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A B S T R A C T

This article proposes a novel fractional order sliding mode control for a class of fractional order and integer order
systems with mismatched disturbances. First, a new fractional order disturbance observer is designed to estimate
the fractional order differential of the mismatched disturbance directly. Second, the fractional order sliding
surface and controller are proposed based on the designed disturbance observer. Our method can deal with
mismatched disturbance and has better control performance with faster response speed, lower overshoot, and
less chattering effect. The simulations on Quad–Rotor UAV and Maglev suspension systems demonstrate the
effectiveness of the proposed method.

1. Introduction

Fractional calculus is a powerful method to describe data memory
and heredity. It has the property of history dependence and long range
correlation. It is the generalization of classical integer order calculus. It
can describe some real systems more accurately than the traditional
integer order method. Researchers have gradually found that fractional
order calculus can characterize some non-classical phenomena in nat-
ural sciences and engineering applications. The theory of fractional
calculus has been successfully applied in biology, physics, chemistry,
automatic control, materials science, engineering, etc. [1,2]. As an
important tool to improve the control performance, fractional calculus
combines with many traditional control schemes, such as fractional
order PID control [3], fractional order adaptive control [4], fractional
order optimal control [5] and fractional order sliding mode control
[6–8].

In real life, uncertainty and external disturbance often exist in the
actual systems. External disturbances can be divided into two types:
matching disturbances and mismatched disturbances. It is an important
task to control the system and judge the stability of the system with
mismatched disturbance. Sliding mode control (SMC) is an effective
robust control method to deal with external disturbance. Several im-
proved SMC methods have been proposed based on linear matrix in-
equality (LMI) [9], Riccati approach [10], adaptive technique [11], and

neural network [12]. Integral sliding mode control (I-SMC) designs an
integral sliding surface for a class of nonlinear fractional order systems
[13,14], furthermore an improved stable sliding surface is given in
[15]. Yet the closed-loop stability is not proven in these literatures.
Lately the closed-loop stability is proven via the indirect Lyapunov
method [16]. In I-SMC, a high-frequency switching gain is designed to
force the states arrive the integral sliding surface. However, in the case
of mismatched disturbances, I-SMC method can make states reach the
desired equilibrium on the sliding surface. But at the same time, the I-
SMC method may bring some adverse effects to the systems, such as
large overshoot and long settling time. It is reported that the I-SMC
method is applied to various systems [17,18].

When integer order SMC methods is used to deal with fractional
order system, they always reject the disturbances in a robust way, but
chattering is a serious problem that needs to be solved. [19–21] con-
sider the chattering free control to avoid the serious chattering phe-
nomenon in SMC. Kim [22] proposes a novel switching surface and a
robust fractional control law. Subsequently, the sign function of the
control input is transferred into the fractional derivative of the control
signal in order to avoid the chattering. A new dynamic PID-SMC for a
class of uncertain nonlinear systems is proposed and an adaptive
parameter tuning method is used to estimate the unknown upper
bounds of the disturbances [21]. This approach can eliminate the
chattering phenomenon caused by the switching control action and
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realize high-precision performance.
Moreover, the disturbance observer (DOB) technique is also used to

counteract the mismatched uncertainties and reduce chattering in the
systems [22–25]. Yang et al. [26] proposes a disturbance observer
based sliding mode control approach for systems with mismatched
uncertainties. Li et al. [27] designs a sliding mode control based on
nonlinear disturbance observer to counteract the mismatch disturbance
and reduce the chattering. Zhang et al. [28] develops a disturbance
observer -based integral sliding-mode control approach for continuous-
time linear systems with mismatched disturbances. The disturbance
observer is used to get the estimation of the disturbance, and the result
can be incorporated in the controller to counteract the disturbance.

Considering the advantages of fractional order calculus, the frac-
tional order is incorporated into the design of sliding mode control,
which can improve the chattering problem and speed up the response of
the closed-loop system. Wei proposed an adaptive backstepping output
feedback control for a class of nonlinear fractional order systems [29].
In [30], the fractional order sliding mode control (FOSMC) for a single
link flexible manipulator is realized. The control law of the proposed
FOSMC scheme is designed using Lyapunov stability analysis. It has
better control performance and is robust to external load disturbance
and parameter variations. However, there is little research effort to
combine FOSMC with fractional order disturbance observer, and then
apply it to fractional order dynamic systems with mismatched dis-
turbances. Pashaei and Badamchizadeh [31] tries to design a new
FOSMC based on a nonlinear disturbance observer that exhibits better
control performance, such as fast and robust stability, the disturbance
and chartering rejection.

