
A Genetic Algorithm for Function Optimization� A

Matlab Implementation

Christopher R� Houck

North Carolina State University

and

Je�ery A� Joines

North Carolina State University

and

Michael G� Kay

North Carolina State University

A genetic algorithm implemented in Matlab is presented� Matlab is used for the following reasons�
it provides many built in auxiliary functions useful for function optimization� it is completely
portable� and it is e�cient for numerical computations� The genetic algorithm toolbox developed
is tested on a series of non�linear� multi�modal� non�convex test problems and compared with
results using simulated annealing� The genetic algorithm using a �oat representation is found to
be superior to both a binary genetic algorithm and simulated annealing in terms of e�ciency and
quality of solution� The use of genetic algorithm toolbox as well as the code is introduced in the
paper�

Categories and Subject Descriptors� G�� �Numerical Analysis	� Optimization
Unconstrained

Optimization� nonlinear programming� gradient methods

General Terms� Optimization� Algorithms

Additional Key Words and Phrases� genetic algorithms� multimodal nonconvex functions� Matlab

�� INTRODUCTION

Algorithms for function optimization are generally limited to convex regular func�
tions� However� many functions are multi�modal� discontinuous� and nondi�eren�

Name� Christopher R� Houck
Address� North Carolina State University� Box ��
�� Raleigh� NC� ��������
��USA������ ����
���������� ���������chouck�eos�ncsu�edu
A�liation� North Carolina State University
Name� Je�ery A� Joines
Address� North Carolina State University� Box ��
�� Raleigh� NC� ��������
��USA������ ����
���������� ���������jjoine�eos�ncsu�edu
A�liation� North Carolina State University
Name� Michael G� Kay
Address� North Carolina State University� Box ��
�� Raleigh� NC� ��������
��USA������ ����
�

������� ���������kay�eos�ncsu�edu
A�liation� North Carolina State University
Sponsor� This research was funded in part by the National Science Foundation under grant num�
ber DMI���������



� � C� Houck et al�

tiable� Stochastic sampling methods have been used to optimize these functions�
Whereas traditional search techniques use characteristics of the problem to deter�
mine the next sampling point �e�g�� gradients� Hessians� linearity� and continuity��
stochastic search techniques make no such assumptions� Instead� the next sampled
point�s� is�are� determined based on stochastic sampling�decision rules rather than
a set of deterministic decision rules�
Genetic algorithms have been used to solve di�cult problems with objective

functions that do not possess �nice	 properties such as continuity� di�erentiability�
satisfaction of the Lipschitz Condition� etc�
Davis ����
 Goldberg ����
 Holland
����
 Michalewicz ������ These algorithms maintain and manipulate a family� or
population� of solutions and implement a �survival of the �ttest	 strategy in their
search for better solutions� This provides an implicit as well as explicit parallelism
that allows for the exploitation of several promising areas of the solution space at
the same time� The implicit parallelism is due to the schema theory developed by
Holland� while the explicit parallelism arises from the manipulation of a population
of points�the evaluation of the �tness of these points is easy to accomplish in
parallel�
Section � presents the basic genetic algorithm� and in Section � the GA is tested

on several multi�modal functions and shown to be an e�cient optimization tool�
Finally� Section � brie�y describes the code and presents the list of parameters of
the Matlab implementation�

�� GENETIC ALGORITHMS

Genetic algorithms search the solution space of a function through the use of sim�
ulated evolution� i�e�� the survival of the �ttest strategy� In general� the �ttest
individuals of any population tend to reproduce and survive to the next genera�
tion� thus improving successive generations� However� inferior individuals can� by
chance� survive and also reproduce� Genetic algorithms have been shown to solve
linear and nonlinear problems by exploring all regions of the state space and ex�
ponentially exploiting promising areas through mutation� crossover� and selection
operations applied to individuals in the population 
Michalewicz ������ A more
complete discussion of genetic algorithms� including extensions and related topics�
can be found in the books by Davis 
Davis ������ Goldberg 
Goldberg ������ Hol�
land
Holland ������ and Michalewicz 
Michalewicz ������ A genetic algorithm �GA�
is summarized in Fig� �� and each of the major components is discussed in detail
below�

��� Supply a population P� of N individuals and respective function values�

��� i� �

��� P �

i
� selection function�Pi � ��

��� Pi � reproduction function�P �

i
�

��� evaluate�Pi�

��� i� i� �

��� Repeat step � until termination

��� Print out best solution found

Fig� �� A Simple Genetic Algorithm



A GA for function optimization � �

The use of a genetic algorithm requires the determination of six fundamental
issues� chromosome representation� selection function� the genetic operators making
up the reproduction function� the creation of the initial population� termination
criteria� and the evaluation function� The rest of this section describes each of
these issues�

��� Solution Representation

For any GA� a chromosome representation is needed to describe each individual in
the population of interest� The representation scheme determines how the problem
is structured in the GA and also determines the genetic operators that are used�
Each individual or chromosome is made up of a sequence of genes from a certain
alphabet� An alphabet could consist of binary digits �� and ��� �oating point num�
bers� integers� symbols �i�e�� A� B� C� D�� matrices� etc� In Holland�s original design�
the alphabet was limited to binary digits� Since then� problem representation has
been the subject of much investigation� It has been shown that more natural repre�
sentations are more e�cient and produce better solutions
Michalewicz ������ One
useful representation of an individual or chromosome for function optimization in�
volves genes or variables from an alphabet of �oating point numbers with values
within the variables upper and lower bounds� Michalewicz
Michalewicz ����� has
done extensive experimentation comparing real�valued and binary GAs and shows
that the real�valued GA is an order of magnitude more e�cient in terms of CPU
time� He also shows that a real�valued representation moves the problem closer
to the problem representation which o�ers higher precision with more consistent
results across replications� 
Michalewicz �����

��� Selection Function

The selection of individuals to produce successive generations plays an extremely
important role in a genetic algorithm� A probabilistic selection is performed based
upon the individual�s �tness such that the better individuals have an increased
chance of being selected� An individual in the population can be selected more
than once with all individuals in the population having a chance of being selected
to reproduce into the next generation� There are several schemes for the selection
process� roulette wheel selection and its extensions� scaling techniques� tournament�
elitist models� and ranking methods 
Goldberg ����
 Michalewicz ������
A common selection approach assigns a probability of selection� Pj � to each indi�

vidual� j based on its �tness value� A series of N random numbers is generated and
compared against the cumulative probability� Ci �

Pi

j�� Pj� of the population�
The appropriate individual� i� is selected and copied into the new population if
Ci�� � U ��� �� � Ci� Various methods exist to assign probabilities to individuals�
roulette wheel� linear ranking and geometric ranking�
Roulette wheel� developed by Holland 
Holland ������ was the �rst selection

method� The probability� Pi� for each individual is de�ned by�

P 
 Individual i is chosen � �
FiPPopSize

j�� Fj
� ���

where Fi equals the �tness of individual i� The use of roulette wheel selection limits



� � C� Houck et al�

the genetic algorithm to maximization since the evaluation function must map the
solutions to a fully ordered set of values on ��� Extensions� such as windowing and
scaling� have been proposed to allow for minimization and negativity�
Ranking methods only require the evaluation function to map the solutions to

a partially ordered set� thus allowing for minimization and negativity� Ranking
methods assign Pi based on the rank of solution i when all solutions are sorted�
Normalized geometric ranking� 
Joines and Houck ������ de�nes Pi for each indi�
vidual by�

P 
 Selecting the ith individual � � q� �� � q�r��
 ���

where�

q � the probability of selecting the best individual�
r � the rank of the individual� where � is the best�
P � the population size
q� � q

�����q�P

Tournament selection� like ranking methods� only requires the evaluation function
to map solutions to a partially ordered set� however� it does not assign probabilities�
Tournament selection works by selecting j individuals randomly� with replacement�
from the population� and inserts the best of the j into the new population� This
procedure is repeated until N individuals have been selected�

��� Genetic Operators

Genetic Operators provide the basic search mechanismof the GA� The operators are
used to create new solutions based on existing solutions in the population� There
are two basic types of operators� crossover and mutation� Crossover takes two
individuals and produces two new individuals while mutation alters one individual
to produce a single new solution� The application of these two basic types of
operators and their derivatives depends on the chromosome representation used�
Let �X and �Y be two m�dimensional row vectors denoting individuals �parents�

from the population� For �X and �Y binary� the following operators are de�ned�
binary mutation and simple crossover�
Binary mutation �ips each bit in every individual in the population with proba�

bility pm according to equation ��

x�i �

�
�� xi� if U ��� �� � pm
xi� otherwise

���

Simple crossover generates a random number r from a uniform distribution from
� to m and creates two new individuals � �X� and �Y �� according to equations � and ��

x�i �

�
xi� if i � r

yi� otherwise
���

y�i �

�
yi� if i � r

xi� otherwise
���

Operators for real�valued representations� i�e�� an alphabet of �oats� were de�
veloped by Michalewicz 
Michalewicz ������ For real �X and �Y � the following op�



A GA for function optimization � �

erators are de�ned� uniform mutation� non�uniform mutation� multi�non�uniform
mutation� boundary mutation� simple crossover� arithmetic crossover� and heuris�
tic crossover� Let ai and bi be the lower and upper bound� respectively� for each
variable i�
Uniformmutation randomly selects one variable� j� and sets it equal to an uniform

random number U �ai� bi��

x�i �

�
U �ai� bi�� if i � j

xi� otherwise
���

Boundary mutation randomly selects one variable� j� and sets it equal to either
its lower or upper bound� where r � U ��� ���

x�i �

��
�

ai� if i � j� r � ���
bi� if i � j� r � ���
xi� otherwise

���

Non�uniform mutation randomly selects one variable� j� and sets it equal to an
non�uniform random number�

x�i �

��
�

xi � �bi � xi�f�G� if r� � ����
xi � �xi � ai�f�G� if r� � ����

xi� otherwise
���

where

f�G� � �r����
G

Gmax
��b� ���

r�� r� � a uniform random number between ������

G � the current generation�

Gmax � the maximum number of generations�

b � a shape parameter�

The multi�non�uniform mutation operator applies the non�uniform operator to
all of the variables in the parent �X �
Real�valued simple crossover is identical to the binary version presented above

in equations � and �� Arithmetic crossover produces two complimentary linear
combinations of the parents� where r � U ��� ���

�X� � r �X � �� � r� �Y ����
�Y � � ��� r� �X � r �Y ����

Heuristic crossover produces an linear extrapolation of the two individuals� This
is the only operator that utilizes �tness information� A new individual� �X�� is
created using equation ��� where r � U ��� �� and �X is better than �Y in terms of
�tness� If �X� is infeasible� i�e�� feasibility equals � as given by equation ��� then
generate a new random number r and create a new solution using equation ���
otherwise stop� To ensure halting� after t failures� let the children equal the parents
and stop�



� � C� Houck et al�

�X� � �X � r� �X � �Y � ����
�Y � � �X ����

feasibility �

�
�� if x�i � ai� x

�
i � bi �i

�� otherwise
����

��� Initialization� Termination� and Evaluation Functions

The GA must be provided an initial population as indicated in step � of Fig� ��
The most common method is to randomly generate solutions for the entire popula�
tion� However� since GAs can iteratively improve existing solutions �i�e�� solutions
from other heuristics and�or current practices�� the beginning population can be
seeded with potentially good solutions� with the remainder of the population being
randomly generated solutions�
The GA moves from generation to generation selecting and reproducing parents

until a termination criterion is met� The most frequently used stopping criterion is
a speci�ed maximumnumber of generations� Another termination strategy involves
population convergence criteria� In general� GAs will force much of the entire pop�
ulation to converge to a single solution� When the sum of the deviations among
individuals becomes smaller than some speci�ed threshold� the algorithm can be
terminated� The algorithm can also be terminated due to a lack of improvement
in the best solution over a speci�ed number of generations� Alternatively� a tar�
get value for the evaluation measure can be established based on some arbitrarily
�acceptable	 threshold� Several strategies can be used in conjunction with each
other�
Evaluation functions of many forms can be used in a GA� subject to the minimal

requirement that the function can map the population into a partially ordered set�
As stated� the evaluation function is independent of the GA �i�e�� stochastic decision
rules��

�� TESTING AND CONCLUSIONS

The Matlab implementation of the algorithm has been tested with respect to e��
ciency and reliability by optimizing a family of multi�modal non�linear test prob�
lems� The family of test problems is taken from Corana� 
Corana et al� ������
which compare the use of the simulated annealing algorithm to the simplex method
of Nelder�Mead and adaptive random search� In 
Houck et al� ����a� we report in
detail the e�ectiveness of the genetic algorithm for solving the continuous location�
allocation problem� and in 
Houck et al� ����b� on the use of the genetic algorithm in
conjunction with local�improvement heuristics for non�linear function optimization�
location�allocation� and the quadratic assignment problem�
The Corana family
Corana et al� ����� of parameterized functions�qn� are very

simple to compute and contain a large number of local minima� This function is
basically a n�dimensional parabola with rectangular pockets removed and where the
global minima occurs at the origin ��� �� � � � � ��� This family is de�ned as follows�



A GA for function optimization � �

Df � fx � �n � �a� � x� � a�� � � � ��an � xn � an
 a � �
n
�g

dk������kn �

�
x � Df � k�s�� t��x��k�s�� t�� � � � � knsn� tn�xn�knsn� tn


k�� � � � � kn � Z
 �t� �s � �n
�
 ti �

si
� � i � �� � � � � n

Dm �
�

k�����kn�Z

dk������kn � d���������

Dr � Df �Dm

qn�x� �
nX
i��

dix
�
i � x � Dr �d � �n

��

qn�x� �
nX
i��

diz
�
i � x � dk������kn� �k�� � � � � kn� �� ��

zi �

��
�

kisi � ti if ki � ��
� if ki � ��
kisi � ti if ki � ��

For the optimization of the test function two di�erent representations were used�
A real�valued alphabet was employed in conjunction with the selection� mutation
and crossover operators with their respective options as shown in table I� Also�
a binary representation was used in conjunction with the selection� mutation and
crossover operators with their respective options as shown in table II� A description
of the options for each of the functions is provided in the following section� Section ��

Table I� GAOT Parameters used for Real�Valued Corana Function Optimization
Name Parameters

Uniform Mutation �
Non�Uniform Mutation �� Gmax �	
Multi�Non�UniformMutation �� Gmax �	
Boundary Mutation �
Simple Crossover �
Arithmetic Crossover �
Heuristic Crossover �� �	
Normalized Geometric Selection 
�
�

Table II� GAOT Parameters used for Binary Corana Function Optimization
Name Parameters

Binary Mutation 
�
�
Simple Crossover 
��
Normalized Geometric Selection 
�
�

Two di�erent evaluation functions were used for both the �oat and binary genetic
algorithm� the �rst simply returned the value of the Corana function at the point



� � C� Houck et al�

as determined by the genetic string� The second evaluation function utilizes a Se�
quential Quadratic Programming �SQP� �available in Matlab� method to optimize
the Corana function starting from the point as determined by the genetic string�
This provides the genetic algorithm with a local improvement operator which� as
shown in 
Houck et al� ����b�� can greatly enhance the performance of the genetic
algorithm� Many researchers have shown that GAs perform well for a global search
but perform very poorly in a localized search 
Davis ����
 Michalewicz ����
 Houck
et al� ����a
 Bersini and Renders ������ GAs are capable of quickly �nding promis�
ing regions of the search space but may take a relatively long time to reach the
optimal solution�
Both the �oat genetic algorithm �FGA� and binary genetic algorithm �BGA� were

run �� times with di�erent random seeds� The simulated annealing �SA� results
are taken from the �� replications of these test problems reported in 
Corana et al�
������ The resulting solution value found and the number of function evaluations
to obtain that solution are shown in Table III� Since Corana et al� did not use
an improvement procedure� both the FGA and BGA were run without the use of
SQP� As shown in the table� the FGA outperformed both BGA and SA in terms
of computational e�ciency and solution quality� With respect to the epsilon of
�e�� as used in 
Corana et al� ������ FGA found the optimal in all three cases
in all replications� while SA was unable to �nd the optimal two times for the �
dimensional case and not at all for the �� dimensional case� The table also shows
that the use of the local improvement operator signi�cantly increases the power of
the genetic algorithm in terms of solution quality and speed of convergence to the
optimal�

Table III� Solution Quality and Procedure E�ciency
Std� of Avg� � Std� � Min �

Dim� Method Avg Sol�
Sol�

Min� Sol�
of eval� of eval� of eval�

FGA ����e�� ����e�� ��
�e�� ���
e�� ����e�� ����e��

FGA�SQP 
�

e�� 
�

e�� 
�

e�� ��
�e�� ����e�� ����e��

� BGA ����e�� ���
e�� ����e�� ���
e�� ����e�� ����e��

BGA�SQP ����e��� ����e��� ���
e��� ����e�� ����e�� ��
� � �
SA ����e�� ����e�� ����e��� ����e�� ����e�	 ����e��

FGA ���
e�� ����e�� ����e�� ��
�e�� ����e�	 ����e�	

FGA�SQP 
�

e�� 
�

e�� 
�

e�� ����e�� ����e�� ����e��

� BGA ����e�� ����e�� ����e�� ��
�e�� ����e�	 ����e��

BGA�SQP ����e�� ����e�� ���
e��
 ����e�	 ����e�	 ����e�	

SA ����e�	 ���
e�� ���
e�� ����e�
 ����e�� ����e�


FGA ����e�� ��
�e�� ����e�� ����e�� ��
�e�	 ����e��

FGA�SQP 
�

e�� 
�

e�� 
�

e�� ����e�	 ����e�	 ���
e�	

�
 BGA ����e�� ����e�� ����e�� ����e�
 ����e�	 ����e�


BGA�SQP ����e�� ��
�e�� ����e�� ����e�� ����e�� ����e��

SA ���
e�	 
�

e�� ���
e�	 ����e�
 ����e�	 ����e�


The results of this testing show that the use of genetic algorithms for func�
tion optimization is highly e�cient and e�ective� The use of a local improvement



A GA for function optimization � �

procedure� in this case SQP� can greatly enhance the performance of the genetic
algorithm�

�� GAOT� A MATLAB IMPLEMENTATION

Matlab is a technical computing environment for high�performance numeric com�
putation� Matlab integrates numerical analysis� matrix computation and graphics
in an easy�to�use environment� User�de�ned Matlab functions are simple text �les
of interpreted instructions� Therefore� Matlab functions are completely portable
from one hardware architecture to another without even a recompilation step�
The algorithm discussed in Section � has been implemented as a Matlab toolbox�

i�e�� a group of related functions� named GAOT� Genetic Algorithms for Optimiza�
tion Toolbox� Each module of the algorithm is implemented using a Matlab func�
tion� This provides for easy extensibility� as well as modularity� The basic function
is the ga function� which runs the simulated evolution� The basic call to the ga

function is given by the following Matlab command�

�x�endPop�bPop�traceInfo� � ga�bounds�evalFN�evalParams�params�startPop����

termFN�termParams�selectFN�selectParams�xOverFNs�xOverParams�mutFNs�mutParams�

Output parameters

�x is the best solution string� i�e� �nal solution�

�endPop�optional� is the �nal population�

�bPop�optional� is a matrix of the best individuals and the corresponding gener�
ation they were found�

�traceInfo�optional� is a matrix of maximum and mean functional value of the
population for each generation�

Input parameters

�bounds is a matrix of upper and lower bounds on the variables�

�evalFN is the evaluation function� usually a �m �le�

�evalParams�optional� is a row matrix of any parameters to the evaluation func�
tion defaults to 
NULL��

�params�optional� is a vector of options� i�e� 
epsilon prob param disp param�
where epsilon is the change required to consider two solutions di�erent and
prob params is � if you want to use the binary version of the algorithm� or �
for the �oat version� disp param controls the display of the progress of the algo�
rithm� � displays the current generation and the the value of the best solution
in the population� while � prevents any output during the run� This parameter
defaults to 
�e�� � ���

�startPop�optional� is a matrix of solutions and their respective functional values�
The starting population defaults to a randomly created population created with
initialize�

�termFN�optional� is the name of the termination function which defaults to

�maxGenTerm���

�termParams�optional� is a row matrix of parameters which defaults to 
�����



	
 � C� Houck et al�

�selectFN�optional� is the name of the selection function which defaults to 
�nor�
mGeomSelect���

�selectParams�optional� is a row matrix of parameters for the selection function
which defaults to 
������

�xOverFNs�optional� is a blank separated string of the names of the cross�over
functions which defaults to 
�arithXover heuristicXover simpleXover�� for the �oat
version and 
�simpleXover� for the binary version�

�xOverParams�optional� is a matrix of the crossover parameters which default
to 
� ��� ��� �� for the �oat version and 
��	� for the binary

�mutFNs�optional� is a blank separated string of mutation operators which de�
fault to 
�boundaryMutation multiNonUnifMutation nonUnifMutation unifMuta�
tion�� for the �oat version and 
�binaryMutation�� for the binary version�

�mutParams�optional� is a matrix of mutation parameters which defaults to 
�
��	 ��� ��� ��� ��� �� for the �oat version and 
���
� for the binary�

GA performs the simulated evolution using the evalFN to determine the �tness
of the solution strings� The GA uses the operators xOverFNs and mutFNs to alter
the solution strings during the search� The program has been run successfully on a
DecStation ����� a DecStation �������� Motorolla ��� and an HP ����
The system maintains a high degree of modularity and �exibility as a result of

the decision to pass the selection� evaluation� termination functions to the GA as
well as a list of genetic operators� Thus� the base genetic algorithm is able to per�
form evolution using any combination of selection� crossover� mutation� evaluation
and termination functions that conform to the functional speci�cations as outlined
below or can easily be used with the default parameters�

��� Evaluation Function

The evaluation function is the driving force behind the GA� The evaluation function
is called from the GA to determine the �tness of each solution string generated
during the search� An example evaluation function is given below�

function �x� val� � gaDemo�Eval�x�parameters�

val � x��� � �	
sin��
x������
cos�

x�����

To run the ga using this test function use either of the following function calls from
Matlab�

bstX � ga��	 �	� 	 ��	���gaDemo�Eval��

bstX � ga��	 �	� 	 ��	���x��� � �	
sin��
x������
cos�

x�������

where gaDemo�Eval�m is contains the evaluation function as given above� Usually�
a �m �le will be more convenient to use as the evaluation function will be more
complex than the simple example provided� This function call will use all of the
default parameters of the ga and return only the best solution found during the
course of the simulated evolution�
Note that the evaluation function must take two parameters� x and options� x

is a row vector of n � � elements where the �rst n elements are the parameters of
interest� The n� ��th element is the value of this solution� The parameters matrix
is a row matrix of



A GA for function optimization � 		

�current�generation� evalParams�

The evaluation function must return both the value of the string� val and the string
itself� x� This is done so that an evaluation can repair or improve the string if
desired� This allows for the use of local improvement procedures as discussed in
Section ��
An evaluation function is unique to the optimization of the problem at hand

therefore� every time the ga is used for a di�erent problem� an evaluation function
must be developed to determine the �tness of the individuals�
The remainder of this section describes the other modules of the genetic toolbox�

While GAOT allows for easy modi�cation of any of these modules� the defaults as
given work well for a wide class of optimization problems as shown in 
Houck et al�
����b��

��� Operator Functions

Operators provide the search mechanism of the GA� The operators are used to
create new solutions based on existing solutions in the population� There are two
basic types of operators� crossover and mutation� Crossover takes two individuals
and produces two new individuals while mutation alters one individual to produce
a single new solution� The ga function calls each of the operators to produce new
solutions� The function call for crossovers is as follows�

�c��c�� � crossover�p��p��bounds�params�

where p� is the �rst parent� 
solution string function value�� p� is the second par�
ent� bounds is the bounds matrix for the solution space and params is the vector
of 
current generation� operatorParams�� where operatorParams is the appropriate
row of parameters for this crossover�mutation operator� The �rst value of the op�
eratorParams is frequency of application of this operator� For the �oat ga� this is
the discrete number of times to call this operator every generation� while for the
binary ga it is the probability of application to each member of the population�
The mutation function call is similar� but only takes one parent and returns one
child�

�c�� � mutation�p��bounds�params�

The crossover operator must take all four arguments� the two parents� the bounds
of the search space� the information on how much of the evolution has taken place
and any other special options required� Similarly� mutations must all take the
three arguments and return the resulting child� Table IV shows the operators im�
plemented in Matlab� their corresponding �le names� and any options that the
operator takes in addition to the �rst option� the number of applications per gen�
eration�

��� Selection Function

The selection function determines which of the individuals will survive and continue
on to the next generation� The ga function calls the selection function each gener�
ation after all the new children have been evaluated to create the new population
from the old one�
The basic function call used in ga for selection is�



	� � C� Houck et al�

Table IV� Matlab Implemented Operator Functions

Name File Options

Arithmetic Crossover arithXover�m none
Heuristic Crossover heuristicXover�m number of retries �t�
Simple Crossover simpleXover�m none
Boundary Mutation boundary�m none
Multi�Non�Uniform Mutation multiNonUnifMut�m max num of generations� shape parameter �b�
Non�Uniform Mutation nonUnifMut�m max num of generations� shape parameter �b�
Uniform Mutation unifMut�m none

