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What will we study?

• Part-1: (Integer-Order) Optimal Control Theory:

– The (Integer-Order) calculus of variations (a little bit)

– Solution of general (Integer-Order) optimization problems

– Optimal closed-loop control (LQR problem)

– Pontryagin’s minimum principle
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What will we study? (cont.)

• Part-2: RIOTS 95 - General IOOCP Solver in the form of Matlab toolbox.

– Introduction to (Integer-Order) numerical optimal control

– Introduction to RIOTS 95

∗ Background
∗ Usage and demo
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1. Part-1: Basic Optimal Control Theory
Warming-up: A Static Optimization Problem

min : L(x, u), x ∈ Rn, u ∈ Rm

subject to: f (x, u) = 0, f ∈ Rn

Define Hamiltonian function

H(x, u, λ) = L(x, u) + λTf (x, u), λ ∈ Rn

Necessary conditions:
∂H

∂λ
= f = 0

∂H

∂x
= Lx + fTx λ = 0

∂H

∂u
= Lu + fTu λ = 0
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What is an (Integer-Order) optimal control problem (dynamic optimization)?
System model:

ẋ(t) = f (x, u, t), x(t) ∈ Rn, u(t) ∈ Rm

Performance index (cost function):

J(u, T ) = φ(x(T ), T ) +

∫ T

t0

L(x(t), u(t), t)dt

Final-state constraint:
ψ(x(T ), T ) = 0, ψ ∈ Rp
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Some cost function examples

• Minimum-fuel problem

J =

∫ T

t0

u2(t)dt

• Minimum-time problem

J =

∫ T

t0

1dt

• Minimum-energy problem

J = xT (T )Rx(T ) +

∫ T

t0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt
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A little bit of calculus of variations

• Why calculus of variation?

We are dealing with a function of functionsL(u(t), T ), called functional, rather
than a function of scalar variables L(x, u). We need a new mathematical tool.

• What is δx(t)?

• Relationship between dx(T ), δx(T ), and dT
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Relationship between dx(T ), δx(T ), and dT :

dx(T ) = δx(T ) + ẋ(T )dT
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Leibniz’s rule:

J(x(t)) =

∫ T

x0

h(x(t), t)dt

dJ = h(x(T ), T )dT +

∫ T

t0

[hTx (x(t), t)δx]dt

where hx , ∂h
∂x

.
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Solution of the general optimization problem:

J(u, T ) = φ(x(T ), T ) +

∫ T

t0

L(x(t), u(t), t)dt (1)

ẋ(t) = f (x, u, t), x(t) ∈ Rn, u(t) ∈ Rm (2)

ψ(x(T ), T ) = 0 (3)

Using Lagrange multipliers λ(t) and ν to join the constraints (2) and (3) to the
performance index (1):

J ′ = φ(x(T ), T ) + νTψ(x(T ), T ) +

∫ T

t0

[L(x, u, t) + λT (t)(f (x, u, t)− ẋ)]dt

Note:
ν: constant, λ(t): function
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Define the Hamiltonian function:

H(x, u, t) = L(x, u, t) + λTf (x, u, t),

then

J ′ = φ(x(T ), T ) + νTψ(x(T ), T ) +

∫ T

t0

[H(x, u, t)− λT ẋ]dt.

Using Leibniz’s rule, the increment in J ′ as a function of increments in x,λ, ν, u,
and t is

dJ ′ = (φx + ψTx ν)
Tdx|T + (φt + ψTt ν)dt|T + ψT |Tdν

+(H − λT ẋ)dt|T
+
∫ T
t0
[HT

x δx +HT
u δu− λTδẋ + (Hλ − ẋ)Tδλ]dt

(4)

To eliminate the variation in ẋ, integrate by parts:

−
∫ T

t0

λTδẋdt = −λTδx|T +
∫ T

t0

λ̇Tδxdt
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Remember
dx(T ) = δx(T ) + ẋ(T )dT,

so

dJ ′ = (φx + ψTx ν − λ)Tdx|T + (φt + ψTt ν +H)dt|T + ψT |Tdν

+

∫ T

t0

[(Hx + λ̇)Tδx +HT
u δu + (Hλ − ẋ)Tδλ]dt.

According to the Lagrange theory, the constrained minimum of J is attained at the
unconstrained minimum of J ′. This is achieved when dJ ′ = 0 for all independent
increments in its arguments. Setting to zero the coefficients of the independent in-
crements dν, δx, δu, and δλ yields following necessary conditions for a minimum.
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System model:
ẋ = f (x, u, t), t ≥ t0, t0 fixed

Cost function:

J(u, T ) = φ(x(T ), T ) +

∫ T

t0

L(x, u, t)dt

Final-state constraint:
ψ(x(T ), T ) = 0

State equation:

ẋ =
∂H

∂λ
= f

Costate (adjoint) equation:

−λ̇ =
∂H

∂x
=
∂fT

∂x
λ +

∂L

∂x
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Stationarity condition:

0 =
∂H

∂u
=
∂L

∂u
+
∂fT

∂u
λ

Boundary (transversality) condition:

(φx + ψTx ν − λ)T |Tdx(T ) + (φt + ψTt ν +H)|TdT = 0

Note that in the boundary condition, since dx(T ) and dT are not independent, we
cannot simply set the coefficients of dx(T ) and dT equal to zero. If dx(T ) = 0
(fixed final state) or dT = 0 (fixed final time), the boundary condition is simplified.
What if neither is equal to zero?
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An optimal control problem example: temperature control in a room
It is desired to heat a room using the least possible energy. If θ(t) is the temperature
in the room, θa the ambient air temperature outside (a constant), and u(t) the rate of
heat supply to the room, then the dynamics are

θ̇ = −a(θ − θa) + bu

for some constants a and b, which depend on the room insulation and so on. By
defining the state as

x(t) , θ(t)− θa,
we can write the state equation

ẋ = −ax + bu.
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In order to control the temperature on the fixed time interval [0, T ] with the least
supplied energy, define the cost function as

J(u) =
1

2
s(x(T )) +

1

2

∫ T

0

u2(t)dt,

for some weighting s.
The Hamiltonian is

H =
u2

2
+ λ(−ax + bu)

The optimal control u(t) is determined by solving:

ẋ = Hλ = −ax + bu, (5)

λ̇ = −Hx = aλ, (6)

0 = Hu = u + bλ (7)

Slide 16 of 69



From the stationarity condition (7), the optimal control is given by

u(t) = −bλ(t), (8)

so to determine u∗(t) we need to only find the optimal costate λ∗(t).
Substitute (8) into (5) yields the state-costate equations

ẋ = −ax− b2λ (9)
λ̇ = aλ (10)

Sounds trivial? Think about the boundary condition!
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From the boundary condition:

(φx + ψTx ν − λ)T |Tdx(T ) + (φt + ψTt ν +H)|TdT = 0,

dT is zero, dx(T ) is free, and there is no final-state constraint. So

λ(T ) =
∂φ

∂x
|T = s(x(T )− 10).

So the boundary condition of x and λ are specified at t0 and T , respectively. This is
called two-point boundary-value (TPBV) problem.
Let’s assume λ(T ) is known. From (10), we have

λ(t) = e−a(T−t)λ(T ).
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So
ẋ = −ax− b2λ(T )e−a(T−t).

Solving the above ODE, we have

x(t) = x(0)e−at − b2

a
λ(T )e−aTsinh(at).

Now we have the second equation about x(T ) and λ(T )

x(T ) = x(0)e−aT − b2

2a
λ(T )(1− e−2aT )

Assuming x(0) = 0◦, λ(T ) can now be solved:

λ(T ) =
−20as

2a + b2s(1− e−2aT )
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Now the costate equation becomes

λ∗(t) =
−10aseat

aeaT + sb2sinh(aT )

Finally we obtain the optimal control

u∗(t) =
10abseat

aeaT + sb2sinh(aT )

Conclusion:
TPBV makes it hard to solve even for simple OCP problems. In most cases, we have
to rely on numerical methods and dedicated OCP software package, such as RIOTS.
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Closed-loop optimal control: LQR problem
Problems with the optimal controller obtained so far:

• solutions are hard to compute.

• open-loop

For Linear Quadratic Regulation (LQR) problems, a closed-loop controller exists.
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System model:
ẋ = A(t)x +B(t)u

Objective function:

J(u) =
1

2
xT (T )S(T )x(T ) +

1

2

∫ T

t0

(xTQ(t)x + uTR(t)u)dt

where S(T ) and Q(t) are symmetric and positive semidefinite weighting matrices,
R(t) is symmetric and positive definite, for all t ∈ [t0, T ]. We are assuming T is
fixed and the final state x(T ) is free.
State and costate equations:

ẋ = Ax−BR−1BTλ,

−λ̇ = Qx + ATλ
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Control input:
u(t) = −R−1BTλ

Terminal condition:
λ(T ) = S(T )x(T )

Considering the terminal condition, let’s assume that x(t) and λ(t) satisfy a linear
relation for all t ∈ [t0, T ] for some unknown matrix S(t):

λ(t) = S(t)x(t)

To find S(t), differentiate the costate to get

λ̇ = Ṡx + Sẋ = Ṡx + S(Ax−BR−1BTSx).
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Taking into account the costate equation, we have

−Ṡx = (ATS + SA− SBR−1BTS +Q)x.

Since the above equation holds for all x(t), we have the Riccati equation:

−Ṡ = ATS + SA− SBR−1BTS +Q, t ≤ T.

Now the optimal controller is given by

u(t) = −R−1BTS(t)x(t),

and K(t) = R−1BTS(t)x(t) is called Kalman gain.
Note that solution of S(t) does not require x(t), so K(t) can be computed off-line
and stored.
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Pontryagin’s Minimum Principle: a bang-bang control case study
So far, the solution to an optimal control problem depends on the stationarity condi-
tion ∂H

∂u
= 0. What if the control u(t) is constrained to lie in an admissible region,

which is usually defined by a requirement that its magnitude be less than a given
value?
Pontryagin’s Minimum Principle: the Hamiltonian must be minimized over all
admissible u for optimal values of the state and costate

H(x∗, u∗, λ∗, t) ≤ H(x∗, u, λ∗, t), for all admissible u
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Example: bang-bang control of systems obeying Newton’s laws:
System model:

ẋ1 = x2,

ẋ2 = u,

Objective function (time-optimal:

J(u) = T =

∫ T

0

1dt

Input constraints:
|u(t)| ≤ 1
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End-point constraint:

ψ(x(T ), T ) =

(
x1(T )
x2(T )

)
= 0.

The Hamiltonian is:
H = 1 + λ1x2 + λ2u,

where λ = [λ1, λ2]
T is the costate.

Costate equation:

λ̇1 = 0 ⇒ λ1 = constant
λ̇2 = −λ1 ⇒ λ2(t) is a linear function of t (remember it!)

Boundary condition:
λ2(T )u(T ) = −1
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Pontryagin’s minimum principle requires that

λ∗2(t)u
∗(t) ≤ λ∗2(t)u(t)

How to make sure λ∗2(t)u
∗(t) is less or equal than λ∗2(t)u(t) for any admissible u(t)?

Answer:

u∗(t) = −sgn(λ∗2(t)) =
{

1, λ∗2(t) < 0
−1, λ∗2(t) > 0

What if λ∗2(t) = 0? Then u∗ is undetermined.
Since λ∗2(t) is linear, it changes sign at most once. So does u∗(t)!
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Since rigorous derivation of u∗(t) is still a little bit complicated, an intuitive method
using phase plane will be shown below.
Going backward (x1 = 0 and x2 = 0) in time from T , with u(t) = +1 or u(t) =
−1, we obtain a trajectories, or switching curve, because switching of control (if
any) must occur on this curve. Why?
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2. Part-2: RIOTS 95 - General OCP Solver in the
form of Matlab toolbox

Numerical Methods for Optimization Problems

• Static optimization

– Status: well-developed

– Available software package: Matlab optimization toolbox, Tomlab, NEOS
server, . . .

• Dynamic optimization

– Status: not as “matured” as static optimization

– Available software package: SOCS, RIOTS, MISER, DIRCOL, . . .
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Why Optimal Control Software?

1. Analytical solution can be hard.

2. If the controls and states are discretized, then an optimal control problem is
converted to a nonlinear programming problem. However . . .

