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RESEARCH PAPER

ON THE REGIONAL CONTROLLABILITY

OF THE SUB-DIFFUSION PROCESS

WITH CAPUTO FRACTIONAL DERIVATIVE

Fudong Ge 1, YangQuan Chen 2, Chunhai Kou 3, Igor Podlubny 4

On the Occasion of Professor Richard L. Magin’s 70th Birthday

Abstract

This paper is devoted to the investigation of regional controllability of
the fractional order sub-diffusion process. We first derive the equivalent
integral equations of the abstract sub-diffusion systems with Caputo and
Riemann-Liouville fractional derivatives by utilizing the Laplace transform.
The new definitions of regional controllability of the system studied are
introduced by extending the existence contributions. Then we analyze the
regional controllability of the fractional order sub-diffusion system with
minimum energy control in two different cases: B ∈ L (

Rm, L2(Ω)
)
and

B /∈ L (
Rm, L2(Ω)

)
. T he adjoint system of fractional order sub-diffusion

system is also presented at the same time. Two applications are worked
out in the end to verify the effectiveness of our results.

MSC 2010 : Primary 26A33; Secondary 93B05, 60J60

Key Words and Phrases: fractional calculus, Caputo derivative, sub-
diffusion, control, regional controllability

1. Introduction

Let Ω be an open bounded subset of Rn with smooth boundary ∂Ω,
Q = Ω× [0, b] and Σ = ∂Ω× [0, b]. In this paper, we consider the following
abstract fractional order sub-diffusion system of order α ∈ (0, 1] :

c© 2016 Diogenes Co., Sofia
pp. 1262–1281 , DOI: 10.1515/fca-2016-0065
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{
C
0 D

α
t z(t) = Az(t) +Bu(t), t ∈ [0, b],

z(0) = z0 ∈ D(A),
(1.1)

where z ∈ L2(0, b;L2(Ω)), D(A) holds for the domain of A and A gen-
erates a C0 semigroup {Φ(t)}t≥0 on the Hilbert space L2(Ω). Besides,
u ∈ L2 (0, b;Rp), B : Rp → L2(Ω) is a linear operator (possibly unbounded)
depending on the number and structure of actuators and here C

0 D
α
t denotes

by the left-sided Caputo fractional order derivative.
Recently fractional order sub-diffusion systems have attracted increas-

ing attention after the verification that they can be used to well characterize
those anomalous diffusion processes in various real-world complex systems
[24, 35, 11, 15]. As we all know, the anomalous diffusion processes in
real world are essentially distributed and the continuous time random walk
(CTRW) is useful to describe this phenomenon by allowing the incorpora-
tion of waiting time probability density function (PDF) and general jump
PDF [14, 3, 38, 37]. More precisely, when the particles are assumed to
jump at fixed time intervals with incorporating waiting times, the particles
will experience the sub-diffusion processes, such as the flow through porous
media microscopic process [33], or the swarm of robots moving through
dense forest [31] etc. In this case, the mean squared displacement (MSD)
is a power law of fractional exponent smaller than a linear function of the
Gaussian diffusion process [32, 23]. Another case is that when the particles
are supposed to jump following from a general, non-Gaussian jump dis-
tribution function, the particles then undergo the super-diffusion process
[15, 3]. Now the MSD is a power law function of fractional exponent bigger
than that of a Gaussian diffusion process.

It is worth noting that the controllability problem of a fractional or-
der sub-diffusion system can be reformulated as a problem of infinite-
dimensional control system. Moreover, in the case of diffusion systems,
it should be pointed out that, in general, not all the states can be reached
[12, 7]. So in this paper, to extend the existence results in [8, 39, 10], we
introduce some notations on the regional controllability of the fractional or-
der sub-diffusion systems with Caputo fractional derivative, where we are
only concerned with the knowledge of the states in a sub-region along the
spatial domain. This situation happens in many real dynamic systems, for
example the pest spreading [1], crowd-pedestrian egress or evacuation [2],
and etc. It is now widely believed that many real-world complex dynamics
can be well characterized by using fractional calculus and fractional order
controls can offer better performance not achievable before using integer
order controls systems [32, 23], this is the reason why the fractional order
models are superior in comparison with the integer order models.
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Moreover, it is well known that the adjoint system plays an important
role in many fields of mathematics, including mathematical physics and
control theory [27, 4, 28, 6]. However, as the Definition 2.4 below indicates,
the unique mild solution of the system (1.1) can be expressed as follows:

z(t) = Sα(t)z0 +

∫ t

0
(t− s)α−1Kα(t− s)Bu(s)ds (1.2)

and Sα(t) �= Kα(t), which makes it difficult to define the adjoint system of
(1.1) and many methods introduced to analyze the controllability of inte-
ger order partial differential equations fails here. Then in this paper, we
try to present the notion of adjoint system for the case of fractional order
sub-diffusion equations with help of the integration by parts of fractional
derivatives, which is consistently extended by Podlubny and Chen in [27].
Based on the semigroup theory [25], here we discuss the regional control-
lability of the fractional order sub-diffusion systems with minimum energy
control in two different cases: B ∈ L (

Rp, L2(Ω)
)
and B /∈ L (

Rp, L2(Ω)
)
.

