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Abstract: This study is concerned with observer design and observer-based output feedback control for a fractional reaction
diffusion (FRD) system with a spatially-varying (non-constant) diffusion coefficient by the backstepping method. The considered
FRD system is endowed with only boundary measurable and actuation available. The contribution of this study is divided into
three parts: first is the backstepping-based observer design for the FRD system with non-constant diffusivity, second is the
output feedback controller generated by the integration of a separately backstepping-based feedback controller and the
proposed observer to stabilise the FRD system with non-constant diffusivity, and the last is the Mittag–Leffler stability analysis of
the observer error and the closed-loop FRD systems. Specifically, anti-collocated location of actuator and sensor is considered
in the stabilisation problem of this system with Robin boundary condition at x = 0 and the boundary feedback controller for
Dirichlet actuation at x = 1. By designing an invertible coordinate transformation to convert the observer error system into a
Mittag–Leffler stable target system, the observer gains are obtained. They are used to design the output feedback control law
for stabilising the closed-loop system. Finally, a numerical example is shown to validate the effectiveness of the authors'
proposed method.

1 Introduction
1.1 Overview of prior literatures

In engineering application, the system state information is crucial
to its control problem. Nevertheless, not all states are available in
practical cases due to using restrictions of sensors or some
unmeasurable variables. Recent years, several intensive research
activities have been devoted to the observer design and the
observer-based output feedback. Many of these activities have
focused on integer-order differential systems, especially for
distributed parameter systems (DPSs) governed by partial
differential equations (PDEs). For these systems, the emphasis has
been put on the problem of the Lunberger-like state observer
design in the whole domain, see, e.g. [1, 2]. By the backstepping
approach, the boundary observer design method has been
announced in [3] for a class of PDEs. The main idea of the
backstepping method in [4] is to transform a preset system into a
selected stable target system. More basic knowledge and
development of the backstepping approach can be found in [5, 6]
and references therein.

Later on, a lot of related works have been arisen with the aid of
this method, such as adaptive observer design for the ordinary
differential equation-PDE (ODE–PDE) systems and parabolic
PDEs with domain and boundary parameter uncertainties in [7, 8],
and output feedback control of parabolic PDEs with moving
boundary in [9]. Note that these works are related to the constant
diffusivity. For non-constant diffusivity [10, 11], there are also
many considerable research results [12, 13] on boundary observer
design for the cascade PDE–ODE systems and semi-linear DPSs.

As we know, fractional differential equations have multiple
applications in environmental science and biology, physics, and
geophysics. Hence, great attention has been paid to this popular
topic, see, e.g. [14, 15]. In particular, for the fractional reaction
diffusion (FRD) system with constant diffusivity, the boundary
stabilisation and the observer-based output feedback control
problems have recently been addressed in [16–18]. Specifically, the

work in [16] considered the boundary feedback control problem for
the FRD system with Dirichlet or Neumann boundary conditions.
After that the state-feedback and the output-feedback problems for
the case of mixed or Robin boundary conditions were investigated
in [17, 18].

1.2 Motivation

The observer design problem of fractional-order systems can be
traced back to the work [19], which used the estimation of state in
the whole domain to design observer and developed a stability
criterion for these systems from the point of system matrix's
argument. Unfortunately, solving the argument is too difficult to
realise. It needs to find some other methods for the stability of
fractional-order systems, e.g. the fractional Lyapunov method [20].
Additionally, despite the considerable contribution of the boundary
stabilisation, observer design and output feedback control for DPSs
(integer-order systems) in [3, 21, 22], very few results are available
on the output feedback control for fractional-order systems with
constant or non-constant diffusivity except for the one of
fractional-order systems with constant diffusivity in [18].

Motivated by the advantage of the backstepping method for
integer-order systems, observer design for DPSs and the fractional
Lyapunov method for the stability of fractional-order systems, in
this paper, we introduce the backstppeing approach into the FRD
system with non-constant diffusivity for designing the observer and
the output-feedback controller. Then the Mittag–Leffler stability of
this controlled system is analysed by the fractional Lyapunov
method. Here, the diffusivity is allowed to spatially-varying (non-
constant), which can model pattern formation in inhomogeneous
media [23, 24] and may mimic the diffusion effects of particles in
the heterogeneous environment [25].

IET Control Theory Appl., 2018, Vol. 12 Iss. 11, pp. 1561-1572
© The Institution of Engineering and Technology 2018

1561



1.3 Main contribution

The contribution of this paper will be presented as the following
aspects:

(1) Comparing with the integer-order case [3, 21, 22], the results in
this paper can be viewed as a generalisation of the integer-order
case. Specifically, compared to the case of integer-order system
with constant diffusivity in [3, 22], the system in this paper was a
fractional-order type and also subject to non-constant diffusivity so
that the designed observer contained the diffusivity term and the
stabilisation results of the observer error and closed-loop systems
referred to the fractional Lyapunov stability (Mittag–Leffler
stability) theory rather than the Lyapunov stability theory.
Compared to the non-constant diffusivity case of the integer-order
system in [21], our results are more difficult in some extent since
the fractional-order type of our system makes the stabilisation
problem complex and different from the integer-order one. Note
that the case of an integer-order system with non-constant
diffusivity in [21] only discussed the boundary stabilisation
problem but here we investigate the observer design and observer-
based output feedback control problems. They need to use the
boundary state-feedback results, which has been put into the
Appendix for reference.
(2) The boundary feedback control has recently been addressed in
[16, 17] for the FRD system with constant diffusivity. In this paper,
we do not focus on the constant diffusivity case. An important
extension of the backstepping approach is the design of an observer
and a stabilising output feedback controller for the FRD system
with non-constant diffusivity, which makes the observer error and
the closed-loop systems Mittag–Leffler stable. Here the output
feedback control problem is solved for an FRD system with non-
constant diffusivity, where the integration of the boundary
feedback controller and the observer is based on separation
principle, and only boundary measurement and actuation available.
(3) Compared to the output-feedback problems of fractional-order
systems with constant diffusivity in [18, 19], the one discussed
here give more freedom to choose the parameter value since the
diffusion coefficient is spatially-varying (non-constant). In [19],
the observer design is based on the fact measurement is available in
the whole domain while this present problem needs only the
boundary observation of the FRD system with non-constant
diffusivity. Furthermore, the observer-based output feedback
problem was considered for the constant-diffusivity FRD system in
[18], which may be simpler than our present problem where the
non-constraint diffusivity affects the FRD system and the
stabilisation results need to be guaranteed by certain constraint
conditions. From a theory point of view, this paper provides some
insight into the observer-based output-feedback control for
fractional-order systems with non-constant diffusivity.

1.4 Structure

The next section illustrates the output feedback problem for the
FRD system with non-constant diffusivity. After it, Section 3
presents the observer design for this system. This result is
combined with the boundary feedback controller (see the
Appendix) to generate an output feedback controller in Section 4.
Then, sufficient conditions for the Mittag–Leffler stability of the
observer error and the closed-loop systems have been presented.
The numerical simulation results are provided in Section 5 to
demonstrate the validness of our proposed method. Finally,
conclusions are contained in Section 6. To alleviate the
presentation, the boundary stabilisation results are attached in the
Appendix.

2 Problem settlement
In this paper, the dynamics equation and initial condition of the
FRD system with non-constant diffusivity are described by

0
CDt

αu(x, t) = ϑ(x)uxx(x, t) + a(x)u(x, t), x ∈ (0, 1), t > 0,
u(x, 0) = u0(x), x ∈ [0, 1]

(1)

with the mixed boundary conditions

ux(0, t) − pu(0, t) = 0, t > 0, (2)

u(1, t) = U(t), t > 0, (3)

or ux(1, t) = U(t), t > 0, (4)

or ux(1, t) + qu(1, t) = U(t), t > 0, (5)

where

0
CDt

αu(x, t) = 1
Γ(1 − α)∫0

t 1
(t − τ)α

∂u(x, τ)
∂τ dτ, 0 < α < 1

denotes the Caputo time fractional-order derivative of α order [26],
ϑ(x) > 0 for x ∈ [0, 1] represents the non-constant diffusivity,
a( ⋅ ) ∈ C1[0, 1], u0(x) is the non-zero initial value, p > 0, q > 0,
and U(t) represents an input. In addition, this problem (i.e. FRD
process with spatially-varying diffusivity) has another structure,
which can be represented as 0

CDt
αu(x, t) = (∂/∂x)(ϑ(x)ux(x,

t)) + a(x)u(x, t). This system's dynamical equation is different from
(1) and also got much attention [14]. It can be converted into
0
CDt

αy(x, t) = ϑ(x)yxx(x, t) + (a(x) + (ϑ′2(x)/(4ϑ(x)) − ((ϑ″(x))/2))
y(x, t) with a change of variables u = y/ ϑ(x).