In this paper, we propose a new fractional order disturbance ob-
server. It can estimate the fractional order derivative of the disturbance
directly. The estimation of unmatched disturbance can be used to de-
sign sliding mode control law more conveniently. Subsequently, we
designed a new fractional order siding mode control via a fractional
order disturbance observer. The proposed FOSMC is generally applic-
able for both fractional order systems and integer order systems. The
proposed method also shows good control performance and reduces the
system chattering.

The main contributions of the paper are as follows. A new fractional
order disturbance observer is proposed to estimate the mismatch dis-
turbance and the estimation error is upper bounded. The main ad-
vantage is that it can get the fractional order of the mismatch dis-
turbance directly. Based on the proposed DOB, a novel FOSMC method
is proposed. It has better performances in weakening tracking error and
chattering effect, compared with the traditional sliding mode control.
The proposed FOSMC-DOB has less overshoot and faster convergence
speed. Moreover, the proposed FOSMC-DOB is applicable not only for
fractional order systems but also for integer order systems. In order to
verify the excellent properties of the proposed FOSMC-DOB, a Quad-
Rotor UAV system with integer order and a Maglev suspension system
with fractional order are given. The proposed method shows good
control performance in these systems. It can decrease the tracking error
with a high rate of speed and weak chattering. Moreover, the FOSMC-
DOB is not sensitive with controller parameters.

This paper is structured as follows. Section 2 gives the basic defi-
nitions of fractional calculus, the description of integer order and
fractional order system. Section 3 contains two parts, one is the design
of the fractional order DOB, and another is the design of FOSMC.
Section 4 shows the experimental results for two different actual
system. Finally, the conclusions are drawn in Section 5.

2. Basic knowledge and problem formulation

2.1. Basic definitions of fractional calculus

There are several definitions for fractional order derivatives [32],
and three most commonly used definitions are the

Grünwald–Letnikov′s, Riemann–Liouville′s, and Caputo′s derivative
definitions. In this paper, we use the Riemann–Liouville′s definition.

Definition 1. The Riemann–Liouville fractional integral of α order of a
continuous function f(t) is defined as,

∫= − > ∈− − +D f t
α

t τ f τ τ t t α R( ) 1
Γ( )

( ) ( )d , , ,R
α

t

t α 1
0

0 (1)

where m is the largest positive integer number satisfying the following
condition − < <m α m1 . Γ is the Gamma function, which is defined as
following,

∫=
∞ − −q x e dxΓ( ) .q x

0
1

(2)

Definition 2. The Riemann–Liouville fractional derivative of α order of
a continuous function f(t) is defined as,

∫= ⎡
⎣⎢ − −

⎤
⎦⎥− +D f t d

dt m α
f τ

t τ
dτ( ) 1

Γ( )
( )

( )
.R

α
m

m t

t

α m 10 (3)

It should be noted that the fractional integral of order α>0 is re-
presented by −D α.

Property 1. For =α n, where n is an integer, the operation D f t( )t
α is

the same as the integer order calculus, i.e., =D f t f t( ) ( ),t
n d

dt

n
n and also

for =α 0, we have = =D f t f t f t( ) ( ) ( )t
d
dt

0 0
0 .

Property 2. The fractional order integration or differentiation calculus
are linear operations, which is similar to the integer order calculus,

+ = +D λf t μg t λD f t μD g t( ( ) ( )) ( ) ( ).t
α

t
α

t
α (4)

Property 3 ([33]). For the arbitrary fractional order,
> > ∈ −α β β m m0, 0, ( 1, ), the following equalities hold for the

hybrid fractional derivative and integral operation,

= +D D f t D f t( ( )) ( ),t
α

t
β

t
α β (5)

=− −D D f t D f t( ( )) ( ),t
α

t
β

t
α β (6)

∑= − −
+ −

− − +

=

−

=

−
D D f t D f t D f t t t

α j
( ( )) ( ) [ ( )] ( )

Γ(1 )
,t

α
t
β

t
α β

j

m

t
β j

t t

α j

1

0

0 (7)

and D f t( )t
β j- are bounded at =t t0.

Property 4 ([33]). The fractional derivative operator D f t( )t
α commutes

with f t( ),d
dt

n
n i.e., that

= +D D f t D f t( ( )) ( )m α α m (8)

only if at the lower terminal =t t0 of the fractional differentiation the
function f(t) satisfies the conditions

= = … −f t s m( ) 0( 0, 1, , 1).s( )
0 (9)

Lemma 1 ([19]). For an integrable function f(t), if there is at least one
t1∈ (0, t) such that f(t1)≠ 0, then there is a positive constant N such that

≥−D f t N( )α .

2.2. Problem formulation

Consider a general dynamical system with mismatched external
disturbances,

⎧
⎨⎩

= + +
=

D x t Ax t Bu t B d t
y t Cx t

( ) ( ) ( ) ( )
( ) ( )

,
β

d

(10)

where β∈ (0, 1] is the order of the system, x(t)∈ Rn is the state variable,
u(t)∈ Rm is the control signal, y(t)∈ Rp is the output and d(t)∈ R1 is the
mismatched external disturbance. A∈ Rn× n is the state matrix.
B∈ Rn×m is the control matrix. Bd∈ Rn×1 is the disturbance matrix.
C∈ Rp× n is the output matrix. System (10) describes a fractional-order
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dynamic system when β∈ 0, 1, and if =β 1, it reduces into a class of
integer order systems,

⎧
⎨⎩

= + +
=

x t Ax t Bu t B d t
y t Cx t
˙ ( ) ( ) ( ) ( )
( ) ( )

d

(11)

Assumption 1. The mismatched disturbance d(t) is bounded, ‖d
(t)‖≤ ε, where ε is a positive constant.

We argue that little benefit can be gained from using advanced
control technique such as DOB, if d(t) is a white noise. For the general
fractional/integer-order systems (10) with mismatched disturbances,
the designed controller u(t) is to make the output asymptotically
tracking the desired reference yd(t) in finite time, and the tracking error
approaching to zero without any effect from the external mismatched
disturbances.

3. Design of fractional order sliding mode control

The SMC has high robustness in restraining the matched dis-
turbances. The traditional SMC method is not effective to deal with
system (10) that contains the mismatched disturbances. So we present a
fractional order disturbance observer to estimate the mismatched dis-
turbance, then design a improved FOSMC based on it.

3.1. Fractional order disturbance observer

As we know, the integer order disturbance observer defined as fol-
lowing always is used to estimate the disturbance d(t) [22,23],

̂
⎧
⎨⎩

= − + − +

= +

p t LB p t Lx t L Ax t Bu t

d t p t Lx t

˙ ( ) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( )
,

d

(12)

where ̂d t( ) is the estimation of the disturbance d(t), p(t) and L are the
auxiliary vector and the gain matrix of the observer, respectively. The
design of L should satisfy that − LBd is Hurwitz.

The limitation of the traditional integer order disturbance observer
is that we can not obtain any information about the fractional order
derivative of the disturbance d(t) except its estimation. So a new frac-
tional order disturbance observer should be designed to directly get the
fractional order derivative of d(t) as following,

̂

⎧

⎨
⎪

⎩⎪

= − +

− +

= +

+ − − −

− −

+ − + −

D p t LB D p t LD x t

L AD x t BD u t

D d t D p t LD x t

( ) ( ( ) ( ))

( ( ) ( ))

( ) ( ) ( )

,

α β
d

α β α

α β α β

α β α β α

1 1

1 1 (13)

where ̂d t( ) is the estimation of the disturbance d(t), p(t) is the auxiliary
vector of the observer, L is the gain matrix of the observer, and α∈ (0,
β) depends on the order of FOSMC which is to be designed in
Section 3.2.

The estimation error of d(t) is

̂= −e t d t d t( ) ( ) ( ).d (14)

The fractional order calculus of ed(t) is

̂= −+ − + − + −D e t D d t D d t( ) ( ) ( ).α β
d

α β α β1 1 1 (15)

Lemma 2 ([34]). Assume A is Hurwitz and has n distinct eigenvalues. Let X
be a nonsingular matrix such that = …−XAX λ λdiag( , )n

1
1 . There exist an

positive constant σ such that

≤e σe ,At λ A t( )max (16)

where = −σ X X1 .

Lemma 3. For the proposed fractional order disturbance observer (13),
+ −D e t( )α β

d
1 is bounded and satisfies

≤+ −D e t ζ( ) ,α β
d

1 (17)

where ζ is a positive scalar.

Proof. According to (13), (15) and property 4, we have,

̂= −
= − −
= − −

+ −

+ − + −

+ − + − +

+ − + − + −

d D e t
dt

D d t D d t
D d t D p t LD x t
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( ( ))
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˙ ( ) ( ) ( ( )).

α β
d
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1

2 2

2 2 1

1 2 1 (18)

Substitute the system (10) into (18),

̂

= − − + +
= + + + +
− + +

= + −
= −

+ −

+ − + − + − + − + −

+ − + − + − + −

+ − + − + −
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+ − + −

d D e t
dt
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Define = −M LB ,d and = + −d t D d t( ) ( ),α β
new

1 so
= + −e t D e t( ) ( ),d

α β
d

1
new then (19) can be written as

= +e t d t Me t˙ ( ) ˙ ( ) ( ).d dnewnew new (20)

Taking the integration of (20) gives
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d
t M t τ

0
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newnew new (21)

Based on Riemann–Liouville’s derivative definition and Assumption
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M is Hurwitz matrix, so < ≤λ M eRe ( ) 0, 1λ M t
max

( )max .
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≤ + + +

( )

e t σ e δ d

Mσδ
λ M

e

σ e δ d Mσδ
λ M

( ) (0) (0)
1
( )

1

(0) (0) 1
( )

d d

λ M t

d

new

max

( )

new
max

new new

max

new
(24)

Define = + + −ζ σ e δ d Mσδ(0) (0)d λ Mnew
1

( )new max
and take it into

(24), the (17) can be immediately obtained. □

Consider the integer order system (11), the disturbance observer
(13) transfers to

̂
⎧
⎨⎩

= − + − +

= +

+D p t LB D p t LD x t L AD x t BD u t

D d t D p t D Lx t

( ) ( ( ) ( )) ( ( ) ( ))

( ) ( ) ( )

α
d

α α α α

α α α

1

(25)

Corollary 1. Towards the disturbance observer (25) for integer order
system (11), Dαed(t) satisfies the following inequality

≤D e t ξ( ) ,α
d (26)

where ξ is a positive scalar.

The integer order system can be viewed as a special case of the
fractional order case. Thus the proof of Corollary 1 can be omitted.

3.2. Fractional order sliding mode control

In this section, a novel fractional order sliding mode control is
proposed for the systems with mismatched disturbances.

Assuming that the target value of the output y(t) is yd(t), then the
tracking error is = −e t y t y t( ) ( ) ( )y d .

Considering the system (10), the fractional order sliding surface is
designed as,

= +s t a e t a D e t( ) ( ) ( ),y
α

y1 2 (27)

where a1, a2 are designed parameters, is the fractional order of the
sliding surface. α∈ (0, β) is different from the order of the system (10),
and the good properties of fractional calculus can be applied into the
sliding mode control.

According to the sliding surface and the system, the time derivative
of (27) is

= +
= + + + −+ −

s t a e a D e
a e a D C Ax Bu B d a D y

˙ ( ) ˙ ˙
˙ ( ) ˙

.
y

α
y

y
α β

d
α

d

1 2

1 2
1

2 (28)

Setting =s t˙ ( ) 0, the equivalent control law can be calculated,

̂⎜ ⎟= ⎛
⎝

− ⎞
⎠

− −− − + − −u t CB D y a
a

D e B Ax B B d( ) ( ) .eq
β

d
α β

y d
1 1

2

1 1

(29)

In order to satisfy the sliding condition in the presence of the mis-
matched disturbances, the reaching law is

⎜ ⎟= ⎛
⎝

− + ⎞
⎠

− − − +u t CB
a

D k s k sign s( ) ( ) 1 ( ( )) ,r
α β1

2

1
1 2

(30)

where k1, k2 are constant gains.
The fractional order sliding mode control law is

̂
⎜ ⎟

= +

= ⎛
⎝

− + − ⎞
⎠

− −

− − − + − +

− −

u t u t u t

CB D y
a

D k s k sign s a
a

D e

B Ax B B d

( ) ( ) ( )

( ) 1 ( ( ))

.

eq r

β
d

α β α β
y

d

1

2

1
1 2

1

2

1 1

(31)

If the matrix B is invertible, we can use its inverse directly.

Otherwise, we use the generalized inverse or pseudo-inverse of B when
the matrix B is not singular.

Theorem 1. For the general system (10), the fractional sliding order surface
(27) and the controller (31), the closed-loop system is stable if k1≥ 0,
k2≥ a2Bdζ. The output variable y(t) can asymptotically track the reference
yd(t) under the influence of the mismatched disturbance.

Proof. The Lyapunov function is defined as

=V s1
2

.2
(32)

Based on (28), then the time derivative of (32) is

̂

⎜

⎟

=
= + + + −

=
⎛

⎝
⎜ +

⎛

⎝
⎜

⎛

⎝
⎜ + ⎛

⎝
⎜

⎛
⎝

−

+ − ⎞
⎠

− − ⎞

⎠
⎟ + ⎞

⎠
⎟ −

⎞

⎠
⎟

⎞

⎠
⎟

= − − +
≤ − − −

+ −

+ − − − − +

− + − −

+ −

+ −

V ss
s a e a D C Ax Bu B d D y

s a e a D C Ax B CB D y
a

D k s

k sign s a
a

D e B Ax B B d B d D y

s k s k sign s a B D e
k s k a B D e s

˙ ˙
( ˙ ( ( ) ))

˙ ( ) 1 (

( ))

( ( ) )
( )

.

y
α β

d
β

d

y
α β β

d
α β

α β
y d d

β
d

d
α β

d

d
α β

d

1 2
1

1 2
1 1

2

1
1

2
1

2

1 1

1 2 2
1

1
2

2 2
1

(33)

In the previous Section 3.1, ≤+ −D e t ζ( )α β
d

1 is proved by the
proposed new fractional order disturbance observer (13). According to
(33) and observer (13), if k1≥ 0, k2≥ a2Bdζ, ≤V̇ 0, which implies that
the sliding surface can be attained in finite time.

The reaching time is calculated in the following.

≤ − − −
≤ − −

+ −V t k s k a B D e s
V t k a B ζ s

˙ ( ) ( )
˙ ( ) ( )

.d
α β

d

d

1
2

2 2
1

2 2 (34)

Taking the fractional integral α of (34) gives

− ≤ − −−
−

−D V t V t
α

k a B ζ D s( ) (0) ( )
Γ( )

( ) ,α
r

r
α

d
α1

1

2 2
(35)

where tr is the reaching time.
Based on Lemma 1 and =V t( ) 0,r (35) is

⎜ ⎟

− ≤ − −

≥
−

≥
−

≤ ⎛
⎝ −

⎞
⎠

−

−

−

−

V t
α

k a B ζ N

t
α k a B ζ N

V

t
α k a B ζ N

V

t V
α k a B ζ N

(0) ( )
Γ( )

( )

( )
Γ( )( )

(0)
1

( )
Γ( )( )

(0)

(0)
Γ( )( )

.

r
α

d

r
α d

r
α

d

r
d

1

2 2

1 2 2

1
2 2

2 2

α
1

1

(36)

Thus, the tracking error of output variables will converge to zero in
finite time. □

For the integer order systems (11), the fractional order sliding mode
control that we designed is still applicable. The formulation of FOSMC
is

Table 1
Quad-Rotor UAV system parameters.

Parameter Value

K fc 13.8N/V

Lb 0.325m
Lf 0.325m
Jp 0.9958 kgm2

Jr 0.5531 kgm2

Jy 1.5396 kgm2
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= +s t a e t a D e t( ) ( ) ( ),y
α

y1 2 (37)

̂
⎜ ⎟

= +

= ⎛
⎝

− + − ⎞
⎠

− −

− − −

− −

u t u t u t

CB y
a

D k s k sign s a
a

D e

B Ax B B d

( ) ( ) ( )

( ) ˙ 1 ( ( )) .

eq r

d
α α

y

d

1

2
1 2

1

2

1

1 1 (38)

Fig. 1. Output response of FOSMC-DOB and SMC-DOB.

Fig. 2. Tracking errors of FOSMC-DOB and SMC-DOB.

Table 2
The sums of the squared errors of the tracking error.

Sum of squared errors ey1 ey2 ey3

FOSMC-DOB 0.6966 0.0311 0.4563
SMC-DOB 32.0930 29.6042 31.3324
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Corollary 2. For the general integer system (11), the fractional sliding
order surface (37) and the controller (38), the closed-loop system is stable if
k1≥ 0, k2≥ a2Bdξ. The reaching time is

⎜ ⎟≤ ⎛
⎝ −

⎞
⎠

−
t V

α k a B ξ N
(0)

Γ( )( )
.r

d2 2

α
1

1

(39)

The integer order system can be viewed as a special case of the
fractional order case. Thus the proof of Corollary 2 can be omitted.