More precisely, when B ∈ L (
Rp, L2(Ω)

)
, our main result is derived by uti-

lizing the Balder’s theorem [34] and when B /∈ L (
Rp, L2(Ω)

)
, the Hilbert

Uniqueness Methods (HUMs), which were first introduced by Lions [21] to
study the controllability of partial differential equations [19, 30], are used
to obtain the regional controllability of the system studied with minimum
energy control.

The remainder of this paper is organized as follows: some basic knowl-
edge of fractional calculous and some preliminary results are given in the
next Section 2. In Section 3, our main results on the regional controllabil-
ity analysis of the system studied in two different cases are presented. Two
applications are worked out in Section 4 to test our obtained results.

2. Preliminaries

This section is devoted to introducing some definitions and preliminary
results to be used afterwards.

Definition 2.1. ([26, 17]) The left-sided and right-sided Riemann-
Liouville fractional integral of order α > 0 of a function z on [0, b] are given
by

0I
α
t z(t) =

1

Γ(α)

∫ t

0
(t− τ)α−1z(τ)dτ (2.1)

and

tI
α
b z(t) :=

1

Γ(α)

∫ b

t
(τ − t)α−1z(τ)dτ, (2.2)

respectively, provided that the right sides are pointwise defined on [0, b].
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Remark 2.1. By Definition 2.1, we see that only both z(t) and tI
α
b z(t)

are continuous at the point t = b, we have

lim
t→b−

tI
α
b z(t) = 0.

If not so, for example, let z(t) = (b− t)−α, α ∈ (0, 1), although tI
α
b z(t)

is continuous at the point t = b, we have

lim
t→b−

tI
α
b z(t) = lim

t→b−

∫ b

t

(τ − t)α−1

Γ(α)
(b− τ)−αdτ = Γ(1− α) �= 0. (2.3)

Definition 2.2. ([26, 17]) For t ∈ [0, b] and any given α (n−1 <α<n),
n ∈ N, the left-sided and right-sided Riemann-Liouville fractional deriva-
tives of order α of a function z are defined as

0D
α
t z(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1z(s)ds (2.4)

and

tD
α
b z(t) =

1

Γ(n− α)

(
− d

dt

)n ∫ b

t
(s− t)n−α−1z(s)ds, (2.5)

respectively, provided that the right sides are pointwise defined.

Definition 2.3. ([26, 17]) The left-sided Caputo fractional derivative
of order α > 0 of a function z is

C
0 D

α
t z(t) =

1

Γ(n− α)

∫ t

0
(t− s)n−α−1 d

n

dsn
z(s)ds, (2.6)

where t ≥ 0, n− 1 < α < n, n ∈ N and the right side is pointwise defined.

Definition 2.4. For t ∈ [0, b], any given u ∈ L2 (0, b;Rp) , a function
z ∈ L2

(
0, b;L2(Ω)

)
is said to be a mild solution of the system (1.1), denotes

by z(·, u), if it satisfies

z(t, u) = Sα(t)z0 +

∫ t

0
(t− s)α−1Kα(t− s)Bu(s)ds, (2.7)

where

Sα(t) =

∫ ∞

0
φα(θ)Φ(t

αθ)dθ (2.8)

and

Kα(t) = α

∫ ∞

0
θφα(θ)Φ(t

αθ)dθ. (2.9)
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Here {Φ(t)}t≥0 is the strongly continuous semigroup generated by A,

φα(θ) =
1
αθ

−1− 1
αψα(θ

− 1
α ) and ψα is a probability density function defined

by

ψα(θ) =
1

π

∞∑
n=1

(−1)n−1θ−αn−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

satisfying the following properties ([22])∫ ∞

0
e−λθψα(θ)dθ = e−λα

,

∫ ∞

0
ψα(θ)dθ = 1, α ∈ (0, 1) (2.10)

and ∫ ∞

0
θνφα(θ)dθ =

Γ(1 + ν)

Γ(1 + αν)
, ν ≥ 0. (2.11)

Definition 2.5. For t ∈ [0, b], any given f ∈ L2
(
0, b;L2(Ω)

)
, 0 <

α < 1, a function v ∈ L2
(
0, b;L2(Ω)

)
is said to be a mild solution of the

following system{
0D

α
t v(t) = Av(t) + f(t), t ∈ [0, b],

lim
t→0+

0I
1−α
t v(t) = v0 ∈ L2(Ω) (2.12)

if it satisfies

z(t) = tα−1Kα(t)v0 +

∫ t

0
(t− s)α−1Kα(t− s)f(s)ds, (2.13)

where Kα(t) is defined in Eq.(2.9).

