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Abstract: In the paper, a MATLAB based graphical user interface OptimFOPID is presented
for designing optimum fractional-order PID-type controllers of different types, under different
criteria, for linear fractional-order plants. Numerical optimization algorithms, including global
optimization algorithms are embedded in the interface in designing the controllers. Illustrative
examples of optimum fractional-order PID controller design are given to demonstrate the merit
of optimum fractional-order controllers over the traditional ones.
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1. INTRODUCTION

PID-type controllers are the most widely used controllers
in process industry, there are a great amount of pub-
lished algorithms and applications of PID controllers, see
O’Dwyer (2003), Åström and Hägglund (1995), Johnson
and Moradi (2005), Silva et al. (2005), and some of
the tuning algorithms collected in the books are already
adopted in real applications. To further improve the
behavior of the conventional PID controllers, fractional-
order PID controllers, proposed in Podlubny (1999b), can
also be adopted.

The standard form of the fractional-order PID controller,
also known as PIλDµ controller, is expressed as

Gc = Kp +
Ki

sλ
+Kds

µ (1)

where λ and µ are arbitrary real numbers. The fractional-
order derivatives and integrals are defined with
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is the jth coeffcient of the

polynomial (1 − z)α. The above definition is referred to
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as the Grünwald-Letnikov definition, and there are several
other definitions in Podlubny (1999a); Monje et al. (2010).

There are many tuning algorithms for the fractional-
order PID controllers such as Podlubny (1999b), however
most of the algorithms are for particular types of plant
models. For instance, the tuning algorithms for integer-
order plants, see Li and Chen (2008); Chen et al. (2008);
Chang and Lee (2008), and the tuning formula for some
special fractional-order plants. However there is no to-date
optimum parameter tuning algorithms for arbitrary linear
fractional-order plants exist. In this paper, a MATLAB
based graphical user interface, named OptimFOPID, is
developed and presented for optimum fractional-order
PID-type controller design for ordinary linear fractional-
order plants. Integral performance indices are used, and
the most meaningful criterion is recommended in servo
control systems in Section 3. In Section 4, a brief tutorial
and descriptions to OptimFOPID is given, based on the
FOTF objects in Monje et al. (2010) for the plants
described by linear fractional-order transfer functions. In
Section 5, some illustrative examples are given to show the
benefit of the proposed interface. Comparisons are made
on the examples for fractional-order as well as conventional
integer-order PID controllers. Global optimization tools
are embedded in the interface and they can be invoked
directly with extra toolboxes such as Global Optimization
Toolbox in MathWorks Inc (2011), GAOT in Houck et al.
(1995) and PSOt in Birge (2003), to ensure the best
controllers to be found.



2. VARIATIONS OF FRACTIONAL-ORDER PID
CONTROLLERS

A typical fractional-order PID control framework for
process system is shown in Fig. 1, where the plant model
G(s) is a fractional-order transfer function given by

G(s) =
b1s

γ1 + b2s
γ2 + · · ·+ bmsγm

a1sη1 + a2sη2 + · · ·+ an−1sηn−1 + ansηn
(3)
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Fig. 1. Fractional-order PID control structure

The standard form of the fractional-order PID controller,
denoted as PIλDµ, is presented again

Gc(s) = Kp +
Ki

sλ
+Kds

µ (4)

where λ and µ are real, and typically λ, µ ∈ (0, 2). There
are five tunable parameters in the controller. Compared
with conventional-order PID controller, the extra two
parameters λ and µ are demonstrated in Fig. 2, and it
can be seen that the fractional-order PID controller has
two more degrees-of-freedom than the conventional PID
controller, which makes it more flexible. Conventional-
order PID-type controllers are special cases of fractional-
order PID-type controllers.
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Fig. 2. Comparison of fractional-order and conventional
PID controllers

Some special cases of fractional-order PID-type controllers
are also considered in the paper, as shown in Table 1.

Table 1. Variations of fractional-order PID-
type controllers

notation description parameters

PIλ fractional-order PI Kd = 0

PDµ fractional-order PD Ki = 0

PIDµ integer-order integral λ = 1

PIλD integer-order derivative µ = 1

PID conventional PID controller λ = µ = 1

3. INTEGRAL PERFORMANCE INDICES

The target of fractional-order PID control is to tune the
parameters of PIλDµ such that the dynamic tracking
error signal e(t) as small as possible. Integral performance
indices to the error signal e(t) are often good choices to
assess the behaviors of the tracking error signal e(t). In
particular, the following integral performance indices are
used in the interface

I1 =

∞∫
0

e2(t)dt, I2 =

∞∫
0

|e(t)|dt, I3 =

∞∫
0

t|e(t)|dt (5)

I4 =

∞∫
0

te2(t)dt, I5 =

∞∫
0

t2e2(t)dt, I6 =

∞∫
0

t2|e(t)|dt (6)

The above criteria are abbreviated respectively as ISE,
IAE, ITAE, ISTE, IT2SE, and IT2AE criteria, and some
of those are usually adopted in literatures.

It can be seen that in the ISE and IAE criteria, the values
of the error signals e(t) at any time instances are treated
equally, whereas in the ITAE criterion, the value of error
signal is penalized when the time t gets larger. That is
to say that the ITAE criterion is more suitable for servo
control problems, since the error signal is forced to settle
down at zero as soon as possible. Later, an example will be
given to demonstrate the advantages of the ITAE criterion.

Since ITAE criterion can only be evaluated with simulation
approach, infinite integrals cannot be evaluated. Finite-
time ITAE integral defined as

IFT−ITAE =

tf∫
0

t|e(t)|dt (7)

can be used instead to approximate the ITAE criterion, if
the finite time tf is selected properly, since the error signal
|e(t)| may settle down at zero for larger t, such that the
integral after tf may have zero contribution to the total
value of the ITAE integral.

4. OPTIMFOPID: GRAPHICAL USER INTERFACE

AMATLAB based graphical user interface, OptimFOPID,
is developed and it can be used directly in optimum PID
controllers design. The package can be downloaded from
MathWorks’ File Exchange web-site (See Xue (2012)). It
can be unzipped to a folder and this folder should be added
to the MATLAB search path. Once all these are done,
the command optimfopid can be issued and the main
interface shown in Fig. 3 can be displayed.

If the plant model to be controlled is a linear time invariant
fractional-order transfer function in (3), and the class
fotf in Monje et al. (2010) can be used to represent it.
In the fotf package, the plant model can be expressed
by four compatible vectors, representing respectively the
coefficients and orders of the numerator and denominator
pseudo polynomials. For instance, the fractional-order
transfer function

G(s) =
s0.4 + 5s0.8 + 2

s1.5 + 1.2s0.7 + 1.8s0.4 + 5



Fig. 3. The main interface of OptimFOPID

can be entered into MATLAB workspace by

>> G=fotf([1 1.2 1.8,5],[1.5 0.7 0.4 0],...
[1 5 2],[0.4 0.8 0])

For the complicated fractional-order transfer functions

G(s) =
1

s0.2(s0.5 + 0.8s0.2 + 1)(s0.2 + 3)

the command s=fotf(’s’) can be used to declare the
Laplace operator s first, Thus the following MATLAB
command can be used to enter the fractional-order transfer
function model

>> s=fotf(’s’);
G=1/s^(0.2)/(s^0.5+0.8*s^0.2+1)/(s^0.2+3)

The above factorized model can be converted automatical-
ly to a standard FOTF object

G(s) =
1

s0.9 + 3s0.7 + 0.8s0.6 + 3.4s0.4 + 3s0.2

The essential procedures of optimum fractional-order PID
controller design with OptimFOPID are:

(1) Using MATLAB command to specify the plant model
as a FOTF object, in the variable G in MATLAB
workspace, and then click the Plant model button to
load the plant model into the interface.

(2) The finite time tf or an evenly spaced time vector t
should also be entered into the Time vector edit box.

(3) Click Optimize button to start the controller design
process. The intermediate information will be dis-
played in the command window. After the search pro-
cess, the controller can be returned on the MATLAB
variable Gc, as a FOTF object.

Below are optional settings in controller design:

(1) The controller type such as PIλDµ, PIλ, PDµ, PIDµ,
PIλD, and conventional PID controller can be select-
ed from the Controller type listbox.

(2) The optimization algorithms can be selected from the
listbox of Optimization algorithm. Apart from conven-
tional optimization algorithms, global optimization
algorithms such as genetic algorithm, particle swarm

optimization and pattern search algorithm are also
supported.

(3) Upper and lower bounds of the parameters Kp, Ki

and Kd, where the orders λ and µ are assumed
λ, µ ∈ (0, 2).

(4) Different criteria ITAE, ISE, IAE, and so on as
defined in (4) and (5), can be adopted from the
Optimization criterion listbox, with ITAE the recom-
mended one.

(5) Unit step response of the closed-loop system under
the designed controller can be obtained by clicking
the Closed-loop response. If Hold checkbox is checked,
the closed-loop of other controllers designed can be
displayed in the same axis.

Besides, in order to design satisfactory controllers, the
following key points should also be considered:

(1) The selection of the terminate time tf is sometimes
crucial in optimum controller design. Since the inte-
grands in the performance indices are non-negative,
the integrals are always nondecreasing functions. The
curves will remain flat when the integrand, or the
error signal e(t), settles down at zero. The strategy of
selecting tf will be depicted through examples.

(2) Sometimes, the upper and lower bounds of controller
parameters are also important, one may try different
boundaries in the design process.

(3) The overload functions in the @fotf folder can be
used to analyze the behaviors of the closed-loop
system in MATLAB command window as well. Since
the plant model and controller are denoted by the
variables G and Gc, respectively, one can use the
MATLAB commands step(feedback(1,G*Gc),t)
and step(feedback(G,Gc),t) to draw the signals
e(t) and u(t) in the system.

5. ILLUSTRATIVE EXAMPLES

In this section, several illustrative examples are presented.
Commonly used plant models in literatures are adopted
and optimal fractional-order PID controllers are designed.

[Example 1]: Consider the fractional-order model of the
furnace given by Podlubny (1999a)

G(s) =
1

0.8s2.2 + 0.5s0.9 + 1

The procedures in designing optimal controllers are

(1) The following statement can be used to enter the
plant model
>> G=fotf([0.8 0.5 1],[2.2 0.9 0],1,0)

(2) Click the Plant model button to load the plant into
the interface.

(3) Set the upper boundaries of the parameters to 15, and
the terminate time to 8.

(4) Click Optimize button to start the optimization
process.

The parameter vector obtained is

x = [5.2440, 12.4485, 9.0996, 0.9835, 1.1954]

such that



Gc1(s) =
9.0996s2.1789 + 5.244s0.98349 + 12.4485

s0.98349

= 5.244 +
12.4485

s0.98349
+ 9.0996s1.1954

It can be seen that the order of integrator is very close
to unity, the PIDµ controller can be selected from the list
box and the Optimize button can be clicked again to find
the PIDµ controller

Gc2(s) = 8.342 +
14.9109

s
+ 11.317s1.2622

Also the PID item can be selected from the listbox to find
the conventional PID controller

Gc3(s) = 2.2685 +
15

s
+ 10.4292s

The step responses under these controllers are shown in
Fig. 4. It can be seen that the step responses under the
PIλDµ and PIDµ controllers are almost identical, and
they are much better than the optimal conventional PID
controller.
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Fig. 4. Step responses under different controllers

[Example 2]: Consider another fractional-order transfer
function

G(s) =
1

s2.6 + 3.3s1.5 + 2.9s1.3 + 3.32s0.9 + 1

Again the procedures in designing the controllers with
OptimFOPID interface are

(1) The plant model can be entered into MATLAB by
>> G=fotf([1 3.3 2.9 3.32 1],...

[2.6 1.5 1.3 0.9 0],1,0);
and again, one can click the Plant model button to
load the model into the interface.

(2) Select terminate time to 10
(3) Click Optimize button to start searching process.

The optimal PIλDµ controller can be found

Gc1(s) =
10.0194s1.6029 + 14.9959s1.0137 + 2.5974

s1.0137

= 14.9959 +
2.5974

s1.0137
+ 10.0194s0.5892

The optimal PIDµ controller can be obtained as

Gc2(s) = 14.9997 +
2.7843

s
+ 10.9289s0.5795

The conventional PID controller can also be obtained as

Gc3(s) = 15.0000 +
2.0632

s
+ 11.1509s

Under the three controllers, the closed-loop step responses
are shown in Fig. 5. Again it can be seen that the
quality of the two fractional-order controllers are almost
identical and the system behaviors are satisfactory. While
the optimal conventional PID controller is not as good.
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Fig. 5. Step responses under different controllers

It should be noted that the above optimal controllers are
designed under the finite-time ITAE criterion. However
if the ISE criterion is used instead, the optimal PIλDµ

controller can be obtained as

Gc4(s) = 15 +
15

s1.3×10−5 + 15s1.5766

It almost equivalents a PDµ controller. The parameters
are on the boundaries of the pre-specified 15. Even though
the value is increased to 1000, or other larger numbers,
the controller parameters obtained will also be on the
boundaries. This means that there is no optimal PIλDµ

controller for the plant model, when ISE criterion is used.
Under the controller Gc4(s), the step response of the
closed-loop system is shown in Fig. 6, and it is very poor,
compared with the controllers in Fig. 5. Since the integral
action in ISE controller is very weak, there may exist
steady-state errors in the output, at least when t is not
extremely large.

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 6. Step response with ISE optimal PIλDµ controller

[Example 3] For a fractional-order plant model

G(s) =
−2s0.63 − 4

2s3.501 + 3.8s2.42 + 2.6s1.798 + 2.5s1.31 + 1.5

it will be very difficult to find optimal PID controllers,
integer-order or fractional-order, using existing design al-
gorithms. However with the use of numerical optimization
techniques, the optimum PIλDµ and conventional PID
controllers can be obtained easily.



The following procedures can be used in searching for the
optimal controllers.

(1) Specify the plant model as a FOTF object G
>> a=[2,3.8,2.6,2.5,1.5];

na=[3.5001,2.42,1.798,1.31,0];
G=fotf(a,na,[-2,-4],[0.63,0]);

(2) Load the plant model into the interface by clicking
the Plant model button.

(3) Specify the terminate time to 4, or other value of
user’s choice, however this value should be validated
after the controller design process.

(4) Set the upper and lower boundaries of controller
parameters to 0 and −20, respectively.

(5) Click Optimize button to design the optimal PIDµ

controller. For this example, we have

Gc1(s) = −20− 0.017852

s
− 18.3742s0.6695

and the conventional PID controller can also be found as

Gc2(s) = 8.5552− 8.5552

s
− 9.3095s

The closed-loop step responses of the systems under the
two controllers can be obtained as shown in Fig. 7. It
can be seen that the behavior under the PIDµ controller
is much much better than that under the optimum
conventional PID controller.
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Fig. 7. Step responses with the two controllers

If conventional optimization problem solvers cannot find
global optimal controllers, the Optimization algorithms
listbox can be clicked, from which other global optimiza-
tion solvers, including Genetic Algorithm Optimization
Toolbox (GAOT), Particle Swarm Optimization Toolbox
(PSOt), as well as MATLAB’s Global Optimization Tool-
box, in particular the simulated annealing algorithm and
pattern search algorithm, can be selected.

6. CONCLUSIONS

In the paper, an optimum fractional-order PID controller
design interface in MATLAB is presented. With such
an interface, different types of optimum fractional-order
PID controllers under different integral performance in-
dices can be designed, when the plant model is a linear
fractional-order model. The interface is easy to use, and
may be used by inexperienced users directly. The ITAE
performance index is recommended for the design, since
it is more reasonable than the widely used ISE criterion.
Global optimized controllers can be obtained with the use

of relevant tools. The conclusions and advantages of the
proposed OptimFOPID interface are:

(1) This interface is a numerical optimization based
optimal controller design interface. It is applicable to
any linear fractional-order plant models.

(2) Finite-time ITAE criterion is mainly studied and
recommended, rather than the well accepted ISE and
other criteria, since it is much better in describing
time domain response behaviors. This criterion is
meaningful in control applications, although the
optimum controllers under other criteria can equally
be obtained, if needed.

(3) Different optimization problem solvers are integrated
in the interface, and genetic algorithm, particle swarm
optimization, simulated annealing as well as pattern
search algorithms may lead to global optimization
results, which are likely to ensure stabilizing closed-
loop behavior even for complicated plants.
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