• Discretization and conversion is professional.

• Selection and use of nonlinear programming package is an art.

• For large scale problems, direct discretization may not be feasible.
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Classification of methods for solving optimal control problems
A technique is often classified as either a direct method or an indirect method.

• An indirect method attempts to solve the optimal control necessary condition-
s. Thus,for an indirect method, it is necessary to explicitly derive the costate
equations, the control equations, and all of the transversality conditions.

• A direct method treats an OCP as an mathematical programming problem after
discretization. Direct method does not require explicit derivation and construc-
tion of the necessary conditions.
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What is RIOTS?
RIOTS is a group of programs and utilities, written mostly in C, Fortran, and M-file
scripts and designed as a toolbox for Matlab, that provides an interactive environ-
ment for solving a very broad class of optimal control problems.

Slide 35 of 69



Main contributions and features of RIOTS:

• The first implementation of consistent approximation using discretization meth-
ods based on Runge-Kutta integration

• Solves a very large class of finite-time optimal control problems

– trajectory and endpoint constraints

– control bounds

– variable initial conditions and free final time problems

– problems with integral and/or endpoint cost functions
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Main contributions and features of RIOTS: (cont.)

• System functions can supplied by the user as either C-files or M-files

• System dynamics can be integrated with fixed step-size Runge-Kutta integra-
tion, a discrete-time solver or a variable step-size method.

• The controls are represented as splines, allowing for a high degree of function
approximation accuracy without requiring a large number of control parameters.

Slide 37 of 69



Main contributions and features of RIOTS: (cont.)

• The optimization routines use a coordinate transformation, resulting in a signif-
icant reduction in the number of iterations required to solve a problem and an
increase in the solution accuracy.

• There are three main optimization routines suited fro different levels of gener-
ality of the optimal control problem.

• There are programs that provides estimates of the integration error.
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Main contributions and features of RIOTS: (cont.)

• The main optimization routine includes a special feature for dealing with sin-
gular optimal control problems.

• The algorithms are all founded on rigorous convergence theory.
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History of RIOTS:
1. RIOTS for Sun (Adam L. Schwartz)

• Compiler: Sun C compiler

• Matlab Version: Matlab 4

• MEX version: v4
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History of RIOTS: (cont.)
2. RIOTS for DOS and Windows (YangQuan Chen)

• Compiler: Watcom C

• Matlab Version: Matlab 4, 5

• MEX version: v4
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History of RIOTS:(cont.)
3. RIOTS for Windows (rebuild) and Linux (Jinsong Liang)

• compiler: Microsoft Visual C++ (Windows version), GNU gcc (Linux version)

• Matlab Version: Matlab 6.5

• MEX version: v6
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Summary of RIOTS usage:

min
(u,ξ)∈Lm

∞[a,b]×IRn

{
f (u, ξ)

.
= go(ξ, x(b)) +

∫ b

a

lo(t, x, u)dt

}
Subject to:

ẋ = h(t, x, u), x(a) = ξ, t ∈ [a, b]

ujmin(t) ≤ uj(t) ≤ ujmax(t), j = 1, . . . ,m, t ≤ [a, b]

ξjmin ≤ ξj ≤ ξjmax, j = 1, . . . , n,

lνti(t, x(t), u(t)) ≤ 0, ν ∈ qti, t ∈ [a, b],

gνei(ξ, x(b)) ≤ 0, ν ∈ qei,

gνee(ξ, x(b)) = 0, ν ∈ qee,
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Summary of RIOTS usage: (cont.)
General procedures:

• C or m-file?

• Functions needed: (sys )acti, (sys )init, (sys )h, (sys )Dh, (sys )l, (sys )Dl,
(sys )g, (sys )Dg

• Set initial condition, discretization level, spline order, integration scheme,
bounds on inputs

• Call riots
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Example No. 1: Rayleigh problem

J(u) =

∫ 2.5

0

(x2
1 + u2)dt

Subject to:

ẋ1(t) = x2(t), x1(0) = −5
ẋ2(t) = −x1(t) + [1.4− 0.14x2

2(t)]x2(t) + 4u(t), x2(0) = −5
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sys init.m
function neq = sys_init(params)
% Here is a list of the different system information paramters.
% neq = 1 : number of state variables.
% neq = 2 : number of inputs.
% neq = 3 : number of parameters.
% neq = 4 : reserved.
% neq = 5 : reserved.
% neq = 6 : number of objective functions.
% neq = 7 : number of nonlinear trajectory constraints.
% neq = 8 : number of linear trajectory constraints.
% neq = 9 : number of nonlinear endpoint inequality constraints.
% neq = 10 : number of linear endpoint inequality constraints.
% neq = 11 : number of nonlinear endpoint equality constraints.
% neq = 12 : number of linear endpoint equality constraints.
% neq = 13 : 0 => nonlinear, 1 => linear, 2 => LTI, 3 => LQR, 4 => LQR and LTI.
% The default value is 0 for all except neq = 6 which defaults to 1.
neq = [1, 2; 2, 1]; % nstates = 2 ; ninputs = 1
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sys acti.m
function message = sys_acti

% This is a good time to allocate and set global variabels.

message = ’Rayleigh OCP for demo’;

sys h.m
function xdot = sys_h(neq,t,x,u)

% xdot must be a column vectore with n rows.

xdot = [x(2) ; -x(1)+(1.4-.14*x(2)ˆ2)*x(2) + 4*u];
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sys l.m
function z = l(neq,t,x,u)

% z is a scalar.

z = x(1)ˆ2 + uˆ2;

sys g.m
function J = sys_g(neq,t,x0,xf)

% J is a scalar.

J = 0;
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sys Dh.m
function [h_x,h_u] = sys_dh(neq,t,x,u)
h_x = [0, 1; -1, 1.4-0.42*x(2)ˆ2];
h_u = [0; 4.0];

sys Dl.m
function [l_x,l_u,l_t] = sys_Dl(neq,t,x,u)
%l_t is not used currently
l_x = [2*x(1) 0];
l_u = 2*u;
l_t = 0;
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sys Dg.m
function [J_x0,J_xf,J_t] = sys_dg(neq,t,x0,xf)
% J_x0 and J_xf are row vectors of length n.
% J_t is not used.
J_x0 = [0 0];
J_xf = [0 0];
J_t = 0;
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mainfun.m
N = 50;
x0 = [-5;-5];
t = [0:2.5/N:2.5];
u0 = zeros(1,N+2-1); % Second order spline---initial guess

[u,x,f] = riots(x0,u0,t,[],[],[],100, 2);

sp_plot(t,u);
figure;
plot(t,x);
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Rayleigh Problem Demo: (please be patient . . . )
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Example 2: Bang problem
J(u) = T

Subject to:
ẋ1 = x2, x1(0) = 0, x1(T ) = 300,
ẋ2 = u, x2(0) = 0, x2(T ) = 0
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Transcription for free final time problem
Free final time problems can be transcribed into fixed final time problems by aug-
menting the system dynamics with two additional states (one additional state for
autonomous problems). The idea is to specify a nominal time interval, [a, b], for
the problem and to use a scale factor, adjustable by the optimization procedure, to
scale the system dynamics and hence, in effect, scale the duration of the time inter-
val. This scale factor, and the scaled time, are represented by the extra states. Then
RIOTS can minimize over the initial value of the extra states to adjust the scaling.
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min
u,T

g(T, x(T )) +

∫ a+T

a

l(t, x, u)dt

Subject to:
ẋ = h(t, x, u) x(a) = ζ , t ∈ [a, a + T ],

where x = [x0, x1, . . . , xn−1]
T .