4. Simulation results

To evaluate and verify the efficiency and excellent properties of the
proposed FOSMC, two real systems are selected, namely Quad-Rotor
Unmanned Aerial Vehicle(UAV) system and Maglev suspension system.
First, we focus on the comparison of FOSMC and SMC, and the im-
provement of control effect for the integer order system. The attitude
control of Quad-Rotor Unmanned Aerial Vehicle system is used for this
simulation. Second, we demonstrate the good performance of the
FOSMC and analyze the influence of sliding mode parameters on the
control effect for the fractional order system. The Maglev suspension
system is selected for this simulation. At the same time, for both two
types systems, we demonstrate the good performance of the FOSMC
method. We use the Oustaloup recursive filter and the modified version
presented in [32] to evaluate fractional order differentiations. Gen-
erally speaking, Oustaloups approximation to fractional order operators
are good enough in most cases. Then a MATLAB object FOTF toolbox is
used to actualize the approximate calculation of FO differentiations and
system simulations.

4.1. Simulation results of integer order systems

The attitude control of Quad-Rotor UAV system is an integer order
system [35] which can be approximate described by

⎧
⎨⎩

= + +
=

x Ax Bu B d
y Cx
˙

,d

(40)

where =x p r y[ , , ]T presents pitch angle, roll angle, yaw angle, re-
spectively. =u V V V V[ , , , ]f r l b

T is the output of the motors. y is the
output of angles. The state matrix, input matrix, disturbance matrix and
output matrix A, B, Bd, C are given,

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

= = ⎡

⎣
⎢

⎤

⎦
⎥

A

l K
J

l K
J

l K
J

B

K l
J

K l
J

K l
J

K l
J

K l
J

K l
J

B C

0 0

0 0

0 0

,

2 2
0

0
3 3

0

0 0 0

,

[6 0 5] ,
1 0 0
0 1 0
0 0 1

.

f

p

f

r

b

y

fc f

p

fc f

p

fc f

p

fc f

r

fc f

r

fc b

y

d
T

1

2

3

(41)

The system parameters are listed in Table 1. The =K i( 1, 2, 3)i is
approximately equal to zero and can be ignored when the UAV flies at
low-altitude and low-speed.

Consider the tracking setting curves of output
=y t t[15 cos(0.5 ) 30 30 sin(0.2 )] ,d

T disturbance =d t35 cos(0.5 ). The
parameters of the controller and observer are listed as following:

= = = = = =a a k k α L6, 16, 28, 6, 0.9, [20 1 10].1 2 1 2 The simulation
results are shown in Figs. 1 –5.

The controller is

̂
= +

= ⎛
⎝

− + − ⎞
⎠

− −− − − −

u t u t u t

CB y D s sign s D e B Ax B B d

( ) ( ) ( )

( ) ˙ 1
16

(28 6 ( )) 3
8

.

eq r

d y d
1 0.9 0.1 1 1

(42)

The sliding surface is

= +s t e t D e t( ) 6 ( ) 16 ( ).y y
0.9 (43)

The tracking trajectory response of system states are shown in Fig. 1
(a)–(c). The tracking error of the two sliding mode control methods is
expressed in Fig. 2. The setting curve of the output, the output curve
with FOSMC-DOB and the output curve with integer order SMC-DOB
are showed in red dash-dotted line, dotted blue line and green solid
line, respectively. From the local enlarged figure, it is obvious that the
FOSMC-DOB has better performances than the traditional integer order

Fig. 3. Response curves of FOSMC-DOB.

Fig. 4. Response curves of FOSMC-DOB.

J. Wang et al. Mechatronics 53 (2018) 8–19

13



SMC-DOB for both fixed value tracking and curve tracking.The sums of
the squared errors of the FOSMC-DOB and SMC-DOB tracking error is
listed in Table 2. In order to evaluation the chattering, we ignore the
violent dynamic process of the tracking error at the beginning, and the
squared error in the stable domain is calculated from the fiftieth sam-
pling points to the fifth thousand sampling points. Obviously, the
chattering problem is well suppressed by FOSMC-DOB method

compared with SMC-DOB method.
Fig. 3indicates that the real value and the estimated value of the

fractional order derivative of disturbance. The dotted blue line re-
presents the real value of the fractional order of external disturbance
and the red dash-dotted line represents the estimated value of the
fractional order of external disturbance. Regardless of the overall
figure, or local zoom figure, we can see that the two curves almost
coincide completely. Thus the fractional order derivative of the dis-
turbance can be accurately estimated by the fractional order dis-
turbance observer.

Furthermore, the Fig. 4 (a) and (b) show the curves of sliding sur-
faces and control inputs of FOSMC-DOB. The Fig. 5 shows the curves of
sliding surfaces and control inputs of SMC-DOB. Compared Figs. 4 (b)
and5 (b), four curves of different colors represent the output of different
motors. Obviously, the chattering is weakened. The reaching time (tr) of
SMC-DOB and FOSMC-DOB are shown in Table 3. Thus the sliding
surface can be attained in finite time. Meanwhile the reaching time of
the FOSMC-DOB is shorter than SMC-DOB.

Figs. 1 –5 show the tracking trajectory, the accuracy of the dis-
turbance estimates, as well as the reduction of chattering. All the results
demonstrate the superiority of the proposed method from different
perspectives. The proposed FOSMC-DOB has better control perfor-
mance than the traditional SMC-DOB and the chattering problem is
improved extremely. Meanwhile, the proposed fractional order dis-
turbance observer can estimate the unmeasured mismatched dis-
turbance very well.

4.2. Illustrative examples of fractional order systems

In order to verify the good performance of the proposed FOSMC-
DOB method for a class of fractional order systems, the Maglev sus-
pension system [31] is selected which is expressed as

⎧
⎨⎩

= + +
=

D x Ax Bu B d
y Cx

,
β

d

(44)

where the state variables = −x i D z z z[ , , ( )]β
t

T represent the current,
the vertical electromagnet and the air gap, respectively. The input

=u ucoil is the voltage, the disturbance =d D zβ
t is the rail vertical ve-

locity, the output variable = −y z zt is the variation of air gap. System
matrices A, B, Bd, C are given,

Fig. 5. Response curves of SMC-DOB.

Table 3
The reaching time (tr) of SMC-DOB and FOSMC-DOB.

Sliding surface s1 s2 s3

FOSMC-DOB 0.75 0.7 1.4
SMC-DOB 1.5 0.7 1.45

Table 4
The parameters of Maglev suspension system.

Parameters Definition Value

Ap Pole face area 0.01m2

I0 Nominal current 10 A
G0 Nominal air gap 0.015m
Lc Coils inductance 0.1
Nc Number of turns 2000
Rc Coils resistance 10Ω
Ms Carriage mass 1000 kg
Kb Flux coefficient 0.0015 Tm
Kf Force coefficient 0.0221 N/T2

Fig. 6. The diagram of Maglev suspension system.
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Fig. 7. State response of Maglev suspension system.
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(45)

The physical meanings and value of the parameters of Maglev sus-
pension system are given in Table 4 [36]. The diagram of Maglev sus-
pension system is shown in Fig. 6 [36].

The constraints for Maglev suspension system are listed as fol-
lowing: the maximum air gap deviation is less than 0.075 m, the
maximum input coil voltage is less than 300 V, and the setting time is
less than 3 s.

Consider the tracking target of output is 0.02 at the start, and
changes to 0.015 in 12th second. In the 8th second a step external
disturbance =d 0.008 is introduced. The parameters of the controller
and observer are listed as following:

= = = = = = =a a k k α β L300, 1, 200, 2, 0.6, 0.7, [75 0 0].1 2 1 2
The controller is

̂

= +
= − +

− − −

− −

− −

u t u t u t
CB D y D s sign s

D e B Ax B B d

( ) ( ) ( )
( ) ( (200 2 ( ))

300 )
.

eq r

d

y d

1 0.7 0.9

0.1 1 1 (46)

The sliding surface is

= +s t e t D e t( ) 300 ( ) ( ).y y
0.6 (47)

The simulation results of proposed FOSMC-DOB are depicted in
Figs. 7–9.

According the response curves of the states, output, input and

Fig. 8. Output response with 5% noise.

Fig. 9. Output responses with different parameters a1/a2.

Table 5
Sensitivity analysis of a1/a2.

a1/a2 k1 k2 ts ess

300 200 2 1.6 × −4.5 10 5

550 200 2 0.8 × −1 10 5

200 200 2 2.0 × −6.5 10 5

Fig. 10. Output responses with different parameters k1.

Table 6
Sensitivity analysis of k1.

a1/a2 k1 k2 ts ess

300 200 2 1.6 × −4.5 10 5

300 350 2 0.6 × −1 10 4

300 150 2 1.9 × −4 10 4

Fig. 11. The applied square wave disturbance on the Maglev suspension
system.
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sliding surface shown in Fig. 7 (a)–(g), it is shown that the proposed
FOSMC-DOB has excellent control performance. It satisfies the con-
straints of Maglev suspension system both in the dynamic and steady
processes. It is obvious that this method has nice robustness to the
mismatched disturbance from the 8th second of the curves. The good
effect of tracking is achieved. It is embodied in the following parts. The

response of system is very soon, steady tracking error is close to 0 and
there is no overshoot. Moreover, the chattering problem is nearly
eliminated. It is a great improvement for the sliding mode control
method.

Fig. 8 shows the output response of the Maglev suspension system
when the output signal has noises added in (5% noise).

Fig. 12. State response of Maglev suspension system with square wave disturbance.
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Fig. 9 shows the tracking performances of the output with different
controller parameters a1/a2 . This sensitivity analysis is tabulated in
Table 5.

It can be seen from the simulation images that the setting time is
shorter with a1/a2 decreases. However, in the transient process the
chattering problem occurs, which is adverse for system. The steady-
state error of the system is approximately unchanged. It is a good
performance for real systems. In practice, we can make a balance be-
tween the setting time and the stationarity of transition process for a
better control effect.

Fig. 10 and Table 6 analysis the sensitivity of k1. It is indicate that if
k1 is larger, the setting time is shooter, but there is obvious chattering
problem in transition process. It has similar performances with the
changes of a1/a2 .

Meanwhile, the changes of control effect is not obvious with

different controller parameters a1/a2 and k1. In all the cases of para-
meters variations, the tracking error is less than 0.5% and the chat-
tering is almost avoided. We can adjust the controller parameters more
conveniently and easily for a good control effect in real systems.

In addition, a square wave disturbance in Fig. 11 is applied on the
FO-MAGLEV system. The simulation results are depicted in Fig. 12. The
simulation results show that the square wave disturbance is also
eliminated successfully using the proposed FOSMC-DOB.

Furthermore, a comparison between the proposed FOSMC-DOB and
another FOSMC-DOB in paper [31] is simulated. The control para-
meters and the design details of the another FOSMC-DOB can be seen in
paper [31]. After 0.5 s a step external disturbance =d 0.7 is applied.
The simulation results are depicted in Fig. 13. The red dash-dotted line
and the blue solid line represent the FOSMC in paper [31] and the
proposed FOSMC-DOB respective. It can be observed that the two

Fig. 13. State response of Maglev suspension system with different FOSMC-DOB.

J. Wang et al. Mechatronics 53 (2018) 8–19

18



methods can effectively eliminate the noise effect from the output of the
system. Clearly, the proposed FOSMC-DOB has less overshoot and faster
convergence speed than the FOSMC-DOB in paper [31]. However, there
are some chattering effect at the beginning of the disturbance. Fur-
thermore, the chattering of sliding mode motion can be eliminated by
using the two methods.

The FOSMC-DOB in paper [31] focus on the stabilization and dis-
turbance rejection for a class of fractional-order nonlinear dynamical
systems with mismatched disturbances. The proposed FOSMC-DOB in
this paper tries to make the output asymptotically tracking the desired
reference in the finite time, and the tracking error approaching to zero
without any effect from the external mismatched disturbances. So, the
method in this paper is not very smooth in the transition process only at
the aspect of disturbances rejection. But the proposed method is smooth
enough for the tracking control of output as shown in Fig. 7.

5. Conclusion

In this paper, we propose a fractional order sliding mode control for
a class of fractional order and integer order systems with mismatched
disturbances. In order to estimate the external disturbance, we design a
new fractional order disturbance observer. The proposed FOSMC-DOB
makes the state and output quickly tracking the reference without any
affection from the external mismatched disturbances. The applications
in two different systems, the integer order UAV system and the frac-
tional order Maglev suspension system, prove the versatility of the
proposed method. The proposed FOSMC-DOB can decrease the tracking
error at a high rate of speed and weaker chattering, compared with the
traditional SMC-DOB. Moreover, the FOSMC-DOB is not sensitive with
controller parameters.
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