For the above system (1), the boundary conditions (2), (3) or
(2), (4) can be taken as mixed boundary conditions, and (2), (5) are
Robin boundary conditions. Here, we main focus on Robin
boundary condition at x = 0 and Dirichlet actuation at x = 1 (i.e.
(2), (3)), the cases of other boundary conditions are analogous and
without much technical differences. For the FRD system (1), (2)
without control, i.e. u(1, t) = 0, we can know that it is unstable if
a( ⋅ ) is large enough based on the stability results of fractional-
order systems in [19, 27]. Specifically, the stability of FRD system
is guaranteed by the fact that the roots of some polynomial lie
outside the closed-angular sector

arg spec ∂2(ϑ(x)u(x, t))
∂x2 + a(x) ≤ απ

2 ,

which has been proposed in [19, 27]. Although the eigenvalues of
the operator

∂2(ϑ(x)u(x, t))
∂x2

are negative (see, e.g. [28, Section 3]), the stability of the open-
loop system (1)–(3) (with U(t) = 0) can also be lost if the value of
a(x) takes large enough. Thus, we need to design corresponding
control to stabilise this system.

In this paper, we want to utilise an output feedback controller to
make this system stable. First, design a Mittag–Leffler convergence
observer for this system. Then, combine the proposed observer and
the backstepping-based controller to design an output feedback
controller to stabilise this controlled FRD system, which recurs to
the backstepping-based boundary stabilisation results (see the
Appendix for more details). The observer gains are determined by
the type of actuation (i.e. Dirichlet actuation or someone else), and
the setups of sensors and actuators, i.e. sensors and actuators are
allocated at the same end or at the different end (collocated case or
anti-collocated case). Actually, the two cases are analogous in
technical aspects, including observer design and output feedback
controller design. Thus, we only choose the anti-collocated case for
discussion and give some relevant corollaries or remarks for the
collocated case.

 
Remark 1: In the above system (1)–(3) ((1), (2), (4) or (1), (2),

(5)), if α = 1, this system will reduce to the integer-order case,
whose observer design and observer-based output feedback
problems have been investigated in [3].
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Definition 1 ([20, 29] Mittag–Leffler stability):

If | |u(t) | | ≤ h[u(t0)]Eβ( − γ(t − t0)β) b, (6)

where t0 is the initial value of time, β ∈ (0, 1), γ ≥ 0, b > 0,
h(0) = 0, h(u) is non-negative and meets locally Lipschitz
condition on u ∈ B ∈ ℝn with the Lipschitz constant h0, and

Eβ(t) := ∑
i = 0

∞ ti

Γ(iβ + 1) , ∀β > 0, t ∈ ℂ

in [30], then the solution of the equation

t0
CDt

βu(t) = f (t, u) (7)

is said to be Mittag–Leffler stable. In (7), u(t0) is the initial
condition, β ∈ (0, 1), f is piecewise continuous in t ∈ [t0, ∞) and
locally Lipschitz in u.

 
Definition 2 ([20] Equilibrium point): The constant u0 is an

equilibrium point of the Caputo fractional dynamic system (7), if
and only if f (t, u0) = 0, t ∈ [t0, ∞).

Based on the above Definition 2, we know u(x, t) = 0 is an
equilibrium point of (1).

3 Observer design
Here, assume that the Dirichlet actuation is exerted at x = 1 and
measurement is available at x = 0. Then the output is given by

y(t) = u(0, t) . (8)

In this case, the corresponding state observer for the plant (1)–(3)
is designed as follows:

0
CDt

αu^(x, t) = ϑ(x)u^xx(x, t) + a(x)u^(x, t) + r1(x)
× (u(0, t) − u^(0, t)), x ∈ (0, 1), t > 0,

u^(x, 0) = u^0(x), x ∈ [0, 1],
(9)

u^x(0, t) = pu(0, t) + r10(u(0, t) − u^(0, t)), t > 0, (10)

u^(1, t) = U(t), t > 0, (11)

where r1(x) and r10 represent observer gains to be designed, u^0(x) is
the initial value.
 
Remark 2: Similar to the argument in [3, Section 3], the additional
observer gain p(u(0, t) − u^(0, t)) in (10) is also used to eliminate the
dependency on p in the error system. This makes (10) has the
expression different from the one of extended Luenberger observer
in [13, Section II].

The observer (9)–(11) for FRD systems mimics the fractional
differential system in [19], whose observer is designed as the form
of dαx^ = Ax^ + B^u − L(y^ − y), y^ = Cx^ and used for the plant
dαx = Ax + Bu, Y = Cx (dαx is the smooth derivative of α with
respect to x). It is pointed out that in this paper the measurement is
available at the end rather than the whole domain. Also, the way to
find observer gains in the FRD system is based on the stabilisation
solution problem in the Appendix.

With the observer error u~(x, t) = u(x, t) − u^(x, t), the following
error system is obtained:

0
CDt

αu~(x, t) = ϑ(x)u~xx(x, t) + a(x)u~(x, t),
−r1(x)u~(0, t) x ∈ (0, 1), t > 0,

u~(x, 0) = u~0(x), x ∈ [0, 1],
u~x(0, t) = − r10u~(0, t), t > 0,
u~(1, t) = 0, t > 0,

(12)

where u~0(x) is the initial value. Here, note that u^(x, t) = 0 and
u~(x, t) = 0 are the equilibrium points of (9) and (12) in terms of
Definition 2.

The observer gains r1(x) and r10 are chosen to stabilise the
system (12). To solve the Mittag–Leffler stabilisation problem of
the system (12), we want to find an integral transformation

u~(x, t) = w~(x, t) + ∫
0

x
r(x, y)w~(y, t) dy (13)

to map the system (12) into below target system:

0
CDt

αw~(x, t) = ϑ(x)w~xx(x, t) − λ
~
w~(x, t),

x ∈ (0, 1), t > 0,
w~(x, 0) = w~0(x), x ∈ [0, 1]
w~x(0, t) = 0, t > 0,
w~(1, t) = 0, t > 0,

(14)

where λ
~ > 0 can determine the observer convergence speed, which

is usually different from λ of control design in Section 2. w~0(x) is
the initial value and w~0(x) = u~0(x) − ∫0

xr(x, y)w~0(y) dy. It is
noticeable that this target system is Mittag–Leffler stable under
certain conditions (see the proof of Theorem 1 for more details).

The following is contributed to find out gain kernel r(x, y) in
(13) through a series computation and substitution. Based on
integral transformation (13), we know that u~(0, t) = w~(0, t). Then,
taking the space derivative of (13), we have

u~x(x, t) = w~x(x, t) + r(x, x)w~(x, t) + ∫
0

x
rx(x, y)w~(y, t) dy (15)

and

u~xx(x, t) = w~xx(x, t) + d
dxr(x, x)w~(x, t) + r(x, x)w~x(x, t)

+rx(x, x)w~(x, t) + ∫
0

x
rxx(x, y)w~(y, t) dy .

(16)

Next solving this integral transformation's Caputo time
derivative with the α order, it is readily to obtain that

0
CDt

αu~(x, t) = 0
CDt

αw~(x, t) + ∫
0

x
r(x, y)0

CDt
αw~(y, t) dy . (17)

Substituting the first equations of (12), (14), and (16) into above
equality (17), we get

0 = (ϑ(x) d
dxr(x, x) + ϑ(x)rx(x, x) + a(x) + λ

~ + ϑ(x)

× ry(x, x) + ϑ′(x)r(x, x))w~(x, t) + ∫
0

x
(ϑ(x)rxx(x, y)

+a(x)r(x, y) − (ϑ(y)r(x, y))yy + λ
~
r(x, y))w~(y, t) dy

+( − r1(x) − ry(x, 0)ϑ(0) − r(x, 0)ϑ′(0))w~(0, t) .