With two extra augmented states [xn, xn+1], we have the new state variable y =
[xT , xn, xn+1]

T . Now the original problem can be converted into the equivalent fixed
final time optimal control problem.
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min
u,xn+1

g((b− a)xn+1, x(b)) +

∫ b

a

l(xn, x, u)dt

Subject to:

ẏ =

 xn+1h(xn, x, u)
xn+1

0

 , y(a) =

 x(a)
a
ξ

 , t ∈ [a, b],

where ξ is the initial value chosen by the user.
For autonomous systems, the extra variable xn is not needed because it is not shown
explicitly anywhere.
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sys init.m
function neq = sys_init(params)
% Here is a list of the different system information paramters.
% neq = 1 : number of state variables.
% neq = 2 : number of inputs.
% neq = 3 : number of parameters.
% neq = 4 : reserved.
% neq = 5 : reserved.
% neq = 6 : number of objective functions.
% neq = 7 : number of nonlinear trajectory constraints.
% neq = 8 : number of linear trajectory constraints.
% neq = 9 : number of nonlinear endpoint inequality constraints.
% neq = 10 : number of linear endpoint inequality constraints.
% neq = 11 : number of nonlinear endpoint equality constraints.
% neq = 12 : number of linear endpoint equality constraints.
% neq = 13 : 0 => nonlinear, 1 => linear, 2 => LTI, 3 => LQR, 4 => LQR and LTI.
% The default value is 0 for all except neq = 6 which defaults to 1.
neq = [1 3 ; 2 1 ; 12 2]; % nstates = 3 ; ninputs = 1; 3 endpoint constr.
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sys acti.m
function message = sys_activate

message = ’bang’;

sys h.m
function xdot = sys_h(neq,t,x,u)
global sys_params

tau = x(3);

xdot = [tau*x(2) ; tau*u(1) ; 0];

Slide 60 of 69



sys l.m
function z = l(neq,t,x,u)
global sys_params
z = 0;

sys g.m
function J = sys_g(neq,t,x0,xf)
global sys_params
F_NUM = neq(5);
if F_NUM == 1

J = x0(3);
elseif F_NUM == 2

J = xf(1)/300.0 - 1;
elseif F_NUM == 3

J = xf(2);
end

Slide 61 of 69



sys Dh.m
function [h_x,h_u] = sys_Dh(neq,t,x,u)
global sys_params
% h_x must be an n by n matrix.
% h_u must be an n by m matrix.

tau = x(3);
h_x = zeros(3,3);
h_u = zeros(3,1);

h_x(1,2) = tau;
h_x(1,3) = x(2);
h_x(2,3) = u(1);

h_u(2,1) = tau;
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mainrun.m
x0 = [0 1 0 0; 0 1 0 0;1 0 .1 10]
% The first column is the initial condition with the optimal duraction
% set to 1. The zero in the second column will be used to tell
% riots() that the third initial condition is a free variable. The
% third and fourth columns represent upper and lower bounds on the
% initial conditions that are free variables.

N = 20;
u0 = zeros(1,N+2-1);
t = [0:10/N:10]; % Set up the initial time vector so that

% the intial time interval is [0,10]*1,
[u,x,f]=riots(x0,u0,t,-2,1,[],100,2);
Tf = x(3,1)
% The solution for the time interval is t*Tf = [0,10]*Tf. Thus, the
% solution for the final time is 10*Tf = 29.9813. The actual solution
% for the final time is 30.
sp_plot(t*Tf,u)
xlabel(’Time’),ylabel(’Optimal Control’)
figure
plot(t*Tf,x)
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Bang problem demo: (please be patient . . . )
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Thank you for your attention!
Question/Answer Session.

Mobile Actuator and Sensor Networks (MAS-net):
http://mechatronics.ece.usu.edu/mas-net/

Task-Oriented Mobile Actuator and Sensor Networks (TOMAS-net)
IEEE IROS’05 Tutorial, Edmonton, Canada, August 2, 2005:

http://www.csois.usu.edu/people/yqchen/tomasnet/

RIOTS 95 web:
http://www.csois.usu.edu/ilc/riots
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Credits:
Dr. Adam L. Schwartz, the father of RIOTS for creating the first Unix OS4 version
of RIOTS. Dr. YangQuan Chen for making the Windows version of RIOTS 95. Dr.
Jinsong Liang for making Windows-based RIOTS MEX-6 compatible and versions
for Linux and Solaris, AIX.

RIOTS 95 users world-wide for feedback.

This set of slides were mostly prepared by Jinsong Liang under the supervision of
Prof. YangQuan Chen as a module in Dr. Chen’s ECE/MAE7360 “Robust and
Optimal Control” course syllabus. This OCP/RIOTS module has been offered twice
(2003, 2004).
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