For the results of Definition 2.4 and 2.5, we refer to Zhou and Jiao
[36], where the authors studied a class of neutral evolution equations of
fractional order with nonlocal conditions and obtained several criteria on
the existence of mild solutions.

Let ω ⊆ Ω be a given region of positive Lebesgue measure and zb ∈
L2(ω) (the target function) be a given element of the state space. We first
state the following definition.

Definition 2.6. The system (1.1) is called to be regionally exactly
(respectively, approximately ) controllable in ω at time b if for any zb ∈
L2(ω), given ε > 0, there exists a control u ∈ L2(0, b;Rp) such that

pωz(b, u) = zb
(
respectively, ‖pωz(b, u) − zb‖L2(ω) ≤ ε

)
, (2.14)

where pω : L2(Ω) → L2(ω), defined by pωz = z|ω, is a projection operator.

In order to show our main results, the following lemmas are needed.
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Lemma 2.1. ([36, 13])
(i) The operators Sα(t) and Kα(t) are linear bounded and for any x ∈

L2(Ω), we have

‖Sα(t)x‖ ≤M‖x‖ and ‖Kα(t)x‖ ≤ αM

Γ(1 + α)
‖x‖. (2.15)

(ii) Operators {Sα(t)}t≥0 and {Kα(t)}t≥0 are strongly continuous, this
is, for ∀x ∈ L2(Ω) and 0 ≤ t1 ≤ t2 ≤ b, we have

‖Sα(t1)x−Sα(t2)x‖ → 0 and ‖Kα(t1)x−Kα(t2)x‖ → 0 as t1 → t2. (2.16)

(iii) For t > 0, Sα(t) and Kα(t) are all compact operators if Φ(t) is
compact.

Lemma 2.2. ([27]) For t ∈ [a, b] and α (n − 1 < α < n, n ∈ N), the
following formula holds∫ b

a
f(t)CaD

α
t g(t)dt =

k−1∑
r=0

(−1)k−1−r
[
g(r)(t)tD

α−1−r
b f(t)

]t=b

t=a

+(−1)k
∫ b

a
g(t)tD

α
b f(t)dt.

In particular, if 0 < α < 1, we have∫ b

a
f(t)CaD

α
t g(t)dt =

[
g(t)tI

1−α
b f(t)

]t=b

t=a
−

∫ b

a
g(t)tD

α
b f(t)dt.

Lemma 2.3. ([18]) Let the reflection operator Q on interval [0, b] be
as follows:

Qf(t) := f(b− t).

Then the following equations hold:

Q0I
α
t f(t) = tI

α
b Qf(t), Q0D

α
t f(t) = tD

α
b Qf(t) and

0I
α
t Qf(t) = QtI

α
b f(t), 0D

α
t Qf(t) = QtD

α
b f(t).

3. Main results

In this section, we will explore the possibility of finding a minimum
energy control which steers the problem (1.1) from the initial state z0 to a
target function zb on the sub-region ω.

Let Ub = {u ∈ L2 (0, b;Rp) : pωz(b, u) = zb} and consider the following
minimum energy problem

inf
u
J(u) = inf

u

{∫ b

0
‖u(t)‖2Rpdt : u ∈ Ub

}
. (3.1)
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Let H : L2(0, b;Rp) → L2(Ω) be

Hu =

∫ b

0
(b− s)α−1Kα(b− s)Bu(s)ds, ∀u ∈ L2(0, b;Rp). (3.2)

Now we are ready to state our results in two different cases.

3.1. The case of B ∈ L (
Rp, L2(Ω)

)
Suppose that the semigroup {Φ(t)}t≥0 generated by operator A is is uni-
formly bounded, it follows from B ∈ L (

Rp, L2(Ω)
)
that there exist two

constants MB , M > 0 such that

‖B‖ ≤MB and sup
t≥0

‖Φ(t)‖ ≤M.

Then we see the following results.

Theorem 3.1. Suppose that B ∈ L (
Rp, L2(Ω)

)
and for any t > 0,

Φ(t) is a compact operator, then the minimum energy problem (3.1) admits
at least one optimal solution provided that the system (1.1) is regionally
approximately controllable in ω at time b.

P r o o f. Obviously, Ub is a closed and convex set. We first prove that
the operator H in (3.2) is strongly continuous, which admits the existence
of optimal control to the minimum energy problem (3.1) (see pp.597, [16]).
For any t ∈ [0, b], z0 ∈ L2(Ω), by Lemma 2.1, we see that the term Sα(t)z0
in Eq. (2.7) is strongly continuous. Moreover, since the operator H is
linear and continuous, according to the argument in [5], we only need to
show that it is precompact.

Let N : L2(0, b;Rp) → L2(Ω) be

Nu(t) :=

∫ t

0
(t− s)α−1Kα(t− s)Bu(s)ds, t ∈ [0, b]. (3.3)

We next show that N is a relatively compact operator.
Let ρr = {u ∈ L2(0, b;Rp) : ‖u‖L2(0,b;Rp) ≤ r}. For any fixed t ∈ (0, b],

ε, δ ∈ (0, t), u ∈ �r, let

Ñ(ε,δ)u(t) = α

t−ε∫
0

∫ ∞

δ
(t− s)α−1θφ(θ)Φ((t− s)αθ)Bu(s)dθds.

Since Φ(εqδ) is compact and

Ñ(ε,δ)u(t) = Φ(εαδ)α

t−ε∫
0

∞∫
δ

(t− s)α−1θφ(θ)Φ((t− s)αθ − εαδ)Bu(s)dθds,
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we get that Ñ(ε,δ) is relatively compact. Together with

‖Bu(·)‖ ≤MBr <∞,

by (i) in Lemma 2.1, for any t ∈ [0, b], we have

‖Ñu(t)− Ñ(ε,δ)u(t)‖ = α‖
∫ t

0

∫ δ

0
(t− s)α−1θφ(θ)Φ((t− s)αθ)Bu(s)dθds

+

∫ t

0

∫ ∞

δ
(t− s)α−1θφ(θ)Φ((t− s)αθ)Bu(s)dθds

−
∫ t−ε

0

∫ ∞

δ
(t− s)α−1θφ(θ)Φ((t− s)αθ)Bu(s)dθds‖

≤ α

∥∥∥∥∫ t

0

∫ δ

0
(t− s)α−1θφ(θ)Φ((t− s)αθ)Bu(s)dθds

∥∥∥∥
+α

∥∥∥∥∫ t

t−ε

∫ ∞

δ
(t− s)α−1θφ(θ)Φ((t− s)αθ)Bu(s)dθds

∥∥∥∥
≤MMBrb

α

∫ δ

0
θφ(θ)dθ +

MMBrε
α

Γ(1 + α)
→ 0

as ε, δ → 0. Then N�r is a relatively compact set in L2(Ω).

Next, we shall prove that Nu is equicontinuous on [0, b]. For any u ∈ �r,
0 ≤ σ1 < σ2 ≤ b,

‖Nu(σ2)−Nu(σ1)‖ ≤
≤

∥∥∥∥∫ σ1

0
[(σ2 − s)α−1 − (σ1 − s)α−1]Kα(σ2 − s)Bu(s)ds

∥∥∥∥
+

∥∥∥∥∫ σ1

0
(σ1 − s)α−1[Kα(σ2 − s)−Kα(σ1 − s)]Bu(s)ds

∥∥∥∥
+

∥∥∥∥∫ σ2

σ1

(σ2 − s)α−1Kα(σ2 − s)Bu(s)ds

∥∥∥∥
≤ MMBr

Γ(1 + α)
(σα2 − σα2 + (σ2 − σ1)

α) +A+
MMBr

Γ(1 + α)
(σ2 − σ1)

α,

where

A =

∥∥∥∥∫ σ1

0
(σ1 − s)α−1[Kα(σ2 − s)−Kα(σ1 − s)]Bu(s)ds

∥∥∥∥ .
Since ε > 0 is small enough, we have
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A ≤
∫ σ1−ε

0
(σ1 − s)α−1‖Kα(σ2 − s)−Kα(σ1 − s)‖‖Bu(s)‖ds

+

∫ σ1

σ1−ε
(σ1 − s)α−1‖Kα(σ2 − s)−Kα(σ1 − s)‖‖Bu(s)‖ds

≤
[
MBr

α
(σq1 − εq)

]
sup

s∈[0,σ1−ε]
‖Kα(σ2 − s)−Kα(σ1 − s)‖+ 2MMBr

Γ(1 + α)
εq,

and this expression tends to zero as σ2 → σ1 due to the continuity of
Kα(t) (t > 0) in the uniform operator topology. It follows from the Arzela-
Ascoli theorem [29] that the operator N is precompact. Thus, H is strongly
continuous, which guarantees the existence of optimal control to the mini-
mum problem (3.1) under the fact that Ub is a closed and convex set.

Further, if the system (1.1) is approximately controllable in ω at time b,
for any zb ∈ ω, suppose that J(u∗) = inf

u
J(u) = ε <∞, by the definition of

infimum, we can deduce that there exists a sequence {ui}i=1,2,··· such that
pωz(b, ui) = zb, ui ∈ Ub ⊆ L2 (0, b;Rp)(i = 1, 2, 3, · · · ) and J(ui) → J(u∗).
Then we have ui →ω u

∗ in L2(0, b,Rp).

For any t ∈ [0, b], by Definition 2.2 and Lemma 2.1,

‖pωz(t, u∗)− pωz(t, ui)‖
=

∥∥∥∥pω ∫ t

0
(t− s)α−1Kα(t− s)B(u∗(s)− ui(s))ds

∥∥∥∥
≤

∥∥∥∥∫ t

0
(t− s)α−1Kα(t− s)B(u∗(s)− ui(s))ds

∥∥∥∥
≤ αMMB

Γ(1 + α)

∫ t

0
(t− s)α−1‖u∗ − ui‖L2(0,b;Rp)ds,

which yields that

pωz(t, ui) → pωz(t, u
∗) in C(0, b, ω) as i→ ∞.

