
be achieved by introducing a feedback loop. The
control system is actually an ILC controller in the
iteration number direction and a feedback controller
in the time direction simultaneously ( Fig. 3).
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Figure 3: Block-Diagram of Iterative Learning Feed-
back Control

In practice, P-type ILC scheme is preferred because
the D-type ILC (5) is sensitive to the measurement
noise. According to Fig. 3, the P-type scheme can be
written as















Qi(t) = Q
ff
i (t) + Q

fb
i (t)

Q
fb
i (t) = Kpei(t)

Q
ff
i (t) = Qi−1(t) + Kplei−1(t)

= Q
ff
i (t) + (Kp + Kpl)ei−1(t)

. (10)

A convergence condition can be found in [8] for
discrete-time nonlinear systems where the role of feed-
back is regarded as an assistance to the ILC.

3.4 P-type ILC with CITE

Consider the PI-controller in the ILC iteration direc-
tion as follows:

Qi(t) = k′

I

i
∑

j=0

ej(t) + k′

P ei(t). (11)

Writing (11) in an iterative form, we have

Qi(t) = Qi−1(t) + k′

Iei(t) + k′

P (ei(t) − ei−1(t))

= Qi−1(t) + Kpei(t) + Kplei−1(t) (12)

where Kp = k′

I + k′

P , Kpl = −k′

P . Updating law (12)
is called as the ILC with Current Iteration Tracking
Error (CITE). A convergence condition was given in
[9] where k′

P is assumed to be 0. It was shown in [9]
that the convergence as well as the robustness of the
ILC with CITE scheme (12) is independent of the
choice of Kp, the CITE gain. This actually invokes a
high-gain ILC as indicated in [10].

High-order scheme can be synthesized with P-type
ILC and CITE.

Qi(t) = p′Qi−1(t)+(1−p′)Qi−2(t)+Kpei(t)+Kplei−1(t)
(13)

where p′ is a positive fraction (p′ ∈ [0, 1]). Improved
ILC convergence property can be expected as dis-
cussed in Sec. 3.2.

4 Simulation Studies

Simulations are carried out in MATLAB V4.2c. RK-4
is used to numerically integrate (1) with a fixed step
h = 0.1 hr. Total number of integration points is Np =
201.

4.1 D-type Iterative Learning Control

To obtain the derivative information with low noise
level, numerical differentiation is conducted using a
five-point formula as follows:















































ˆ̇e(1) = −25e(1)+48e(2)−36e(3)+16e(4)−3e(5)
12h

ˆ̇e(2) = −3e(1)−10e(2)+18e(3)−6e(4)+e(5)
12h

ˆ̇e(j) = e(j−2)−8e(j−1)+8e(j+1)+e(j+2)
12h
(j = 2, · · · , Np − 2)

ˆ̇e(Np − 1) = 1
12h

{−e(Np − 4) + 6e(Np − 3)
−18e(Np − 2) + 10e(Np − 1) + 3e(Np)}

ˆ̇e(Np) = 1
12h

{3e(Np − 4) − 16e(Np − 3)
+36e(Np − 2) − 48e(Np − 1) + 25e(Np)}

(14)

D-type ILC scheme (5) is first studied with Kd = 0.5.
The high-order scheme (7) is also considered (N = 2)
with Kd1

= Kd, Kd2
= ±10%Kd. A set of results with

the same computation conditions are presented in
Fig. 4(a). Clearly, the high-order ILC scheme may
give a better ILC convergence performance provided



a negative Kd2
is used. This can be analyzed by the

position of the pole from (8).

It can be observed from Fig. 4(a) that the tracking
error bound is unacceptably large at the beginning.
This is the overshoot of the response along i-direction.
A feedback loop (4) may be introduced to reduce it,
where Kp is set to 20. Three similar cases are summa-
rized in Fig. 4(b). The tracking error bound decreases
monotonically. This is because the overall system un-
der feedback control becomes more dissipative.
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(a) Kp = 0.0 (D-type ILC only) (D-I scheme)
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Figure 4: Convergence comparisons for D-type ILC
schemes

4.2 P-type ILC plus Feedback Con-
troller

As discussed in Section 3.3 and Section 3.4, ILC
schemes (10) and (12) under a feedback structure
illustrated in Fig.3 are essentially the same. We now
concentrate on the P-PI scheme (11) which uses P
component of tracking error in the time t-direction
while PI components of tracking error in the ILC
iteration number i-direction. Hence in this sense,
D-type scheme (5) is a D-I one while the scheme used
in Fig. 4(b) is PD-I.

We will investigate the effects of different choices
of learning gains Kp and Kpl on the convergence
performance of ILC scheme (12).

Case 1. Kpl = 0. In this case, only CITE is used,
i.e.,

Qi(t) = Qi−1(t) + Kpei(t). (15)

This can be regarded as a P-I scheme as discussed
in the above. It is interesting to note that from the
analysis of [9], the convergence and robustness of ILC
scheme (15) are independent of the choice of Kp. How-
ever, larger Kp will give better ILC performance as
also indicated in [11]. This is clearly illustrated by
Fig. 5.
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Figure 5: Convergence comparisons for P-I type
(ILC+CITE) schemes

Case 2. Kpl 6= 0. This is P-PI type ILC. Along the
i-direction, the PI gains k′

P = −Kpl, k′

I = Kp + Kpl.
It is intuitive from the conventional PID controller
tuning that increasing k′

I will reduce the convergence
bound of tracking error. This is similar to the effect
of an integral (I) controller in the time-domain. This
effect was illustrated in Fig. 5.

We now observe the effect of Kpl under a fixed Kp.
Qualitatively speaking, to guarantee the ILC conver-
gence (stability in the i-direction), k′

P , i.e., Kpl can
not be arbitrarily chosen. We considered 5 sub-cases
for Kpl = 2, 0.5, 0,−2 and −4 respectively. The re-
sults are presented in Fig. 6. From the comparison in
Fig. 6, the tuning of Kpl and Kp is possible based on
the existing PID tuning method which deserves future
research.
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Figure 6: Convergence comparisons for P-PI type
(ILC+CITE) schemes

Case 3. High-order in Control. As described in
(13), the high-order can be in control terms. This in
fact adds a input signal filter. In this case, a first order
filter. Different choices of p′ may result in different
ILC convergence transients. Fig. 7 shows the results
for p′ = 1, 0.9, and 0.7 respectively. It is interesting to
observe that ILC convergence performance improves



as p′ slightly decreases from 1.
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Figure 7: Convergence comparisons for P-type scheme
(13)

Case 4. Kpl = −4; Kp = 5, 10, 15. Similar to Case
1, we will show that under a fixed Kpl, the ILC con-
vergence improves when Kp increases. This is well
illustrated by Fig. 8
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Figure 8: Convergence comparisons for P-PI type
(ILC+CITE) schemes

The converged results are almost the same. A set of
plots for the system states in the 10-th ILC is given in
Fig. 9. The monomer condensation finally decreases
to 0 while the polymer condensation keeps increasing,
according to the predesigned temperature profile Td(t).

x_M: Monomer concentration
p: Polymer concentration  
T: Temperature (K)        
T_d: Desired Temp. Profile
Q: Control                
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Figure 9: Converged system states and input (at the
10th ILC iteration)

5 Concluding Remarks

Iterative Learning Feedback Control method is pro-
posed for the tracking control of the finite-time tem-
perature profile control of a chemical reactor system.
D-type, P-type, as well as high-order ILC schemes are
presented. ILC with a feedback structure is discussed
in terms of FA-ILC (Feedback Assisted) and ILC with
CITE (current iteration tracking error). Among the
proposed schemes, the CITE P-type scheme is the
most preferable due to its simplicity and effectiveness.
Simulation studies have illustrated the effectiveness of
the ILC schemes which is consistent with analytical
results and clearly indicates the applicability of ILC
schemes to batch processing problems.
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