(18)

By integral transformation (13), we have u~(1, t) = w~(1, t) +
∫0

1r(1, y)w~(y, t) dy. This together with u~(1, t) = 0, w~(1, t) = 0,
implies that r(1, y) = 0.

Furthermore, (18), together with r(1, y) = 0, and the notations
d
dx r(x, x) = rx(x, x) + ry(x, x) where rx(x, x) = rx(x, y) |y = x , ry(x, x)
= ry(x, y)|y = x, yields the following kernel PDE of r(x, y):

ϑ(x)rxx(x, y) − ϑ(y)r(x, y) yy = − a(x) + λ
~

r(x, y)

2ϑ(x) d
dxr(x, x) = − ϑ′(x)r(x, x) − a(x) − λ

~

r(1, y) = 0

(19)
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for (x, y) ∈ Θ = {0 ≤ y ≤ x ≤ 1}. Aside, since u~x(x, t) = w~x(x,
t) + r(x, x)w~(x, t) + ∫0

xrx(x, y)w~(y, t) dy, we can get u~x(0, t) = w~x(0,
t) + r(0, 0)w~(0, t). It, together with u~x(0, t) = −r10u~(0, t) and
u~(0, t) = w~(0, t), induces that w~x(0, t) = − (r10 + r(0, 0))w~(0, t).
Comparing this with w~x(0, t) = 0 and considering (18) again, we
see that observer gains need to be chosen as

r1(x) = − ϑ(0)ry(x, 0) − ϑ′(0)r(x, 0), r10 = − r(0, 0) . (20)

 
Remark 3: In the above FRD system, if α = 1 and

ϑ(x) > 0, x ∈ [0, 1], then the corresponding observer gains of this
integer-order system with non-constant diffusivity are same as (20)
which can be derived from the results in [3, 21]. And when α = 1
and ϑ(x) = constant = D, the corresponding observer gains of the
integer-order one with constant diffusivity are r1(x) =
−Dry(x, 0), r10 = − r(0, 0) since ϑ(0) = D, ϑ′(0) = 0. It matches
with the result in [21]. In addition, if 0 < α < 1 and
ϑ(x) = constant (i.e. fractional systems with constant diffusivity),
the observer gains are same as the integer-order case with constant
diffusivity, which has been discussed in [18]. That said, the
observer gains are associated with the diffusion coefficient
(constant or non-constant).

For the above kernel PDE (20), if its solution could be found or
the kernel exists, then observer gains also could be obtained.
Therefore, we next prove that the solution of kernel PDE exists and
is unique. Similar to the method in [3], we first use a change of
variables like

r̄(x̄, ȳ) = r(x, y), x̄ = 1 − y, ȳ = 1 − x, (21)

ϑ̄(ȳ) = ϑ(x), ϑ̄(x̄) = ϑ(y), ā(ȳ) = a(x) (22)

to make the kernel PDE (19) into

ϑ̄(x̄)r̄(x̄, ȳ) x̄x̄ − ϑ̄(ȳ)r̄ȳȳ(x̄, ȳ) = ā(ȳ) + λ
~

r̄(x̄, ȳ)

2ϑ̄(ȳ) d
dȳ r̄(ȳ, ȳ) = − ϑ̄′(ȳ)r̄(ȳ, ȳ) + ā(ȳ) + λ

~

r̄(x̄, 0) = 0

(23)

for (x̄, ȳ) ∈ Ψ = {0 ≤ ȳ ≤ x̄ ≤ 1}.
Then, by another change of variables

r̆(x̆, y̆) = ϑ̄(x̄)3/4ϑ̄(ȳ)−1/4r̄(x̄, ȳ),

η̆ = ψ(η̄) = ϑ̄(0)∫
0

η̄ dτ
ϑ̄(τ)

, η̆ = x̆, y̆, η̄ = x̄, ȳ, (24)

the kernel PDE (23) becomes

r̆ x̆x̆(x̆, y̆) − r̆y̆y̆(x̆, y̆) = λ̆(x̆, y̆)
ϑ̄(0) r̆(x̆, y̆)

dr̆(x̆, x̆)
dx̆ = 1

2 ϑ̄(0)
(ā(x̄) + λ

~)

r̆(x̆, 0) = 0

(25)

where

λ̆(x̆, y̆) = 3
16

ϑ̄′2(x̄)
ϑ̄(x̄) − ϑ̄′2(ȳ)

ϑ̄(ȳ) − 1
4(ϑ̄″(x̄) − ϑ̄″(ȳ))

+(ā(ȳ) + λ
~) .

Obviously, kernel PDE (25) can be taken as a specific form in
class (73) from the Appendix (with p − ((ϑ′(0))/(4ϑ(0))) = ∞).
Using Lemma 3, we can get the existence and uniqueness of the
soultion of kernel PDE (19), which will be presented in below
lemma.

 

Lemma 1: Suppose that a(x) ∈ C1[0, 1], the kernel PDE (19)
with r(x, y) given by (21), (24), (25) also has a unique solution
which is bounded and twice continuously differentiable in
0 ≤ y ≤ x ≤ 1.

Next, we will show a crucial lemma for the following proof of
our main results.

 
Lemma 2 [31]: If u(t) ∈ ℝ is a continuous and differentiable

function. For any time t ≥ t0 ≥ 0, one can readily show that

1
2 t0

CDt
αu2(t) ≤ u(t)t0

CDt
αu(t), 0 < α < 1.

Using the invertibility of integral transformation (68) in the
Appendix, we can obtain that the integral transformation (13) is
also invertible. This, together with the boundedness of kernel
r(x, y), implies that there exist constants M1, M2 to make the below
inequalities hold:

| |u~(x, t) | | ≤ M1 | |w~(x, t) | | ,
| |w~(x, 0) | | ≤ M1 | |u~(x, 0) | | , (26)

and

| |u~(x, t) | |H1 ≤ M2 | |w~(x, t) | |H1 ,
| |w~(x, 0) | |H1 ≤ M2 | |u~(x, 0) | |H1 . (27)

Then, we will present the Mittag–Leffler stability analysis for the
observer error system (12) in below the main theorem.

 
Theorem 1 (Mittag–Leffler stability of the observer error system

for anti-collocated case): Assume that a(x) ∈ C1[0, 1], and the
Laplace transformation of w~2(x, t) exists, x ∈ (0, 1), t ≥ 0. Let
r(x, y) be the solution of kernel PDE (19).

(1) For any u~0(x) ∈ L2(0, 1), the observer error system (12) with
r1(x) and r10 provided in (19) and (20) is Mittag–Leffler stable at
u~(x, t) = 0 in the L2(0, 1) norm if the following constraint
conditions hold:

ϑ′(0) < 0

λ
~ − ϑmax″

2 + ϑmin

4 > 0, (28)

where ϑmax″  and ϑmin denote the maximum value of the second-order
derivative and the minimum value of ϑ(x), respectively.
(2) For any u~0(x) ∈ H1(0, 1), the observer error system (12) with
r1(x) and r10 provided in (19) and (20) is Mittag–Leffler stable at
u~(x, t) = 0 in the H1(0, 1) norm.

 
Proof: Before beginning our proof, we first study the existence

and uniqueness of the solution of the system (12) and a brief
statement on its regularity properties. From the above analysis, we
know that the integral transformation (13) is invertible. So if the
solution of the target system (14) exist and is unique, the existence
and uniqueness of the solution of the system (12) can also be
obtained. Indeed, we can use separation of variables to prove the
existence and uniqueness of the target system. Consider the target
system (14), we solve the eigenvalues and the corresponding
eigenfunctions of the operator

ℬ = ∂2(ϑ(x)w~(x, t))
∂x2 − λ

~ .

Then, based on the conclusion in [28, 32], the solution of target
system (14) exists and is unique, which can be given by
w~(x, t) = ∑i = 1

∞ (w~0, Xi)Eα(μitα)Xi(x), where μi and Xi (i = 0, 1, 2,
…) represent the eigenvalues and the corresponding eigenfunctions
of the operator ℬ. Here note that μi < 0, i = 0, 1, 2, … since the
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eigenvalues of the operator ∂2(ϑ(x)w~(x, t))
∂x2  are negative. As illustrated

in the above, the solution of the system (12) exists and is unique.
The regularity of the solution of the fractional differential
equations has been proved by the eigenfunction expansions in [32],
which is also applicable to the solution's regularity here.

Now we continue our proof. The proof exploits the Mittag–
Leffler stability of the target system (14) together with the
invertibility of integral transformation (13) (i.e. inequalities (26),
(27)). Specifically, for the L1 Mittag–Leffler stability, we consider
the Lyapunov functional as follows:

V(t, w~(x, t)) = 1/2∫
0

1

w~2(x, t) dx . (29)

Then, taking the Caputo time fractional derivative of V(t, w~(x, t)),
we have 0

CDt
αV(t, w~(x, t)) = 1/2∫0

1
0
CDt

αw~2(x, t) dx. This, by Lemma 2,
becomes

0
CDt

αV(t, w~(x, t)) ≤ ∫
0

1

w~(x, t)0
CDt

αw~(x, t) dx . (30)

Substituting the state equation of (14) into above inequality (30)
and using the constraint conditions (28), we can get

0
CDt

αV(t, w~(x, t)) ≤ − 2SV(t, w~(x, t)), (31)

where S = λ
~ + (ϑmin/4) − (ϑmax″ /2) > 0.

Next is for the Mittag–Leffler stability statement. Based on the
definition of the Caputo time fractional derivative in [30], we
remark that w~(x, t) is continuously differentiable on t ∈ [0, ∞)
since w~(x, t) satisfies the state equation of the target system (14).
Then we can conclude that V(t, w~(x, t)) is also continuously
differentiable. By the argument for the fractional-order Lyapunov
direct method in [20, Proof of Theorem 5.1], we set a non-negative
function Y(t) for (31), which satisfies

0
CDt

αV(t, w~(x, t)) + Y(t) = − 2SV(t, w~(x, t)) . (32)

The assumption of the Laplace transformation's existence of
w~2( ⋅ , t) implies that the Laplace transforms of V(t, w~(x, t)) and Y(t)
on t also exist. Thus we can take the Laplace transformation of
(32), it is readily to get that

V(s) = sα − 1V(0) − Y(s)
sα + 2S

, (33)

where V(0) = V(0, w~(x, 0)) ≥ 0, V(s) = ℒ{V(t, w~(x, t))} and
Y(s) = ℒ{Y(t)} represent the Laplace transform of V(t, w(x, t)) and
N(t), respectively. V(t, w~(x, t)) satisfying (29) is locally Lipschitz
on w~(x, t). It obeys the fractional existence and uniqueness theorem
[26]. Solving the inverse Laplace transform of (33), we have
V(t) = V(0)Eα( − 2Stα) − Y(t) ∗ tα − 1Eα, α( − 2Stα) , where t ≥ 0,
the symbol ∗ represents the convolution operator, Eα, β(t)
:= ∑k = 0

∞ tk
Γ(kα + β)  and Eα(t) = Eα, 1(t). It is also the unique solution

of (32) and can be deduce that V(t) ≤ V(0)Eα( − 2Stα) due to the
fact tα − 1 ≥ 0 and Eα, α( − 2λtα) ≥ 0 (see [33]), α > 0, λ > 0. This
inequality, together with (29), induces that
| |w(x, t) | | ≤ (2V(0)Eα( − 2Stα))

1
2 , where V(0) > 0 for w~(x, 0) ≠ 0

and 2V(0, w~(x, 0)) = 0 if and only if w~(x, 0) = 0. Since V(t, w~(x, t))
is locally Lipschitz on w~(x, t) (V(0, w~(x, 0)) = 0 if and only if
w~(x, 0) = 0), we can conclude that 2V(0) = 2V(0, w~(x, 0)) is
Lipschitz on w~(x, 0) and 2V(0, 0) = 0. Therefore, by Definition 1,
the L2 Mittag–Leffler stability of the target system (14) can be
obtained. This, together with inequalities (26) and (27), can easily
yield our result (1).

The H1 Mittag–Leffler stability of the system (12) can also be
proved by combining the fact the target system (14) is the H1

Mittag–Leffler stable (consider the Lyapunov functional
G(t, w~(x, t)) = ∫0

1w~x
2(x, t) dx) and the invertibility of integral

transformation (13). □
 
Remark 4: If α = 1, the Mittag–Leffler stability of system (12)

will turn into the exponential stability of the integer-order system.
The Mittag–Leffler stability of fractional systems is analogous to
the exponentially stability of integer-order systems and can infer
the asymptotical stability. Since the fractional derivative has
memory and hereditary effects, the fractional Lyapunov method
and classical Lyapunov method is slightly different for the
stabilities of fractional-order and integer-order systems. It is worth
to point out that Lemma 1 in [31] makes the fractional Lyapunov
method developed in [29] applicable for the stability of the
fractional system. In the above proof, by Lemma 2 (Lemma 1 in
[31], the Caputo time fractional derivative of V(t, w~(x, t)) turns into
(30) and the corresponding computation result becomes (31),
which are similar to the ones in integer-order case like
V̇(t, w~(x, t)) = ∫0

1w(x, t)wt(x, t) dx and V̇(t, w~(x, t)) ≤ − RV(t, w~(x,
t)) (R > 0), respectively. The argument on the Mittag–Leffler
stability in the above proof is for the fractional-order system, which
replaces the discussion on the exponentially stability of the integer-
order system. All of them show the presentence of the fractional
derivative and the differences on the proof between fractional-order
and integer-order cases.

This result can be extended to the collocated case, i.e.
measurement is available at the same end (i.e. x = 1) as actuation,
which will be concluded in below corollary. For the collocated
case, the state observer of (1)–(3) is given by

0
CDt

αu^(x, t) = ϑ(x)u^xx(x, t) + a(x)u^(x, t) + r1(x)
× (ux(1, t) − u^x(1, t)), x ∈ (0, 1), t > 0,

u^(x, 0) = u^0(x), x ∈ [0, 1],
u^x(0, t) = pu^(0, t), t > 0,
u^(1, t) = U(t) + r10(ux(1, t) − u^x(1, t)), t > 0,

(34)

where r1(x) and r10 denote observer gains. Then the observer error
system can be obtained

0
CDt

αu~(x, t) = ϑ(x)u~xx(x, t) + a(x)u~(x, t)
−r1(x)u~x(1, t), x ∈ (0, 1), t > 0,

u~(x, 0) = u~0(x), x ∈ [0, 1],
u~x(0, t) = pu~(0, t), t > 0,
u~(1, t) = − r10u~x(1, t), t > 0.

(35)

With the integral transformation

u~(x, t) = w~(x, t) + ∫
x

1

r(x, y)w~(y, t) dy, (36)

we can transform the system (35) into

0
CDt

αw~(x, t) = ϑ(x)w~xx(x, t) − λ
~
w~(x, t),

x ∈ (0, 1), t > 0,
w~(x, 0) = w~0(x), x ∈ [0, 1],
w~x(0, t) = psw~(0, t), t > 0,
w~(1, t) = 0, t > 0,

(37)

where ps > 0, w~0(x) = u~0(x) − ∫x
1r(x, y)w~0(y) dy. Based on

Definition 1, we can find that the target system (37) is the Mittag–
Leffler stable under certain conditions which is similar to the
counterpart of anti-collocated case (see the proof of Theorem 1 for
more details).

Similar to the arguments in anti-collocated, we can get

r1(x) = − ϑ(1)r(x, 1), r10 = 0, (38)
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where r(x, y) satisfies the below PDE:

ϑ(x)rxx(x, y) − ϑ(y)r(x, y) yy = − a(x) + λ
~

r(x, y)

2ϑ(x) d
dxr(x, x) = a(x) + λ

~ − ϑ′(x)r(x, x)

rx(0, y) = pr(0, y)
r(0, 0) = ps − p

(39)

for (x, y) ∈ Φ = {0 ≤ y ≤ x ≤ 1}.
This equation also can be converted into the one in class of (73)

in the Appendix with a change of variables

r̆(x̆, y̆) = ϑ(x)−1/4ϑ(y)3/4r(x, y),

x̆ = ψ(y) = ϑ(0)∫
0

y dτ
ϑ(τ) ,

y̆ = ψ(x) = ϑ(0)∫
0

x dτ
ϑ(τ) .

(40)

It follows that the existence and uniqueness of the solution of
kernel PDE (39) and the invertibility of the transformation (36) can
also be obtained.

 
Corollary 1 (Mittag–Leffler stability of the observer error

system for collocated case): Suppose that a(x) ∈ C1[0, 1], there
exists Laplace transformation of w~2(x, t) for x ∈ (0, 1), t ≥ 0, and
r(x, y) be the solution of (39).

(i) For any initial value u~0(x) ∈ L2(0, 1), the observer error system
(35) with observer gains r1(x) and r10 described by (38) and (39) is
L2 Mittag–Leffler stable under the following constraint conditions:

psϑ(0) − ϑ′(0)
2 > 0

λ
~ − ϑmax″

2 + ϑmin

4 > 0.
(41)

(ii) For any initial value u~0(x) ∈ H1(0, 1), the observer error system
(35) with observer gains r1(x) and r10 governed by (38) and (39) is
H1 Mittag–Leffler stable.

4 Output feedback boundary control
 
Theorem 2 (Mittag–Leffler stability of the closed-loop system for
anti-collocated case): Let k(1, y) be derived from (72), (73),
observer gains r1(x), r10 be given by (19), (20) in the Appendix, and
λ
~ ≥ λ > 0. Assume that the Laplace transformations of w^ 2(x, t) and
w~2(x, t) exist for x ∈ (0, 1), t ≥ 0, and a(x) ∈ C1[0, 1].

(a) For any initial u0, u^0 ∈ L2(0, 1), the system (1)–(3) with the
Dirichlet boundary feedback controller

U(t) = − ∫
0

1

k(1, y)u^(y, t) dy (42)

and the observer (9)–(11), (42) is L2 Mittag–Leffler stable at
u(x, t) = 0, u^(x, t) = 0 if the following constraint conditions hold:

ϑ′(0) < 0

ϑmin − 1
2 > 0

ϑmin − 1
2 + 4λ − 2ϑmax″ > 0.

(43)

(b) For any initial u0, u^0 ∈ H1(0, 1), the system (1)–(3) with the
Dirichlet boundary feedback controller (42) and the observer (9)–
(11), (42) is H1 Mittag–Leffler stable at u(x, t) = 0, u^(x, t) = 0.

 

Proof:

(a) This proof is a generalisation of the FRD system with constant
diffusivity in [18, Theorem 4]. The transformations (13) and

w^ (x, t) = u^(x, t) + ∫
0

x
k(x, y)u^(y, t) dy (44)

can convert the system including the observer (9)–(11), (42) and
the observer error system (12) into the integrated system of
(w^ (x, t), w~(x, t)) as follows:

0
CDt

αw^ (x, t) = ϑ(x)w^
xx(x, t) − λw^ (x, t)

+ {r1(x) + ∫
0

x
k(x, y)r1(y) dy}w~(0, t)

w^ (x, 0) = w^
0(x)

w^
x(0, t) = psw^ (0, t) + (p + r10)w~(0, t)

w^ (1, t) = 0

0
CDt

αw~(x, t) = ϑ(x)w~xx(x, t) − λ
~
w~(x, t)

w~(x, 0) = w~0(x)
w~x(0, t) = 0
w~(1, t) = 0,

(45)

where p, ps > 0, w^
0(x) and w~0(x) are initial values that satisfy (44)

and (13), respectively. We first remark that the existence and
uniqueness of the solution of the closed-loop system (1)–(3),
controller (42) and observer (9)–(11), (42) hold since the integral
transformations of (13) and (44) are invertible and the existence
and uniqueness of the solutions of the system of w^ (x, t) and the
system of w~(x, t) in (45) both hold, and the regularity of its solution
can also been proved (the proofs are similar to the ones in Theorem
1). It is noticeable that the integrated system of (w^ (x, t), w~(x, t)) is
driven by w~(0, t), and the system of w~(x, t) and the system of w^ (x, t)
without the term of w(0, t) are L2 and H1 Mittag–Leffler stabilities.
Consider the following Lyapunov functional:

V(t, (w^ (x, t), w~(x, t))) = Q
2 ∫

0

1

w~2(x, t) dx + 1
2∫0

1

w^ 2(x, t) dx, (46)

where Q is a positive constant that needs to be designed later.

Using Lemma 2 and the method of integration of parts for the
Caputo time fractional derivative of (46) of α order along with the
trajectory of (45), we can get

0
CDt

αV(t, (w^ (x, t), w~(x, t)))

= Q
2 ∫

0

1

0
CDt

αw~2(x, t) dx + 1
2∫0

1

0
CDt

αw^ 2(x, t) dx

≤ Q∫
0

1

w~(x, t)0
CDt

αw~(x, t) dx + ∫
0

1

w^ (x, t)0
CDt

αw^ (x, t) dx

= Q∫
0

1

w~(x, t) ϑ(x)w~xx(x, t) − λw~(x, t) dx + ∫
0

1

w^ (x, t)

× ϑ(x)w^
xx(x, t) − λw^ (x, t) + r1(x) + ∫

0

x
k(x, y)r1(y) dy

× w~(0, t) dx

= Q − ∫
0

1

ϑ′(x)w~(x, t)w~x(x, t) dx − ∫
0

1

ϑ(x)w~x
2(x, t) dx

−Qλ
~∫

0

1

w~2(x, t) dx − ϑ(0)w^ (0, t) psw^ (0, t) + (p + r10)

(47a)
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× w~(0, t) − ∫
0

1

ϑ′(x)w^ (x, t)w^
x(x, t) dx − ∫

0

1

ϑ(x)w^
x
2(x, t) dx

−λ∫
0

1

w^ 2(x, t) dx + ∫
0

1

w^ (x, t) r1(x) + ∫
0

x
k(x, y)r1(y) dy

× w~(0, t) dx .
(47b)

Since w~(1, t) = 0, w^ (1, t) = 0, by integration of parts, we can easily
get

∫
0

1

ϑ′(x)w~(x, t)w~x(x, t) dx

= − 1
2 ϑ′(0)w~2(0, t) + ∫

0

1

ϑ″(x)w~2(x, t) dx

∫
0

1

ϑ′(x)w^ (x, t)w^
x(x, t) dx

= − 1
2 ϑ′(0)w^ 2(0, t) + ∫

0

1

ϑ″(x)w^ 2(x, t) dx .

(48)

Substituting (48) into (47), we have

0
CDt

αV(t, (w^ (x, t), w~(x, t)))

≤ Q 1
2ϑ′(0)w~2(0, t) + 1

2∫0

1

ϑ″(x)w~2(x, t) dx − ∫
0

1

ϑ(x)

× w~x
2(x, t) dx − Qλ

~∫
0

1

w~2(x, t) dx − psϑ(0)w^ 2(0, t)

−(p + r10)ϑ(0)w^ (0, t)w~(0, t) + 1
2ϑ′(0)w^ 2(0, t) + 1

2∫0

1

ϑ″(x)

× w^ 2(x, t) dx − ∫
0

1

ϑ(x)w^
x
2(x, t) dx − λ∫

0

1

w^ 2(x, t) dx

+∫
0

1

w^ (x, t){r1(x) + ∫
0

x
k(x, y)r1(y) dy}w~(0, t) dx .

(49)

Based on the first constraint condition in (43), i.e. ϑ′(0) < 0, we
can further get

0
CDt

αV(t, (w^ (x, t), w~(x, t)))

≤ Q 1
2∫0

1

ϑ″(x)w~2(x, t) dx − ∫
0

1

ϑ(x)w~x
2(x, t) dx − Qλ

~

× ∫
0

1

w~2(x, t) dx − (p + r10)ϑ(0)w^ (0, t)w~(0, t) + 1
2∫0

1

ϑ″(x)

(50a)

× w^ 2(x, t) dx − ∫
0

1

ϑ(x)w^
x
2(x, t) dx − λ∫

0

1

w^ 2(x, t) dx

+∫
0

1

w^ (x, t){r1(x) + ∫
0

x
k(x, y)r1(y) dy}w~(0, t) dx .

(50b)

Aside by Lemma 2.1 in [4], it is easy to obtain

∫
0

1

w^ 2(x, t) dx ≤ 4∫
0

1

w^
x
2(x, t) dx,

∫
0

1

w~2(x, t) dx ≤ 4∫
0

1

w~x
2(x, t) dx,

(51)

since w^ (1, t) = 0 and w~(1, t) = 0. Similar to the arguments in [4, pp.
56–57], the following estimates holds by Poincaré and Young
inequalities

−(p + r10)ϑ(0)w^ (0, t)w~(0, t)

≤ 1
4∫0

1

w^
x
2(x, t) dx + (p + r10)2ϑ2(0)∫

0

1

w~x
2(x, t) dx, (52)

and

∫
0

1

w^ (x, t){r1(x) + ∫
0

x
k(x, y)r1(y) dy}w~(0, t) dx

≤ Rw~(0, t)∫
0

1

w^ (x, t) dx

≤ 1
4∫0

1

w^
x
2(x, t) dx + 4R2∫

0

1

w~x
2(x, t) dx,

(53)

where R = max0 < x < 1 {r1(x) + ∫0
xk(x, y)r1(y) dy}.

With these estimates (51), (52), the equality (50) turns into

0
CDt

αV(t, (w^ (x, t), w~(x, t)))

≤ Q
2 ϑmax″ ∫

0

1

w~2(x, t) dx − Qϑmin∫
0

1

w~x
2(x, t) dx − Qλ

~

× ∫
0

1

w~2(x, t) dx + 1
4∫0

1

w^
x
2(x, t) dx + ϑ2(0)(p + r10)2

× ∫
0

1

w~x
2(x, t) dx + 1

2ϑmax″ ∫
0

1

w^ 2(x, t) dx − ϑmin

× ∫
0

1

w^
x
2(x, t) dx − λ∫

0

1

w^ 2(x, t) dx

+∫
0

1

w^ (x, t){r1(x) + ∫
0

x
k(x, y)r1(y) dy}w~(0, t) dx

(54)

Then, this, together with the equality (53) further implies that

0
CDt

αV(t, (w^ (x, t), w~(x, t)))

≤ Q
2 ϑmax″ ∫

0

1

w~2(x, t) dx − Qϑmin∫
0

1

w~x
2(x, t) dx − Qλ

~

× ∫
0

1

w~2(x, t) dx + 1
4∫0

1

w^
x
2(x, t) dx + ϑ2(0)(p + r10)2

× ∫
0

1

w~x
2(x, t) dx + 1

2ϑmax″ ∫
0

1

w^ 2(x, t) dx − ϑmin

× ∫
0

1

w^
x
2(x, t) dx − λ∫

0

1

w^ 2(x, t) dx + 1
4∫0

1

w^
x
2(x, t) dx

+4R2∫
0

1

w~x
2(x, t) dx

(55a)

= − Qλ
~ − Q

2 ϑmax″ ∫
0

1

w~2(x, t) dx − (Qϑmin − (p + r10)2

× ϑ2(0) − 4R2)∫
0

1

w~x
2(x, t) dx − ϑmin − 1

2 ∫
0

1

w^
x
2(x, t) dx

− λ − 1
2ϑmax″ ∫

0

1

w^ 2(x, t) dx .

(55b)

Consider the second constraint condition in (43), the second
equality in (51) and the assumption λ

~ > λ for the above estimate
(55), then we can get
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0
CDt

αV(t, (w^ (x, t), w~(x, t)))

≤ − 1
4 Qϑmin − (p + r10)2ϑ2(0) − 4R2 + 4Qλ − 2Qϑmax″

× ∫
0

1

w~2(x, t) dx − 1
4 ϑmin − 1

2 + 4λ − 2ϑmax″

× ∫
0

1

w^ 2(x, t) dx .

(56)

Next, to make the right part of (56) to meet a multiple of the right
part of (46), Q is set to satisfy the following equality:

Qϑmin − (p + r10)2ϑ2(0) − 4R2 + 4Qλ − 2Qϑmax″

= Q ϑmin − 1
2 + 4λ − 2ϑmax″ , (57)

which implies that Q = 2(p + r10)2ϑ2(0) + 8R2.

This, together with (46) and (56), induces that

0
CDt

αV(t, (w^ (x, t), w~(x, t))) ≤ − 1
2 MV(t, w^ (x, t), w~(x, t)), (58)

where M = ϑmin − 1
2 + 4λ − 2ϑmax″ > 0, which is based on the last

constraint condition in (43).

It is noticeable that w^ ( ⋅ , t) and w~( ⋅ , t) are continuously
differentiable on t ∈ [0, ∞) since they both satisfy the state
equations of the integrated target system (45). Thus,
V(t, (w^ (x, t), w~(x, t))) is also continuously differentiable on
t ∈ [0, ∞) and locally Lipschitz on (w^ (x, t), w~(x, t)). By the same
deduction as the argument in Theorem 1, we can obtain L2 Mittag–
Leffler stability of the integrated target system (45). Combining it
with invertibility of the integral transformation (13) and (44), it
follows that the system of (u^(x, t), u~(x, t)) is L2 Mittag–Leffler
stable at u^(x, t) = 0, u~(x, t) = 0, which induces L2 Mittag–Leffler
stability of the closed-loop system of (u(x, t), u^(x, t)).
(b) It follows that the system of w~(x, t) and the system of w^ (x, t)
without the term of w(0, t) are H1 Mittag–Leffler stabilities by
considering Lyapunov functional G(t, w~(x, t)) = ∫0

1w~x
2(x, t) dx and

K(t, w^ (x, t)) = ∫0
1w^

x
2(x, t) dx + psw^ 2(0, t), respectively. The

integrated system of (w^ (x, t), w~(x, t)) is driven by w~(0, t), and the
relationship between them is cascade. Thus, the integrated system
of (w^ (x, t), w~(x, t)) is Mittag–Leffler stable in the H1(0, 1) norm.
Furthermore, we can obtain the system of (u^(x, t), u~(x, t)) is the H1

Mittag–Leffler stable, which is related to the system of
(w^ (x, t), w~(x, t)) and the invertibility of integral transformation (13)
and (44). So we have proved H1 Mittag–Leffler stability of the
system of (u(x, t), u^(x, t)). □

 
Remark 5: The constraint conditions (43) include the constraint
conditions (28) and the constraint conditions (74) (see the
Appendix) due to the fact that the conditions ϑ′(0) < 0 and
ϑmin − 1

2 + 4λ − 2ϑmax″ > 0 in (43) can lead to

psϑ(0) − ϑ′(0)
2 > 0, λ − ϑmax″

2 + ϑmin

4 > 0

and

λ
~ − ϑmax″

2 + ϑmin

4 > 0

(since ϑ(x) > 0, ∀x ∈ [0, 1] and λ
~ > λ).

 
Remark 6: If α = 1, the closed-loop system (1)–(3), controller (42)
and observer (9)–(11), (42) reduces the integer-order one, i.e. the
corresponding Mittag–Leffler stability replaces by the

corresponding exponentially stability. The difference in proof of
Theorem 2 between the fractional-order and the integer-order cases
is same as the one in Theorem 1, we refer to Remark 4 for more
details. For the stability of this closed-loop system, it can also solve
the solution of this system's equation without applying the
fractional Lyapunov method in [20] (see [34]. The method and
proof in this paper seems to be easier than solving its solution
directly with the help of the fractional Lyapunov method and
Lemma 1 in [31].
For better of understanding the output feedback control design for
an anti-collocated case, we are ready to give a specific example to
illustrate it here.
 
Example 1: Consider a(x) ≡ a = const in the system (1)–(3). We
know that this open-loop system with U(t) = 0 is unstable if a is a
large enough positive value (see the arguments on stability of
fractional-order systems provided in [19, 27]). In this case, it needs
to design a controller to make this system Mittag–Leffler stable.
Here, we first design an observer, then combine it with the
Dirichlet boundary feedback controller (69) developed in the
Appendix to form an output feedback controller as follows:

U(t) = − ∫
0

1

k(1, y)u^(y, t) dy, t > 0. (59)

The observer copied the system (1)–(3), (59) (with
a(x) ≡ a = const) is given by

0
CDt

αu^(x, t) = ϑ(x)u^xx(x, t) + au^(x, t) + r1(x)(u(0, t)
−u^(0, t)), x ∈ (0, 1), t > 0,

u^(x, 0) = u0(x), x ∈ [0, 1],
u^x(0, t) = pu(0, t) + r10(u(0, t) − u^(0, t)), t > 0,

u^(1, t) = − ∫
0

1

k(1, y)u^(y, t) dy, t > 0.

(60)

Then we can obtain the observer error system (12) (a(x) = a).
Using the integral transformation (13) to map this system into the
corresponding target system (14). Based on the analysis on PDE of
kernel r(x, y) in Section 3, we can get the kernel PDEs (19) and
(25) (with a(x) = a). There are two solutions of
(3ϑ̄′2(η̄)/16ϑ̄(η̄)) − ((ϑ̄″(η̄))/4) = const, η = x, y (see [21, Section 3]
for more details). Here, we take one solution
ϑ̄(η̄) = ϑ̄0(1 + ρ0(η̄ − x0)2)2, η = x̄, ȳ, where ϑ̄0 > 0, ρ0 and x0 are
arbitrary constants. According to it and (22), we have

ϑ(η) = ϑ̄0(1 + ρ0(1 − η − x0)2)2, η = x, y . (61)

As is illustrated above, we find that λ̆(x̆, y̆) = a + λ
~
. Thus, with the

help of the results in [4, Page 35], and the change of variables (21),
(22), (24), we can get r(x, y) as follows:

r(x, y) = ϑ(x)1/4ϑ(y)−3/4 ϑ(1)by̆ I1( b(x̆2 − y̆2))
b(x̆2 − y̆2)

, (62)

where

b = (a + λ
~)/ϑ̄(0), x̆ = 1 + ρ0x0

2

ρ0
atan( ρ0(1 − y − x0) + atan

( ρ0x0) ,

and

y̆ = 1 + ρ0x0
2

ρ0
atan( ρ0(1 − x − x0)) + atan( ρ0x0) .

Moreover, we have
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r1(x) = − 1
4ϑ(x)1/4ϑ(0)−3/4ϑ′(0) ϑ(1)by̆ I1( b(x̆2 − y̆2))

b(x̆2 − y̆2)

+ϑ(x)1/4ϑ(0)−1/4ϑ(1) bx̆y̆
x̆2 − y̆2 I2( b(x̆2 − y̆2))

(63)

and

r10 = − ϑ(0)−1/2 a + λ
~

2 ϑ(1)
1 + ρ0x0

2

ρ0
(atan( ρ0(1 − x0))

+atan( ρ0x0)),
(64)

where

x̆ = 1 + ρ0x0
2

ρ0
atan( ρ0(1 − x0)) + atan( ρ0x0) .

According to Theorem 1, the observer error system (12) (a(x) = a)
with the observer gains (63), (64) is Mittag–Leffler stable at
u~(x, t) = 0 in the L2(0, 1) and H1(0, 1) norms.
Next, we want to solve the kernel k(1, y), which is given by (71)–
(73) in the Appendix. Here assume that ps = p. Combining this
assumption with a(x) = a = const, then the kernel PDEs of k(x, y)
and k̆(x̆, y̆) becomes (71) and (73) (with a(x) = a,
k(0, 0) = k̆(0, 0) = 0) in the Appendix. The results in [22, Section
VIII.B] together with (72) and (61), induce that the control kernel
k(1, y) as follows:

k(1, y) = (1 + ρ0x0
2)1/2

ϑ̄0(1 + ρ0(1 − y − x0)2)3/2 ϑ(0)λ̆x̆

× I1 λ̆(x̆2 − y̆2

λ̆(x̆2 − y̆2
− p̆ ϑ(0)λ̆

λ̆ + p̆2

× ∫
0

x̆ − y̆
e− p̆τ /2I0 λ̆(x̆ + y̆)(x̆ − y̆ − τ)

× sinh λ̆ + p̆2

2 τ dτ ,

(65)

where

x̆ = 1 + ρ0(1 − x0)2

ρ0
atan ρ0(1 − x0) + atan ρ0x0 ,

and

y̆ = 1 + ρ0(1 − x0)2

ρ0
atan ρ0(1 − x0) − atan ρ0(1 − y − x0) , λ̆

= a + λ
ϑ(0) .

Obviously, consider Theorem 2, it is easy to obtain the L2 and H1

Mittag–Leffler stabilities of the system (1)–(3) (a(x) = a) with the
observer (60) and the controller (59).
 
Remark 7: The result of output feedback boundary stabilisation can
also be generalised to the collocated case with certain constraints
conditions for system parameters. Similar to the anti-collocated
case, the output feedback controller is also the combination of the
observer and the backstepping controller. We are ready to present a
brief example as below.
 
Example 2: Consider the plant (1)–(3) with a(x) = a. Suppose the
measurement and actuation are both available at x = 1. The
corresponding observer is the one (34) (with a(x) = a). Here
assume that ps = p. Based on the argument on the observer design
of the collocated case in Section 3, we can get the PDE of r(x, y) in
(36) and the observer gains r1(x) = − ϑ(1)r(x, 1), r10 = 0. This

PDE is same as (39) (a instead of a(x), r(0, 0) = 0). By the change
of variables (40), the PDE of r(x, y) becomes the one (73) (r̆(x̆, y̆)
instead of k̆(x̆, y̆), ă(x̆, y̆) = a + λ, k̆(0, 0) = 0). Similar to Example
1, here ϑ(x) = ϑ̄0(1 + ρ0(x − x0)2)2. According to [22, Section VIII-
B], we can get r̆(x̆, y̆) and r(x, y) (see (40)). This, together with the
observer gains, implies that

r1(x) = − ϑ(1)(1 + ρ0(x − x0)2)1/2

ϑ̄0(1 + ρ0(1 − x0)2)3/2 ϑ(0)λ̄x̆

× I1( λ̄(x̆2 − y̆2))
λ̄(x̆2 − y̆2)

− p̄ ϑ(0)λ̄
λ̄ + p̄2 ∫

0

x̆ − y̆
e− p̄τ /2

× I0 λ̄(x̆ + y̆)(x̆ − y̆ − τ) sinh λ̄ + p̄2

2 τ dτ

where

x̆ = 1 + ρ0x0
2

ρ0
atan( ρ0(1 − x0) + atan( ρ0x0) ),

y̆ = 1 + ρ0x0
2

ρ0
atan( ρ0(x − x0) + atan( ρ0x0) ), λ̄ = a + λ

~

ϑ(0) ,

p̄ = p − ϑ′(0)
4ϑ(0) .

Combining the observer (34) (with a(x) = a) and the controller
(69) in the Appendix, it infers the output controller
u(1, t) = U(t) = − ∫0

1k(1, y)u^(y, t) dy with

k(1, y) = (1 + ρ0(1 − x0)2)1/2

ϑ̄0(1 + ρ0(y − x0)2)3/2 ϑ(0)λ̆x̆ I1( λ̆(x̆2 − y̆2))
λ̆(x̆2 − y̆2)

− p̄ ϑ(0)λ̆
λ̆ + p̄2 ∫

0

x̆ − y̆
e− p̄τ /2I0 λ̆(x̆ + y̆)(x̆ − y̆ − τ)

× sinh λ̆ + p̄2

2 τ dτ ,

where

x̆ = 1 + ρ0x0
2

ρ0
atan( ρ0(1 − x0)) + atan( ρ0x0) ,

y̆ = 1 + ρ0x0
2

ρ0
atan( ρ0(y − x0)) + atan( ρ0x0) , λ̆ = a + λ

ϑ(0) .