�newPop� � selectFunction�oldPop�options�

where newPop is the new population selected� oldPop is the current population�
and options is a vector for any other optional parameters�
Notice that all selection routines must take both parameters� the old population

from which to select members from� and any speci�c options to that particular
selection routine� The function must return the new population� Table V shows
the selection routines that have been implemented in GAOT� The �le names are
provided� as they are the function names to be used in Matlab� and the options for
each function is also provided�

Table V� Matlab Implemented Selection Functions
Name File Options

Roulette Wheel roulette�m None
Normalized Geometric Select normGeomSelect�m Probability of Selecting Best
Tournament tourn�m Number of individuals in each tournament

��� Initialization and Termination Functions

Initialization of a population to provide the ga a starting point is usually done by
generating random strings within the search space� and this is the default behavior
of the ga function� However� it is possible to �seed� the initial population with
individuals� or generate solutions in some other form� The ga allows for this with
the optional startPop parameter which provides the ga with an explicit starting
population�
The termination function determines when to stop the simulated evolution and

return the resulting population� The ga function calls the termination function
once every generation after the application of all of the operator functions and the
evaluation function for the resulting children� The function call is of the format�

done � terminateFunction�options�bestPop�pop�

where options is a vector of termination options the �rst of which is always the
current generation� bestPop is a matrix of the best individuals and the respective
generation it was found� pop is the current population� Table VI shows the termi�
nation routines that have been implemented in GAOT� The �le names are provided



A GA for function optimization � 	�

as they are the function names to be used in Matlab� and the options for each
function is also provided�

Table VI� Matlab Implemented Termination Functions
Name File Options

Terminate at Speci�ed Generation maxGenTerm�m �nal generation
Terminate at Optimal or max gen maxGenOptTerm�m �nal generation� optimal value� epsilon

��� Online Tutorial

Several Matlab demos are provided as a tutorial to the genetic algorithm toolbox�
The �rst demo� gademo�� gives a brief introduction to GAs using a simple one
variable function� The second demo� gademo�� uses a more complicated example�
the ��dimensional Corana function� to further illustrate the use of the toolbox� The
�nal demo� gademo�� is a reference to the format used for the operator� selection�
evaluation� and termination functions�

�� SUMMARY

A genetic algorithm capable of either using a �oating point representation or a
binary representation has been implemented as a Matlab toolbox� This toolbox
provides a modular� extensible� portable algorithm in an environment rich in math�
ematical capabilities� The toolbox has been tested on a series of non�linear� non�
convex� multi�modal functions� The results of these tests show that the algorithm
is capable of �nding better solutions with less function evaluations than simulated
annealing�

REFERENCES

Bersini� H� and Renders� B� ����� Hybridizing genetic algorithms with hill�climbing meth�
ods for global optimization� Two possible ways� In ���� IEEE International Symposium

Evolutionary Computation� Orlando� Fl� pp� ��������

Corana� A��Marchesi� M��Martini� C�� and Ridella� S� ����� Minimizingmultimodal func�
tions of continuous variables with the �simulated annealing� algorithm�ACM Transactions

on Mathematical Software ��� �� ������
�

Davis� L� ����� The Handbook of Genetic Algorithms� Van Nostrand Reingold� New York�

Goldberg� D� ����� Genetic Algorithms in Search� Optimization� and Machine Learning�
Addison�Wesley�

Holland� J� ����� Adaptation in natural and arti�cial systems� The University of Michigan
Press� Ann Arbor�

Houck� C�� Joines� J�� and Kay� M� ����a� A comparison of genetic algorithms� random
restart� and two�opt switching for solving large location�allocation problems� Computers �
Operations Research forthcoming in special issue on evolution computation�

Houck� C�� Joines� J�� and Kay� M� ����b� The e�ective use of local improvement procedures
in conjunction with genetic algorithms� Technical Report NCSU�IE Technical Report ���
North Carolina State University�

Joines� J� and Houck� C� ����� On the use of non�stationary penalty functions to solve con�
strained optimization problems with genetic algorithms� In ���� IEEE International Sym�

posium Evolutionary Computation� Orlando� Fl� pp� ��������



	� � C� Houck et al�

Michalewicz� Z� ����� Genetic Algorithms � Data Structures 	 Evolution Programs� AI
Series� Springer�Verlag� New York�


