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Exploiting algebraic and topological properties of differintegral operators as well as a proposed principle
of dynamic memory resetting, a uniform continuous sliding mode controller for a general class of integer
order affine non-linear systems is proposed. The controller rejects a wide class of disturbances, enforcing
in finite-time a sliding regime without chattering. Such disturbance is of Hölder type that is not necessarily
differentiable in the usual (integer order) sense. The control signal is uniformly continuous in contrast to
the classical (integer order) discontinuous scheme that has been proposed for both fractional and integer
order systems. The proposed principle of dynamic memory resetting allows demonstrating robustness
as well as: (i) finite-time convergence of the sliding manifold, (ii) asymptotic convergence of tracking
errors, and (iii) exact disturbance observation. The validity of the proposed scheme is discussed in a
representative numerical study.
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1. Introduction

Fractional Calculus dates back to the early years of the birth of Calculus, however, there have been
reported the first few studies in modeling and control of dynamical systems only about two decades
ago (Oustaloup et al., 1995; Podlubny, 1999b), with hundreds of control application (Muñoz-Vázquez
et al., 2014a,b). Fractional Calculus provides novel and accurate methodologies to model some com-
plex phenomena that conveys an understanding to reality considering properties such as memory and
heritage (Podlubny, 1999a); these properties allow to handle in the control design some non-local and
non-smooth physical phenomena, which in practice are more widespread than the smooth ones (Clarke,
1998). However, the integer order differentiability notion cannot be directly used to characterize non-
smooth dynamics nor to design robust strategies to reject non-differentiable disturbances. Moreover,
some non-differentiable functions have well-posed fractional derivatives, and this property can be con-
sidered to design chatter-less control strategies in virtue of such functions can be studied by using the
notion of fractional differentiation (Ross et al., 1994).

During the last two decades, continuous high-order sliding mode controllers have been proposed,
(Emelyanov et al., 1996; Dávila et al., 2009; Levant & Michael, 2009; Moreno & Osorio, 2012), to get
rid of chattering, however requiring differentiability at almost every point. Notice that non-differentiable
disturbances are difficult to handle with high-order sliding mode control techniques (Levant & Michael,
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2009; Moreno & Osorio, 2012), due to these require differentiability (at least in a weak sense) of the
disturbance effects. Moreover, when conventional (Utkin, 1992), or integral, sliding mode control is
considered (Utkin & Shi, 1996), difficulties arise to compensate those disturbances since the chatter-
ing phenomenon produces harmful effects. However, phenomena such as fractional noise, backlash,
and turbulence can be represented by fractional differentiable functions (as solutions of fractional-order
models) (Mandelbrot & Van Ness, 1968; Humphrey et al., 1992; Barbosa & Tenreiro-Machado, 2002;
Tenreiro-Machado, 2013). These effects can be modeled by functions that are not necessarily differ-
entiable in the common (integer order) sense but comply, by construction, to the Hölder condition to
conform a more general class of functions than Lipschitz ones. Notice that the fractional derivative
considers an interval of non-zero measure that stores memory and provides heritage properties, instead
of considering a single point such as in the case of an integer order derivative. Along this direction,
we propose a low-frequency fractional order sliding mode controller to guarantee robustness against a
wider variety of disturbances and uncertainties, which can be characterized by the Hölder continuity
condition.

Fractional Calculus and sliding mode schemes have been combined to produce fractional order
reaching laws for control of second-order dynamical systems in the pioneer works Vinagre & Calderón
(2006) and Önder-Efe (2011), nevertheless the basic properties such as stability, robustness and finite-
time convergence have not been fully demonstrated in general. Control of fractional order systems by
means of fractional order sliding surfaces with an integer order reaching phase have been proposed,
(Dadras & Momeni, 2013; Gao & Liao, 2013; Kamal et al., 2013), with discontinuous control signals
to assure stability with finite-time convergence of the sliding manifold, involving undesirable chatter-
ing effects. Also, in our previous works Muñoz-Vázquez et al. (2014a,b), the control of integer order
plants is proposed with integer order reaching laws that induce fractional order sliding dynamics, with
extended and improved dynamical features.

In contrast to these schemes, we address in this paper the design of a chatter-less and fractional
order sliding mode controller for non-linear systems subject to Hölder disturbances. It is shown that
a fractional order reaching phase is induced such that the control signal is uniformly continuous and
preserves the order of the system in the sliding motion. In contrast to these schemes, and by taking
advantage of the algebraic and topological properties of the differintegral operators, such as memory
and heritage, in this paper we address the design of a novel fractional order sliding mode controller
for non-linear systems subject to Hölder disturbances, where the following salient features can be
enlisted:

• A fractional order controller for integer order systems

• A continuous sliding mode based controller which guarantees a finite-time sliding regime

• Robustness against Hölder continuous disturbances (not necessarily differentiable)

• Exact invariance of both the sliding manifold and its derivative

• Exact estimation of disturbances and uncertainties

The rest of this paper is organized as follows: Section 2 introduces some preliminaries of dif-
ferintegral operators as well as on Hölder spaces. Section 3 presents the methodology to design
fractional order sliding mode controllers, with remarks provided in Section 4. Section 5 shows a
numerical study for a representative second-order system, and finally, conclusions are discussed in
Section 6.

598

Downloaded from https://academic.oup.com/imamci/article-abstract/34/2/597/2885232
by California Digital Library - Office of the President user
on 18 April 2018



FRACTIONAL SLIDING MODES FOR EXACT REJECTION OF HÖLDER DISTURBANCES

2. Preliminaries

2.1 On differintegral operators

Consider the following differintegral operators (Podlubny, 1999a):

• Riemann–Liouville fractional integral

t0 Iνt f (t)= 1

Γ (ν)

∫ t

t0

f (τ )

(t − τ)1−ν dτ (2.1)

• Riemann–Liouville fractional derivative

t0 Dν
t f (t)= d�ν�

dt�ν� t0
I�ν�−ν
t f (t) (2.2)

• Caputo fractional derivative
C
t0 Dν

t f (t)= t0 I�ν�−ν
t f (�ν�)(t) (2.3)

• Grünwald–Letnikov differintegral

t0 Dν
t f (t)= lim

h→0
h−ν

�(t−t0)/h�∑
k=0

wνk f (t − kh) (2.4)

where �ν� = min{x ∈ Z : x � ν} and �ν� = max{x ∈ Z : x � ν} are the ceil and floor functions, respec-
tively,

Γ (x)=
∫ ∞

0
zx−1e−z dz

is the Euler Gamma function, and wνk are coefficients which for numerical purposes can be computed
recursively as wν0 = 1 and wνk = (1 − (ν + 1)/k)wνk−1.

2.2 On Hölder Spaces

A Hölder space is a set of functions that comply to the following Hölder condition (Samko et al., 1993),

|ϕ(t2)− ϕ(t1)| � H |t2 − t1|ν . (2.5)

Thus, the function ϕ :Ω → R is called Hölder continuous on a bounded interval Ω ⊂ R for the Hölder
fractional exponent ν ∈ (0, 1) if ∃H > 0 such that ∀t1, t2 ∈Ω , the inequality (2.5) holds. Also, the critical
exponent of ϕ is defined as the maximum of such ν such that ϕ complies to (2.5). Now, the following
definition is useful.

Definition 2.1 The Hölder space H ν(Ω) is the set of those functions that comply to the continuity
condition (2.5) over Ω .

It is clear that for ν = 1, (2.5) implies the well-known Lipschitz condition, which is related with
the differentiability of a function in the distributional sense. In addition, for every ν > 0, the Hölder
condition implies uniform continuity since for ε > 0, |t2 − t1|< δ⇒ |ϕ(t2)− ϕ(t1)|< ε in virtue of
δ � (ε/H)1/ν .
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The space H ν(Ω) is equipped with the norm

‖ϕ(t)‖H ν (Ω) = sup
t∈Ω

|ϕ(t)| + sup
t1,t2∈Ω
t1 |= t2

|ϕ(t2)− ϕ(t1)|
|t2 − t1|ν , (2.6)

for ϕ ∈ H ν(Ω). Henceforth, we have the following Lemma.

Lemma 2.1 H ν(Ω) is a Banach space.

Thus, a direct consequence of Definition 2.1 and Lemma 2.1 is the following proposition.

Proposition 2.1 Let f ∈ H ν(Ω) and g ∈ H η(Ω), with Ω a bounded interval of R and ν, η ∈ (0, 1)
with ν � η. Then, f + g, fg ∈ H ν(Ω). Also, for f ∈ H ν(g[Ω]) and g ∈ H η(f [Ω]), we have that
f ◦ g, g ◦ f ∈ H νη(Ω), where ◦ is the composition operator.

It is of interest to notice that the fractional integral improves the topological properties of a locally
Lebesgue integrable function as it is established in the following Lemma (Samko et al., 1993).

Lemma 2.2 For a function f ∈ H λ(Ω), with 0 � λ< 1, and some ν ∈ (0, 1 − λ), we have that

t0 Iνt f (t)= f (t0)

Γ (1 + ν)
(t − t0)

ν + 1

Γ (ν)

∫ t

t0

f (τ )− f (t0)

(t − τ)1−ν dτ ,

where
∫ t

t0
((f (τ )− f (t0))/(t − τ)1−ν) dτ ∈ H λ+ν(Ω).

An important consequence of Lemma 2.2 is the following Corollary (Samko et al., 1993).

Corollary 2.1 The fractional integral operator of order ν ∈ (0, 1) maps the set of bounded functions
H 0(Ω) into the set of Hölder continuous functions H ν(Ω), with Ω a bounded interval of R.

On the other hand, the Hölder condition is related intrinsically with the differentiability of fractional
order. To see this, consider the following proposition.

Proposition 2.2 Consider ϕ :Ω ⊂ R → R, with Ω a bounded interval. If sup |Ct1 Dν
t ϕ(t)|t=t2 = kϕ ∈ R,

with ν ∈ (0, 1), then |ϕ(t2)− ϕ(t1)| � (kϕ/Γ (ν + 1))|t2 − t1|ν and sup |Ct1 Dν
t ϕ(t)|t=t2 � ‖ϕ(t)‖H ν (Ω).

The proof of Proposition 2.2 is based on the monotonicity of the fractional integral and the Hölder
space norm. Henceforth, the Hölder continuity is a necessary condition for fractional order differentia-
bility, which leads to claim that Hölder continuity is intrinsically related with the fractional differentia-
bility of a function.

In case of the Riemann–Liouville derivative given in definition (2.1), the fractional differentiabil-
ity of a function throughout the Hölder condition can be analyzed in connection with the Marchaud
fractional derivative as follows (Samko et al., 1993; Ross et al., 1994):

M
t0 Dν

t ϕ(t)=
ϕ(t)

Γ (1 − ν)(t − t0)ν
+ ν

Γ (1 − ν)

∫ t

t0

ϕ(t)− ϕ(τ)

(t − τ)ν+1
dτ . (2.7)

where the second term in the right hand side of (2.7) is a Hölder continuous function with a critical
exponent λ− ν, for a Hölder continuous function ϕ of critical exponent λ ∈ (ν, 1) (Samko et al., 1993).
Equation (2.7) indeed extends the formulation of Riemann–Liouville (2.1) for Hölder continuous func-
tions of critical exponents greater than ν (Corollary of Theorem 13.1 of Samko et al., 1993, 228 pp.).
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These both operators coincide almost everywhere not just for differentiable functions but also for locally
integrable and Hölder functions of critical exponents λ> ν (Samko et al., 1993).

Despite (2.7) is a well-defined operator for Hölder continuous functions, dynamical systems
described by this operator lead to initial conditions without an evident physical meaning, similar to
the Riemann–Liouville derivative. Thus, we propose using

C
t0 Dν

t ϕ(t)=t0 Dν
t ϕ(t)− ϕ(t0)

Γ (1 − ν)(t − t0)ν
(2.8)

to relate the Riemann–Liouville and Caputo operators and the Marchaud operator for locally integrable
Hölder functions that leads to the following operator

C
t0 Dν

t ϕ(t)=
ϕ(t)− ϕ(t0)

Γ (1 − ν)(t − t0)ν
+ ν

Γ (1 − ν)

∫ t

t0

ϕ(t)− ϕ(τ)

(t − τ)ν+1
dτ , (2.9)

which establishes the extension of the Caputo fractional derivative from the space of differentiable
functions to the space of those functions without a well-posed integer order derivative (similar operator
(2.9) can be obtained by integration by parts of (2.3)). Notice that operators (2.3) and (2.9) coincide
for Hölder continuous and locally integrable functions with critical orders greater than ν. Thus, a real
valued function f (t) with a critical exponent λ ∈ (0, 1) has well-posed Caputo derivatives C

t0 Dν
t f (t) for

all orders ν < λ. However, initial conditions of (2.9) has a physical meaning and (2.9) maps f (t) to a
continuous function on t0, then it is advantageous over (2.7); henceforth, we have the following lemma.

Lemma 2.3 The real valued function f (t) ∈ H λ(Ω), with λ ∈ (0, 1], has well-posed Caputo derivatives
C
t0 Dν

t f (t) on Ω , for all orders ν < λ.

From Lemma 2.3, we have that Hölder continuity also provides a sufficiency condition for an inte-
grable function to be fractional order differentiable.

3. Continuous fractional order sliding mode control design

3.1 Motivation and justification

When the plant is of fractional order it is reasonable to propose fractional order control schemes.
In Pisano et al. (2010), a fractional sliding mode scheme for fractional order systems subject to
Lipschitz disturbances is proposed, and Kamal et al. (2013) addresses a discontinuous controller for
fractional order plants with bounded disturbances. However, if the plant is of integer order subject to
non-differentiable disturbances, it is unclear, and still an open problem, how to stabilize the plant with a
chattering-free sliding mode controller. To address this problem, we firstly introduce some assumptions
and the specific problem formulation, then the proposed solution is presented, and finally the main result
is given with its stability analysis.

3.2 Assumptions and problem statement

Consider the following disturbed affine non-linear system

ẋ(t)= f (x)+ g(x)u + ξ(t, x), (3.1)
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with x ∈ R
n the state, f ∈ R

n and g ∈ R
n×m sufficiently smooth functions, and u ∈ R

m, with m< n, the
control input; ξ(x, t) ∈ R

n models matched uncertainties and Hölder disturbances. We also assume the
following over system (3.1).

Assumption 3.1 The disturbance-free system ẋ(t)= f (x)+ g(x)u is globally controllable.

Assumption 3.2 There exists an ideal controller u0 ∈ R
m such that ẋ(t)= f (x)+ g(x)u0 yields x → 0

as t → ∞.

Assumption 3.3 There exists a function s(x) : R
n → R

m such that s(x) is at least two times differen-
tiable with respect to x and det((∂s/∂x)g(x)) |= 0 ∀x.

Assumption 3.4 There exists a real valued vector function ϕ(t, x), not necessarily differentiable in the
common sense, such that ξ(t, x)= g(x)ϕ(t, x); this is, ϕ(t, x) stands for an additive matched disturbance.

Assumption 3.5 The Euclidean norm of C
a Dν

t ϕ(t)|t=b is uniformly bounded for all a, b ∈ R and
0< ν < η, for some fractional number η ∈ (0, 1).

With these assumptions at hand, the control problem can be phrased as follows: ‘Design a chatter-
less controller u for system (3.1) such that for a given finite-time ts ∈ R, the invariant ẋ(t)− f (x)−
g(x)u0 = 0 implies x → 0 asymptotically’.

It is worth to mention that this control problem has not been solved for a continuous sliding mode
controller that proves robustness against non-differentiable disturbances ϕ(x, t).

3.3 Proposed solution and control design

Let flow f (x) and input matrix g(x) be known functions such that there exists an ideal control u0 that
guarantees x → 0 asymptotically for the system without disturbances,

ẋ = f (x)+ g(x)u0. (3.2)

Similar to Utkin & Shi (1996), consider
u = u0 + us, (3.3)

with u0 the nominal controller and us the sliding mode control that sustains a sliding mode regime in
finite-time with the following sliding manifold

σ(t)= s(x(t))− s(x(t0))−
∫ t

t0

∂s

∂x
[f (x)+ g(x)u0] dτ . (3.4)

Differentiating (3.4) with respect to the time, we obtain

σ̇ = ∂s

∂x
g(x)(us + ϕ). (3.5)

Also, consider the following continuous fractional order control law

us(t)=
[
∂s

∂x
g(x)

]−1

z(a)−
[
∂s

∂x
g(x)

]−1

kaIνt sign(σ (t)), (3.6)

with C
a Dν

t z(t)= −k sign(t), fractional order integration of the discontinuous function provides chattering
alleviation still preserving robustness to Hölder not necessarily differentiable disturbances, properties
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not performed by any integer order sliding mode controller; k > 0 is a feedback gain and a> 0 is a lower
terminal for the differintegral operator (to be defined). The substitution of (3.6) into (3.5) produces the
following reaching law

σ̇ = z(a)− k aIνt sign(σ )+ ∂s

∂x
g(x)ϕ, (3.7)

or equivalently, using the Caputo differintegral operator, for ν < η and using Assumption 3.4, (3.7)
becomes

C
a D1+ν

t σ = −k sign(σ )+C
a Dν

t

[
∂s

∂x
g(x)ϕ

]
. (3.8)

Before providing the stability properties of (3.8), the following discussion on finite-time converge is
in order.

3.4 On finite-time convergence of fractional order systems

An extension of the Filipov’s regularization method (Filipov, 1988) has been established (Cernea, 2010;
Danca, 2011; Garrapa, 2013) in the realm of differential inclusions, which applies for fractional order
discontinuous systems (a rigorous study on it is out of the scope of this paper).

Stability, finite-time convergence, and robustness for a general class of fractional order reaching
phases, such as (3.8) are still open problems (Önder-Efe, 2010), essentially because the memory asso-
ciated with the differintegral operators is difficult to handle. Thus, the general finite-time stability con-
ditions for the fractional order system (3.8) is also an open problem in virtue of such system is of order
1 + ν ∈ (1, 2). To deal with that issue due to memory, we propose a dynamic lower terminal in (3.8)
throughout a resetting memory principle, leading to the fractional order system

C
a D1+ν

t σi(t)= −k sign(σi(t))+ C
a Dν

t

[
∂s

∂x
g(x)ϕ

]
i

(3.9)

with σi(t) the ith component of vector function σ(t), this establishes that memory can be reseted each
time t = a when σi(a)= 0, i.e. when σi(t) crosses zero. Thus, it provides the basis of the main result
given in the following theorem.

Theorem 3.1 Let c = maxi ‖[(∂s/∂x)g(x)ϕ]i‖H ν and k > ((3 + ν)/(1 − ν))c. Then, by using the reset-
ing memory principle, the system (3.9) can be written as the following fractional order system

C
tn D1+ν

t σi(t)= −k sign(σi(t))+ C
tn Dν

t

[
∂s

∂x
g(x)ϕ

]
i

with ν ∈ (0, 1), and (tn) and (t′n) strictly increasing sequences of non-negative real numbers such that
σi(tn)= 0 and σ̇i(t′n)= 0 since the lower terminal becomes a = tn. Also, there exists ts ∈ R such that
(σi(t), σ̇i(t))= (0, 0) ∀t � ts.

Proof. Without loss of generality, consider σ̇i(t0) > 0, and then σi(t
+
0 ) > 0. We firstly analyze the time

interval [t0, t1] wherein sets of zero Lebesgue measure do not affect the solution of the system (Danca,
2011), supposing t1 is not finite leads to a contradiction. Thus, for t ∈ (t0, t1), with t1 the time when
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σi(t1)= 0, we have that

C
tn D1+ν

t σi(t)= −k + C
a Dν

t

[
∂s

∂x
g(x)ϕ

]
i

since σi(t) > 0 for all t in (t0, t1), this in turns implies that

− (k + c)� C
tn D1+ν

t σi(t)� −(k − c). (3.10)

Thus, using the monotonicity of the fractional integral and integrating ν-times (3.10) over [t0, t] ⊆
[t0, t1], one obtains

ψ̇1 � σ̇i(t)� ψ̇2. (3.11)

Integrating (3.11) one obtains

ψ1(t)� σi(t)�ψ2(t), (3.12)

with

ψ1(t)= σ̇i(t0)(t − t0)− k + c

Γ (2 + ν)
(t − t0)

1+ν , (3.13)

ψ2(t)= σ̇i(t0)(t − t0)− k − c

Γ (2 + ν)
(t − t0)

1+ν . (3.14)

Then, consider t1 > t0 such that σi(t1)= 0, and solving ψ1(t)= 0 and ψ2(t)= 0, by taking into account
that ψ1(t) crosses zero before t1 (at σi(t1)= 0) but ψ2(t) crosses zero after t1, we obtain

σ̇i(t0)Γ (2 + ν)

k + c
� (t1 − t0)

ν � σ̇i(t0)Γ (2 + ν)

k − c
. (3.15)

Now, since σ̇i(t1) is lower bounded by ψ̇1(tψ2), where tψ2 is the time when ψ2(tψ2)= 0, we obtain the
following

−μσ̇i(t0)� σ̇i(t1)� 0,

with μ= ((k + c)/(k − c))(1 + ν)− 1< 1, since c< ((1 − ν)/(3 + ν))k by definition. Assuming for
an arbitrary n, |σi(tn)| �μn|σi(t0)|, by integrating again we obtain |σ̇i(tn+1)| �μn+1|σ̇i(t0)|. Thus, by
mathematical induction,

|σ̇i(tn)| �μn|σ̇i(t0)|, ∀n ∈ N,

whence σ̇i(tn)→ 0 as n → ∞. Besides, the time t′1, for the first cross σ̇i(t′0)= 0, can be estimated from
(3.11) in a similar fashion. Then we have that

σ̇i(t0)Γ (1 + ν)

k + c
� (t′0 − t0)

ν � σ̇i(t0)Γ (1 + ν)

k − c
.

Therefore, by considering that σi(t)�ψ2(t)� supt∈[t0,tψ2 ] ψ2(t), we obtain

σi(t
′
0)� σ̇i(t0)

1+1/ν ν

1 + ν

[
Γ (1 + ν)

k − c

]1/ν

(3.16)
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that establishes the upper bound of σi(t). Additionally, proceeding again by mathematical induction and
using the fact |σ̇i(tn)| �μ|σ̇i(tn−1)|, it follows that

|σi(t
′
n)| �μn(1+1/ν)|σi(t

′
0)|,

with t′n a time when σ̇i(t′n)= 0, which leads to

σi(t
′
n)→ 0 as n → ∞.

Now, for each interval [tn, tn+1] we can find that the following relation holds

(tn+1 − tn)
ν �μn σ̇i(t0)Γ (2 + ν)

k − c
.

meaning that the time of convergence ts is

ts = t0 +
∞∑

n=0

(tn+1 − tn)

� t0 +
[
σ̇i(t0)Γ (ν + 2)

k − c

]1/ν ∞∑
n=0

(
μ1/ν

)n

= t0 + 1(
1 − μ1/ν

)
[
σ̇i(t0)Γ (ν + 2)

k − c

]1/ν

∈ R

since μ1/ν < 1. Moreover, from tn = t0 + ∑n
k=0(tk+1 − tk) and (t′n − tn)ν �μn(ẏ(t0)Γ (1 + ν)/(k − c)),

we have limn→∞ t′n = limn→∞ tn = ts, then (σ̇i(t), σi(t))→ (0, 0) as t → ts.
Finally, to demonstrate that (σi(t), σ̇i(t))= (0, 0) ∀t � ts, it is shown that σ̇i(t)= 0 for t � ts which

suggests that σi(t)= σi(ts)+ ∫ t
ts
σ̇i(τ ) dτ = 0 for all t � ts. Let

t∗ = sup{T > ts : σ̇i(t)= 0 ∀t ∈ [ts, T]},
and assume t∗ is finite. In virtue of σ̇−1

i [(−∞, 0)] and σ̇−1
i [(0, ∞)] are open sets by the continuity of

σ̇i(t), these constitute unions of countable collections of disjoint open intervals, one of these of the form
O = (t∗, t∗∗). Suppose σ̇i(t) > 0 on t ∈ O (analogously for σ̇ (t) < 0), then, it results σi(t) > 0 on O , and
consequently,

σ̇i(t)= −k t∗ Iνt sign(σi(t))+ C
t∗Dν

t

[
∂s

∂x
g(x)ϕ

]
i

� − k − c

Γ (ν + 1)
(t − t∗)ν < 0

on O which is absurd. Therefore, by this contradiction, σ̇i(t)= 0 ∀t � ts. �

4. Remarks

The intuitive notions of integer order differentiation take a more abstract and general meaning when we
consider fractional orders which we find convenient to discuss in remarks.

Remark 4.1 (Comparison with respect to integer order reaching phases:) Sliding mode based con-
trollers inducing integer order reaching phases have been proposed for both integer and fractional order
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systems (Pisano et al., 2010; Dadras & Momeni, 2013; Kamal et al., 2013). For these integer order
reaching phases, we can consider two cases, first order reaching laws which provide robustness against
bounded measurable disturbances based on discontinuous control definitions with harmful chattering
(Utkin, 1992), and absolutely continuous controllers (Pisano et al., 2010) inducing two or higher order
reaching phases without chattering but requiring differentiability of matched disturbances. Thus, in con-
trast to conventional integer order schemes, our proposed fractional order controller provides robustness
to non-differentiable Hölder disturbances by means of a continuous control signal alleviating chattering
phenomena and exploiting topological properties of differintegral operators.

Remark 4.2 (Regularity of control signal:) Theorem 3.1 guarantees that the closed-loop system
enforces a sustained sliding regime at σ̇ (t)= σ(t)= 0, for t � ts and some finite-time ts ∈ R, without
any chattering due to this controller us is continuous. The effect of increasing the order ν induces a
large overshoot of the sliding variable; nevertheless, the regularity of the control signals is improved
for a higher order ν. For practical purposes, this establishes a compromise on the regularity of the con-
trol signal and the robustness with respect to Hölder disturbances since for a lower ν the controller is
robuster but less regular.

Remark 4.3 (Exact disturbance observer:) Considering that (∂s/∂x)g(x) is invertible by Assump-
tion 3.3, we have an important by-product of this formulation, that for t � ts, us(t) is an exact disturbance
observer in virtue of the uniform continuity of σ̇ , without depending on the equivalent control method,
that is, the disturbance observation is not in the mean sense but exact, i.e. us(t)= −ϕ(t) for t � ts,
inducing the ideal system (3.2), which in turn provides x → 0 via u0. It is straightforward to show that
conventional classical schemes, including high-order sliding mode controllers cannot reject this class of
disturbances by means of a continuous control definition.

5. Simulations

A representative simulation study, considering an integer order non-linear system subject to a nowhere
differentiable but Hölder continuous disturbance, is presented to show the viability of the proposed
control scheme.

5.1 The simulator

The simulation was programmed in Matlab 2013 in m-files running on a PC with an Intel processor
of 1.90 GHz and 4 GB of RAM. The Euler integrator is considered to solve the integer order dynamics
and the Grünwald–Letnikov operator (2.4) for computing numerical differintegrals. The integration step
was established at 0.1 ms.

5.2 Plant

Consider a simplified, yet representative, one-dimensional non-linear model of an underwater
autonomous vehicle,

mξ̈ + βξ̇ |ξ̇ | = u + φ,

where ξ is the position of the vehicle, m = 11 kg the mass, β = 15 + 5 sin(5t)Ns2/m2 the drag
coefficient and u the control input provided by the thrusters, and φ(t)= 5

∑∞
r=1 5−rη sin(5rt)+ 10

models a nowhere differentiable disturbance given by a Celleriér function, which is a Weierstrass-
Mandelbrot-type function, see Fig. 1. This disturbance has been associated to turbulence fluid effects
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(a) (b)

Fig. 1. Hölderian disturbance and combined effects of disturbance and unmodelled effects. (a) Nowhere differentiable disturbance
φ(t) and (b) disturbance and uncertainties effects ϕ(t).

(Humphrey et al., 1992), the proof of φ ∈ H ν(Ω) for all ν < η� 1 is discussed in Ross et al. (1994)
and Hardy (1916) and in the references therein. For simulations, only the first two hundred terms of φ
are considered and η= 0.5. Also, the drag effect is considered known just for simulation purposes and
not for the control design, that is, the effects are regrouped into an endogenous uncertainty term, i.e.
ϕ = φ − βξ̇ |ξ̇ | − mξ̈d , where ξd is the desired trajectory.

5.3 The task and control gains

The task is to track the trajectory ξd(t)= 0.25
[

sin(t)+ 1
3 sin(3t)+ 1

5 sin(5t)
]
. For the design of the

control law, both the disturbance φ and the drag effect are considered unknown. Then, it is convenient
to define the state variables as x1 = ξ − ξd and x2 = ẋ1. Thus, we obtain the state-space representation

ẋ1 = x2,

ẋ2 = 1

m
(u + ϕ),

with ϕ = φ − βξ̇ |ξ̇ | − mξ̈d the term of disturbance and uncertainties, see Fig. 1.
It is desired to get an ideal dynamics without disturbances ẋ2 = −4x1 − 4x2, which is associated to

a critically damped regime of convergence. Since ẋ1 does not depend explicitly of the disturbance, we
can design s(x)= x2, and the sliding variable becomes

σ(t)= x2(t)− x2(t0)− 1

m

∫ t

t0

u0(τ ) dτ ,

which in turn produces σ̇ = (1/m)(us + ϕ), and accordingly with Theorem 3.1, the sliding controller
(3.6) and the ideal controller u0 = −m(4x1 + 4x2) induce the required sliding phase for all instant after
some finite-time ts. The control parameters are designed as k = 8 and ν = 0.4, providing a uniformly
continuous definition which guarantee in finite-time the exact observation of the Hölderian disturbance
and uncertainties effects.

A comparison with respect to the conventional integer order scheme, corresponding to ν = 0.4, is
performed using the feedback gain k = 5; the other control parameters are the same as those used in the
fractional order control design.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Comparison between the proposed fractional order controller and the classical integer order controller: Tracking of position
ξd in dotted line, ξ in solid line; nominal controller u0, sliding controller us; and sliding manifold σ . (a) Fractional order control:
Position tracking, (b) Integer Order Control: Position tracking, (c) Fractional Order Control: Nominal control u0, (d) Integer
Order Control: Nominal control u0, (e) Fractional Order Control: Sliding control us, (f) Integer Order Control: Sliding control us,
(g) Fractional Order Control: Sliding surface σ and (h) Integer Order Control: Sliding surface σ .
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5.4 Results

Figure 2 highlights the asymptotic tracking of position, even when drag forces are considered unknown
and anomalous non-differentiable disturbances are present. After a finite-time, the sliding mode con-
troller rejects the effects caused by the Hölderian disturbance, inducing the nominal system that is free
of disturbances for a critically damped regime. Thus, in the fractional order case the sliding control
term us also stands for an exact and finite-time disturbance observer that compensates the effects of
disturbances and uncertainties, inducing an ideal system after this finite-time. We can appreciate a clear
advantage of the fractional order control signal showing a chattering-free performance by means of the
fractional integral of the discontinuous signum function, preserving robustness against Hölder distur-
bances. Notice that, by increasing the order of integration, a more regular control signal is obtained,
but robustness against less regular disturbances cannot be obtained. In addition, we can see that in the
integer order case, the reaching phase of σ is eliminated and the invariance is provided by any initial
condition, nevertheless at expenses of chattering; the reaching phase is present in the fractional order
case to alleviate chattering, which also improves the performance of the sliding manifold after the finite
time of convergence.

6. Conclusions

In contrast to other works that address the control design of fractional order systems by means of stan-
dard integer order sliding modes, we propose a fractional order controller for a general class of integer
order non-linear systems subject to Hölder disturbances. It is shown that the notion of fractional deriva-
tive is more suitable to design robust and continuous sliding mode controllers by exploiting structural
properties of differintegral operators. To handle the additional complexities that introduce these oper-
ators, those are memory and heritage, the principle of dynamic memory reseting is proposed so as to
the closed-loop system enforces in finite-time the sliding motion, which provides the establishment of
an ideal system without disturbances. This scheme provides a robust and a chatter-less control signal
that is uniformly continuous and robust against Hölder continuous but not necessarily differentiable
disturbances. Our proposal illustrates that the fractional sliding mode stands indeed for a viable control
scheme to stabilize uncertain dynamical systems subject to a wide variety of anomalous disturbances.
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