5 Simulation study
In this part, we use a same prototypical case of the FRD system in
[17] for numerical simulation except the non-constant diffusivity.
By the Caputo derivative numerical algorithm in [35, 36] together
with the finite difference method and the approach of differential
evaluated by difference, we carry out simulation computations for
the anti-collocated case of this plant. The system parameters have
the values as α = 0.7, a(x) = 10, ps = p = 1, λ = 10, λ

~ = 20,
u0(x) = 10x(1 − x), u^0(x) = 7x(1 − x). The non-constant diffusivity
is chosen as ϑ(x) = (1 + (1 − x)2)2, i.e. ϑ̄0 = 1, ρ0 = 1, x0 = 0. These
parameters and the diffusivity are set to match with the constraint
conditions (28), (43), and the assumption λ

~ ≥ λ. According to these
given parameter values, we will present our numerical simulation
results.

In Fig. 1, we show the shape of spatially-varying diffusivity,
kernel gain (65) for control law, and observer gain (63) for the
closed-loop system. Note that here we removed the end value of
observer gain (i.e. r1(0)) and take r1(0) = 0 in our simulation due to
the fact that the denominator of r1(0) is zero. With this observer
gain, the observer error system can approach to L2 and H1 Mittag–
Leffler stablities, as shown in Fig. 2. Based on the simulation
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results in Fig. 3, we can see that the closed-loop system (1) and (2)
with the observer (9)–(11), (42) and the controller (3), (42) is the
Mittag–Leffler stable at u(x, t) = 0 in the L2 and H1 norms, i.e. state
norm and state both converge to zero. In addition, the control effort
is also presented here. In Fig. 4, we present the output in cases of
normal and with white noise (20 dB of signal-to-noise ratio). Fig. 5
illustrates that this closed-loop system with measurement noise still
robustly converges to zero, which implies the robustness of the
proposed observer on measure noise in some extent. 

6 Conclusions
In this contribution, a combination of observer design and
backstepping feedback controller has been successfully employed

to form the output feedback controller, which is used to stabilise
the FRD system with non-constant diffusivity. Then sufficient
conditions for the output feedback stabilisation problem has been
obtained based on the fractional Lyapunov stability (Mittag–Leffler
stability) theory and the backstepping method. To some extent,
these conditions are relatively conservative since the diffusivity of
the system is a general form of spatially-varying function rather
than a specific one. Namely, for a specific diffusivity, the estimates
can be improved or more relaxed.

Future research work could consider the extension of the
backstepping transformation method to the boundary stabilisation
problem of coupled FRD systems with different constant
diffusivity or different non-constant (spatially-varying) diffusivity,
whose dynamics is governed by fractional PDEs

0Dt
αU(x, t) = ΘUxx(x, t) + ΨU(x, t), (66)

Fig. 1  Diffusivity ϑ(x) = (1 + (1 − x)2)2, control kernel k(1, y) and
observer gain r1(x)
(a) Diffusivity, (b) Control kernel, (c) Observer gain

 

Fig. 2  Simulation results of observer error system (12) with observer
gains (20)
(a) Evolution of state L2 norm, (b) Evolution of state

 

Fig. 3  Simulation of open-loop and closed-loop responses of system (1),
(2)
(a) Comparison of state L2 norms of open-loop (with u(1, t) = 0) and closed-loop
(under controller (3), (42)), (b) Control effort of stabilising controller (3), (42), (c)
State evolution of the closed-loop system with observer (9)–(11), (42) and controller
(3), (42)
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or

0Dt
αU(x, t) = Θ(x)Uxx(x, t) + ΨU(x, t), (67)

with the boundary conditions Ux(0, t) = 0 and U(1, t) = Uc(t),
where the state vector U(x, t) and the input vector Uc(1, t) are 1 × n
matrices, diffusion coefficients Θ, Θ(x) and reaction coefficient Ψ
denote n × n matrices. Moreover, the backstepping-based output

feedback boundary control problem for these coupled systems,
would be a challenging and interesting research topic.
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9 Appendix
 
9.1 Outline of backstepping boundary feedback control
design

By designing a backstepping-like boundary feedback controller, the
stabilisation problem of FRD system (1)–(3) has been solved with
the help of the below integral transformation:

w(x, t) = u(x, t) + ∫
0

x
k(x, y)u(y, t) dy . (68)

Using this integral transformation, we convert the FRD system
(1) and (2) with the Dirichlet boundary feedback controller

u(1, t) = − ∫
0

1

k(1, y)u(y, t) dy (69)

into a target system

0
CDαw(x, t) = ϑ(x)wxx − λw(x, t), x ∈ (0, 1), t > 0,

w0(x) = w(x, 0), x ∈ [0, 1],
wx(0, t) = psw(0, t), t > 0
w(1, t) = 0, t > 0,

(70)

where λ > 0, ps > 0, and w0(x) = u0(x) + ∫0
xk(x, y)u0(y) dy. Here the

above target system (70) can also be Mittag–Leffler stable if its
parameters meet certain conditions. Our objective is establish the
kernel k(x, y) of the integral transformation (68). Similar to the
arguments in [17, Section 3.1], we can show that kernel k(x, y)
satisfies the below PDE:

ϑ(x)kxx(x, y) − (ϑ(y)k(x, y))yy = (a(y) + λ)k(x, y)
ky(x, 0) = (p − ϑ′(0)/ϑ(0))k(x, 0)

2ϑ(x) d
dx = − ϑ′(x)k(x, x) + a(x) + λ

k(0, 0) = ps − p

(71)

for (x, y) ∈ Π = 0 ≤ y ≤ x ≤ 1.
Based on the analysis in [21, Section 2], we also use a change

of variables

k̆(x̆, y̆) = ϑ−1/4(x)ϑ3/4(y)k(x, y),

x̆ = ψ(x), y̆ = ψ(y), ψ(η) = ϑ(0)∫
0

η dτ
ϑ(τ)

(72)

to convert above kernel PDE (71) into a canonical one as follows:

k̆ x̆x̆(x̆, y̆) − k̆y̆y̆(x̆, y̆) = ă(x̆, y̆)
ϑ(0) k̆(x̆, y̆)

k̆y̆(x̆, 0) = p − ϑ′(0)
4ϑ(0) k̆(x̆, 0)

d
dx̆ k̆(x̆, x̆) = a(ψ−1(x̆)) + λ

2 ϑ(0)
k̆(0, 0) = ϑ1/2(0)(ps − p),

(73)

where

ă(x̆, y̆) = 3
16( ϑ̄′2(x̄)

ϑ̄(x̄) − ϑ̄′2(ȳ)
ϑ̄(ȳ) ) − 1

4(ϑ̄″(x̄) − ϑ̄″(ȳ)) + (a(y) + λ),

and ψ−1( ⋅ ) represents the inverse function of ψ( ⋅ ). In this PDE,
the parameter ă(x̆, y̆) depends only on y̆ if ϑ(x) is equal to a
constant. To prove the existence and uniqueness of the solution of
kernel PDE (73), the proof given in [17, 37] can apply here by
using the bound of this parameter. Based on the above analysis, we
will give the below main results.

 
Lemma 3: Suppose that a(y) ∈ C1[0, 1], the kernel PDE (71)

with k(x, y) given by (72), (73) also has a unique solution which is
bounded and twice continuously differentiable in 0 ≤ y ≤ x ≤ 1.

Moreover, based on Lemma 2.4 in [37], the integral
transformation (68) is invertible. Thus, it is easy to prove the
controller (69) can stabilise the system (1) and (2).

 
Theorem 3: Assume that a(x) ∈ C1[0, 1] and the Laplace

transform of w2(x, t) exists for (x, t) ∈ (0, 1) × [0, ∞).

(i) For any initial value u0 ∈ L2(0, 1), the system (1), (2) under the
controller (69) (Dirichlet boundary feedback controller) with the
gain kernel k(x, y) described by (72), (73) is Mittag–Leffler stable
at u(x, t) = 0 in the L2(0, 1) norm if the following constraint
condition holds:

psϑ(0) − ϑ′(0)
2 > 0

λ − ϑmax″
2 + ϑmin

4 > 0.
(74)

(ii) For any initial value u0 ∈ H1(0, 1), the system (1), (2) under the
controller (69) with the gain kernel k(x, y) described by (72), (73)
is Mittag–Leffler stable at u(x, t) = 0 in the H1(0, 1) norm.

 
Proof: The proof is very similar to the one of Theorem 1, so we

omit it here. □
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