And since Ub is closed and convex, from Marzur Lemma [29] we see that
u∗ ∈ Ub. Thus it follows from the Balder’s theorem in [34] that

ε = J(u∗) = lim
i→∞

J(ui) ≥ J(u∗) ≥ ε,

which means that u∗ is the optimal solution of the minimization problem
(3.1) and the proof is complete. �

3.2. The case of B /∈ L (
Rp, L2(Ω)

)
If B /∈ L (

Rp, L2(Ω)
)
, we see that the operator N defined in Eq. (23) is

unbounded and N is not relatively compact. Then Theorem 3.1 fails and
new methods should be introduced. Moreover, we note that this case is
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also rich in physical systems, for example, when the actuator is pointwise
or boundary actuator.

Here we will use the HUMs, which was first introduced by Lions in
[21] to study the controllability problems of a linear distributed parameter
systems. In order to study the regional controllability of (1.1), the following
two assumptions are needed:

(A1) B is a densely defined operator from Rp to L2(Ω) and B∗ exists.
(A2) (BKα(t))

∗ exists and (BKα(t))
∗ = K∗

α(t)B
∗, t ∈ [0, b].

Take into account that the system (1.1) is line, by Definition 2.6, the
system (1.1) is regionally approximately (exactly) controllable in ω at time
b if and only if

Im (pωH) = L2(ω)
(
respectively, Im (pωH) = L2(ω)

)
. (3.4)

Suppose that {Φ∗(t)}t≥0, generated by the adjoint operator of A, is also
a C0 semigroup on L2(Ω). For any v ∈ L2(Ω), it follows from 〈Hu, v〉 =
〈u,H∗v〉 and the assumptions (A1)− (A2) that

H∗v = B∗(b− t)α−1K∗
α(b− t)v, (3.5)

where 〈·, ·〉 is the duality pairing of space L2(Ω), B∗ is the adjoint operator

of B and K∗
α(t) = α

∫∞
0 θφα(θ)Φ

∗(tαθ)dθ. Then we have Im (pωH) = L2(ω)
is equivalent to

Ker (H∗p∗ω) = {0}, (3.6)

where p∗ω : L2(ω) → L2(Ω), the adjoint operator of pω, is given by

p∗ωz(x) :=
{
z(x), x ∈ ω,
0, x ∈ Ω\ω. (3.7)

Next, we shall explore the adjoint system of the system (1.1) and then
use it to analyze the regional controllability of problem (1.1).

Denote A∗ by the adjoint operator of A and for any ϕ0 ∈ L2(Ω), con-
sider the following system{

tD
α
b Qϕ(t) = −A∗Qϕ(t),

lim
t→b−

tI
1−α
b Qϕ(t) = ϕ0 ∈ D(A∗) ⊆ L2(Ω). (3.8)

It follows from Lemma 2.2 that (3.8) can be rewritten as{
0D

α
t ϕ(t) = −A∗ϕ(t),

lim
t→0+

0I
1−α
t ϕ(t) = ϕ0 ∈ D(A∗) ⊆ L2(Ω) (3.9)

and with the solution given by ϕ(t) = −tα−1K∗
α(t)ϕ

0. Moreover, we have
the following lemma.

Lemma 3.1. When u spans space L2(0, b;Rp), then the solution z(b, u)
is dense in L2(Ω).
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P r o o f. On the contrary, if z(b, u) is not dense in L2(Ω), then there
exists an element ϕ0 ∈ L2(Ω), ϕ0 �= 0 such that

(z(b, u), ϕ0) = 0 for all u ∈ L2(0, b;Rp). (3.10)

Multiplying both sides of (3.8) by z(t) and integrating in Q gives∫
Ω

∫ b

0
z(t) tD

α
b Qϕ(t)dtdx =

∫ b

0
(z(t),−A∗Qϕ(t))dt = −

∫ b

0
(Az(t), Qϕ(t))dt.

From Lemma 2.3 we see that∫
Ω

∫ b

0
z(t)tD

α
b Qϕ(t)dtdx = (z(b, u), lim

t→b
tI

1−α
b Qϕ(t))− (z0, lim

t→0
tI

1−α
b Qϕ(t))

−
∫ b

0
(Qϕ(t),C0 D

α
t z(t))dt.

It follows from z0 = 0 that

(z(b, u), ϕ0) =

∫ b

0
(Qϕ(t), Bu(t))dt. (3.11)

By (3.10), since u ∈ L2(0, b;Rb) is arbitrary, we have Qϕ(t) = ϕ(b− t) ≡ 0
in L2(Ω) for all t ∈ [0, b], then ϕ0 = 0, a contradiction. The proof is
complete. �

By Lemma 3.1, we then conclude that the system (3.8) is the adjoint
system of the problem (1.1). Next, we shall try to explore the regional
controllability of the system (1.1) based this duality lemma and the HUMs.

Let Z = Im (pωH) ⊆ L2(ω), by duality Z ⊆ L2(ω) ⊆ Z∗ and for any
f ∈ Z∗, define

‖f‖Z∗ :=

∫ b

0
‖B∗(b− s)α−1K∗

α(b− s)p∗ωf‖2ds, (3.12)

where p∗ω is defined in Eq. (3.7).

Lemma 3.2. ‖ · ‖Z∗ is a norm of space Z∗ provided that the system
(1.1) is approximately controllable in ω at time b.

P r o o f. If the system (1.1) is approximately controllable in ω at time
b, we get that Ker (H∗p∗ω) = {0}, i.e.,

B∗(b− s)α−1K∗
α(b− s)p∗ωf = 0 ⇒ f = 0. (3.13)

Hence, for any f ∈ Z∗, it follows from
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‖f‖Z∗ =

∫ b

0
‖B∗(b− s)α−1K∗

α(b− s)p∗ωf‖2ds = 0 ⇔

⇔ B∗(b− s)α−1K∗
α(b− s)p∗ωf = 0

that ‖ · ‖Z∗ is a norm of space Z∗ and the proof is complete. �

Denote the completion of the set Z∗ with the norm ‖ · ‖Z∗ again by Z∗.
For each f ∈ Z∗, since f is a linear bounded functional on Z, by the Riesz
representation theorem, there exists a unique element in L2(Ω), denoted by
Pf , such that

f(y) = (Pf, y) for all y ∈ Z. (3.14)

Then P : Z∗ → Z is a linear operator and the following lemma holds.

Lemma 3.3. The operator P : Z∗ → Z is isometry.

P r o o f. For any f ∈ Z∗, it follows from (3.14) that

‖Pf‖Z = sup
‖y‖Z=1

(Pf, y) = sup
‖y‖Z=1

‖f(y)‖ = ‖f‖Z∗ .

Then Im (P ) ⊆ Z is a closed subspace. To complete the proof, we should
only show that Im (P ) = Z. If not so, then there exists a y0 ∈ Z, y0 �= 0
such that (Px, y0) = 0. By (3.14), we have

f(y0) = 0 for all f ∈ Z∗,
which implies that y0 = 0, a contradiction. Then the proof is complete. �

Further, let Λ : Z∗ → Z be

Λf = pωϕ1(b), (3.15)

where ϕ1(t) is defined by{
C
0 D

α
t ϕ1(t) = Aϕ1(t) +BB∗(b− t)α−1K∗

α(b− t)f,

ϕ1(0) = 0.
(3.16)

Since for any f ∈ Z∗, y ∈ Z, by Hölder’s inequality, we have

(Λf, y) =

=

∫
Ω
pω

∫ b

0
(b− s)α−1Kα(b− s)BB∗(b− s)α−1K∗

α(b− s)p∗ωf(x)dsy(x)dx

≤
∫ b

0
‖B∗(b− s)α−1K∗

α(b− s)p∗ωf‖2ds‖y‖ ≤ ‖f‖Z∗‖y‖
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and ‖Λf‖ ≤ ‖f‖Z∗ . Further, for any f ∈ Z∗, we have

(Λf, f) =

=

∫
Ω
pω

∫ b

0
(b− s)α−1Kα(b− s)BB∗(b− s)α−1K∗

α(b− s)p∗ωf(x)dsf(x)dx

=

∫ b

0

∫
Ω

[
B∗(b− s)α−1K∗

α(b− s)p∗ωf(x)
]2
dxds.

Then if the system (1.1) is regionally approximately controllable in ω at b,
we get that f = 0. Thus it follows from the uniqueness of P that Λ is an
isomorphism from Z∗ to Z.

Next, suppose that ϕ0(t) satisfies{
C
0 D

α
t ϕ0(t) = Aϕ0(t),

ϕ0(0) = z0 ∈ D(A),
(3.17)

for all zb ∈ L2(ω), we have zb = pω [ϕ1(b) + ϕ0(b)]. Further, let f be the
solution of the following equation

Λf := zb − pωϕ0(b). (3.18)

Then we are ready to state the following theorem.

Theorem 3.2. If the system (1.1) is regionally approximately control-
lable in ω at time b, then for any zb ∈ L2(ω), (3.18) has a unique solution
f ∈ Z∗ and the control

u∗ = B∗(b− ·)α−1K∗
α(b− ·)p∗ωf

steers the system to zb at time b in ω. Moreover, u∗ solves the minimization
problem (3.1).

P r o o f. By Lemma 3.1, we get that if the system (1.1) is regionally
approximately controllable in ω at time b, then ‖ · ‖Z∗ is a norm of space
Z∗. Let the completion of Z∗ with respect to the norm ‖ · ‖Z∗ again by Z∗.
Then next we show that the equation (3.18) has a unique solution in Z∗.

For any f ∈ Z∗, by the definition of operator Λ in (3.15), we get that

〈f,Λf〉 = 〈f, pωϕ1(b)〉

=

∫ b

0

〈
f, pω(b− s)α−1Kα(b− s)Bu∗(s)

〉
ds

=

∫ b

0
‖B∗(b− s)α−1K∗

α(b− s)p∗ωf‖2ds = ‖f‖2Z∗ .
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Hence, it follows from Theorem 2.1 in [20] that the equation (3.18) admits
a unique solution in Z∗. Further, let u = u∗ in problem (1.1), we see that
pωz(b, u

∗) = zb.

For any u1 ∈ L2(0, b,Rp) with pωz(b, u1) = zb, we obtain that

pω [z(b, u
∗)− z(b, u1)] = 0,

and for any f ∈ Z∗ we have

〈f, pω [z(b, u∗)− z(b, u1)]〉 = 0.

It follows that∫ b

0

〈
u∗(s)− u1(s), B

∗(b− s)α−1K∗
α(b− s)p∗ωf

〉
ds = 0.

Moreover, since

J ′(u∗)(u∗ − u1) = 2

∫ b

0
〈u∗(s), u∗(s)− u1(s)〉ds

= 2

∫ b

0

〈
B∗(b− s)α−1K∗

α(b− s)p∗ωf, u
∗(s)− u1(s)

〉
ds

= 0,

by Theorem 1.3 in [20], we conclude that u∗ solves the minimum energy
problem (3.1) and the proof is complete. �

4. Examples

In this section, two examples which are reachable on a sub-region but
not on the whole domain are introduced with B ∈ L (

Rp, L2(Ω)
)
and B /∈

L (
Rp, L2(Ω)

)
, respectively.

Example 4.1. Let us consider the following one dimension fractional
order sub-diffusion system with a zone actuator Bu = p[a1,a2]u, 0 ≤ a1 ≤
a2 ≤ 1 and B ∈ L (

Rp, L2(Ω)
)
:⎧⎪⎨⎪⎩

C
0 D

0.7
t z(x, t) = ∂2

∂x2 z(x, t) + p[a1,a2]u(t) in [0, 1] × [0, b],

z(x, 0) = z0 in [0, 1],

z(0, t) = z(1, t) = 0 in [0, b].

(4.1)

We see that B is a bounded continuous operator with MB = 1, A = ∂2

∂x2

and Φ(t)z(x) =
∞∑
i=1

exp(λit)(z, ξi)ξi(x), x ∈ [0, 1], where

λi = −i2π2 and ξi(x) =
√
2 sin(iπx), i = 1, 2, · · · , x ∈ [0, 1].

Then {Φ(t)}t≥0 generated by A is uniformly bounded withM = 1. Further,
we have



1276 F. Ge, Y.Q. Chen, C. Kou, I. Podlubny

K0.7(t)z(x) = 0.7
∫∞
0 θφ0.7(θ)Φ(t

0.7θ)zdθ

= 0.7
∞∑
i=1

∫∞
0 θφ0.7(θ) exp(λit

0.7θ)dθ(z, ξi)ξi(x)

= 0.7
∞∑
i=1

∞∑
j=0

∫∞
0

(λit
0.7)j

j! θj+1φ0.7(θ)dθ(z, ξi)ξi(x)

=
∞∑
i=1

∞∑
j=0

0.7(j+1)(λit
0.7)j

Γ(1+0.7j+0.7) (z, ξi)ξi(x)

=
∞∑
i=1

E0.7,0.7(λit
0.7)(z, ξi)ξi(x),

(4.2)

where Eα,β(z) :=
∞∑
i=0

zi

Γ(αi+β) , Reα > 0, β, z ∈ C is known as the general-

ized Mittag-Leffler function in two parameters. Similarly, one has

S0.7(t)z(x) =

∫ ∞

0
φ0.7(θ)Φ(t

0.7θ)dθ =

∞∑
i=1

(z, ξi)E0.7,1(λit
0.7)ξi(x). (4.3)

What is more, since A = ∂2

∂x2 is a self-adjoint operator, we have

(H∗z)(t) = B∗(b− t)−0.3K∗
0.7(b− t)z(t)

= (b− t)−0.3
∞∑
i=1

E0.7,0.7(λi(b− t)0.7)(z, ξi)

∫ a2

a1

ξi(x)dx.

Then from ∫ a2

a1

ξi(x)dx =

√
2

iπ
sin

iπ(a1 + a2)

2
sin

iπ(a1 − a1)

2

it follows that

Ker (H∗) �= {0} (Im (H) �= L2(ω))
when a2 − a1 ∈ Q, i.e., the system (4.1) is not weakly controllable when
a2 − a1 ∈ Q.

Next, we show that there exists a sub-region ω ⊆ Ω such that the
system (4.1) is regionally controllable in ω at time b. For example, let
a1 = 0, a2 = 1/2, z∗ = ξk, (k = 4j, j = 1, 2, 3, · · · ). Obviously, z∗ is not
reachable on Ω = [0, 1]. However, since

Eα,α(t) > 0 (t ≥ 0) and

∫ 1/2

0
ξi(x)dx =

√
2

iπ
(1− cos(iπ/2)) , i = 1, 2, · · · ,

let ω = [1/4, 3/4], we see that

(H∗p∗ωpωz∗)(t) =
∞∑
i=1

E0.7,0.7(λi(b− t)0.7)

(b− t)0.3
(ξi, ξk)L2( 1

4
, 3
4
)

∫ 1/2

0
ξi(x)dx

=
∑
i 	=4j

√
2E0.7,0.7(λi(b− t)0.7)

iπ(b− t)0.3

∫ 3/4

1/4
ξi(x)ξ4j(x)dx [1− cos(iπ/2)] �= 0.
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Then z∗ is regionally controllable on ω = [1/4, 3/4] at time b.
Moreover, according to Theorem 3.1, if the system (4.1) is approxi-

mately controllable in ω = [1/4, 3/4] at time b, then the minimum energy
problem (3.1) admits at least one optimal solution.

Example 4.2. Consider the following fractional order sub-diffusion
system with a pointwise actuator Bu = u(t)δ(x−σ), 0 < σ < 1. Obviously,
B /∈ L (

Rp, L2(Ω)
)
is unbounded.⎧⎪⎨⎪⎩

C
0 D

0.7
t z(x, t) = ∂2

∂x2 z(x, t) + u(t)δ(x − σ) in [0, 1] × [0, b],

z(x, 0) = z0 in [0, 1],

z(0, t) = z(1, t) = z0 in [0, b].

(4.4)

Similar to the argument above, we see that

(H∗z)(t) = B∗(b− t)−0.3K∗
0.7(b− t)z(t)

=

∞∑
i=1

E0.7,0.7(λi(b− t)0.7)

(b− t)0.3
(z, ξi)ξi(σ).

Then the system (4.4) is not weakly controllable in Ω if σ ∈ Q. Moreover, let
σ = 1/2, by the argument above, there exists a sub-region ω = [1/4, 3/4] ⊆
Ω such that the system (4.4) is regionally controllable in ω at time b.

Further, since A = ∂2

∂x2 is a self-adjoint operator, suppose that the
system (4.4) is approximately controllable in ω at time b, by Lemma 3.1,
we get that

f → ‖f‖Z∗ =

∫ b

0

∥∥(b− s)−0.3K∗
α(b− s)p∗ωf(σ)

∥∥2ds
=

∫ b

0

∥∥∥∥∥(b− t)−0.3
∞∑
i=1

E0.7,0.7(λi(b− t)0.7)(z, ξi)p
∗
ωf(σ)

∥∥∥∥∥
2

ds

defines a norm on Z∗. It follows from Lemma 3.2 that

Λf = pωϕ1(·, σ), (4.5)

is a isometry form Z∗ to Z, where ϕ1(x, t) is the solution of the following
system⎧⎪⎨⎪⎩

C
0 D

0.7
t ϕ1(x, t) =

∂2

∂x2ϕ1(x, ) + (b− t)−0.3K∗
α(b− t)f(σ),

ϕ1(x, 0) = 0,

ϕ1(0, t) = ϕ1(1, t) = 0.

(4.6)

Then by Theorem 3.2, we see that the control
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u∗(t) = (b− t)−0.3
∞∑
i=1

E0.7,0.7(λi(b− t)0.7)(z, ξi)p
∗
ωf(σ)

steers the system to zb at time b in ω, where f is the solution of equations

Λf = zb − pωϕ0(·, σ), (4.7)
and ϕ0(x, t) solves ⎧⎪⎨⎪⎩

C
0 D

0.7
t ϕ0(x, t) =

∂2

∂x2ϕ0(x, t),

ϕ0(x, 0) = z0(x) ∈ D(A),

ϕ0(0, t) = ϕ0(1, t) = 0.

(4.8)

Moreover, u∗ is the solution of the minimum energy problem (3.1).

5. Conclusions

This paper deals with the regional controllability problems of the frac-
tional sub-diffusion equations with Caputo fractional derivative in two dif-
ferent cases: B ∈ L (

Rm, L2(Ω)
)
and B /∈ L (

Rm, L2(Ω)
)
. The duality

result of the fractional sub-diffusion is also derived at the same time. The
results here can be regarded as the extensions of the results in [7, 8, 39]
and can also be extended to complex fractional order distributed param-
eter systems. For instance, the problem of regional gradient controllabil-
ity/observability of fractional order distributed parameter systems as well
as the case of fractional order super-diffusion systems with more compli-
cated dynamics are of great interest. For more information on the potential
topics related to fractional DPSs, we refer the readers to [9] and the refer-
ences therein.
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