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ABSTRACT 

In this paper, stability of fractional order (FO) systems is 

investigated in the sense of the Lyapunov stability theory. A new 

definition for exponential stability of the fractional order 

systems is given and sufficient conditions are obtained for the 

exponential stability of the FO systems using the notion of 

Lyapunov stability. Besides, a less conservative sufficient 

condition is derived for asymptotical stability of FO systems. 

The stability analysis is done in the time domain. Numerical 

examples are given to show that the obtained conditions are 

effective and applicable in practice. 

 

INTRODUCTION 
 Although the idea of differentiation and integration of 

arbitrary (fractional) order faces difficulty to find a real-world 

application for more than 300 years, recently, these operators 

have gained interests among engineering scientist and 

researchers for their superior results in control and modeling of 

physical systems [1-5]. With the increasing trend of introduced 

FO models for electrical, mechanical and chemical processes, in 

depth study of these systems from different points of view such 

as control [6-9], dynamical behavior analysis [10-12], and 

stability analysis [13-16] is noticeably growing. 

One of the fundamental topics, which should be taken into 

consideration in all dynamic systems, is the stability analysis. 

There are limited published works in the area of FO systems 

[14-20] that are mainly concentrated on the stability analysis of 

FO linear systems [17-20]. From literature, the main approach 

for stability analysis of FO LTI systems mostly depends on 

calculating eigenvalues of state equations. However, Lyapunov 

stability of linear fractional systems based on an energy balance 

approach has been studied in [21], [22]. Nonetheless, seeking a 

direct systematic approach for stability analysis of FO nonlinear 

systems is still under development and investigation [23], [24].   

The most well-known method to analyze the stability of 

nonlinear integer order systems is the Lyapunov stability 

technique. Very recently, the Lyapunov stability problem for the 

FO systems has been investigated in literature [25-28]. 

Fractional Lyapunov direct method for checking the stability 

problem in FO systems has been introduced in [25], [26]. 

Furthermore, FO systems have been studied from the aspect of 

Mittag-Leffler stability problem in [25]. In [26], introducing the 

class-K functions to the fractional Lyapunov direct method, 

asymptotical stability of the FO systems is discussed in the 

sense of fractional Lyapunov direct method. In [27], uniform 

stability of fractional order systems is studied proposing a 

complement theorem for [25]. 

This paper deals with the problem of stability, i.e. asymptotical 

stability and, in particular, exponential stability of nonlinear FO 

systems utilizing the extension of the Lyapunov stability notion. 

To the authors’ best knowledge, the notion of exponential 

stability is not extended for fractional order systems, yet. Using 

the concept of fractional integration operator and Grownwall-

Bellman lemma, different stability conditions are obtained for 

the FO systems. All the analyses are done in the time domain 

and the conditions are derived for asymptotical and exponential 

stability of the FO systems. In the case of asymptotical stability, 
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the condition presented in this paper is less conservative than 

the one in [25]. 

The rest of the paper is organized as follows. In Section 2, basic 

definitions in fractional calculus and some useful lemmas are 

presented as the preliminaries. Section 3 is devoted to obtaining 

the stability criteria for FO systems. An illustrative example to 

show the applicability of the results of Section 3 is presented in 

Section 4. Finally, some concluding remarks are given in 

Section 5. 

 

PRELIMINARIES 
In the following section, we introduce some useful lemmas that 

will be used for proving the stability theorems. In this paper, for 

an arbitrary order α and t≥0, 0 tD y D y    and 0 tI y I y   

represent the αth-order fractional derivative and the αth-order 

fractional integration, respectively. 

 

Property 1. [1] If the fractional derivative 

0 ( ), ( 1 )tD y t k k     of a function y(t) is integrable, 



 

  .
)1(

)(

)()(

1

00

00













k

j

j

t
j

t

tt

j

t
tyD

tytyDI








 

 

Definition 1. [29] The equilibrium point x=0 of 

 ( , )x f t x  

is exponentially stable if there exist positive constants c, k and λ 

such that 

 0( )
0 0( ) ( ) , ( )

t t
x t k x t e x t c

 
    

 

Lemma 1. [30] (Hardy-Littlewood theorem) The fractional 

integration operator a tI  with 0     and     is 

bounded in ( , ), 1pL a b p   , 


pp

I y K y  . 

Lemma 2. [31] (Gronwall-Bellman lemma) Assume that u(t) 

and f(t) are real-valued piecewise-continuous functions defined 

on the real interval [a,b] and K(t) is also real-valued and 

( ) ( , )K t L a b . Also, u(t) and K(t) are nonnegative on this 

interval. If for all [ , ]t a b , 

 ( ) ( ) ( ) ( )
t

a
u t f t K u d     , 

then for all [ , ]t a b , we have 

 ( ) ( ) ( ) ( )exp ( )
t t

a
u t f t f K K r dr d


  

 
   

   . 

 

FRACTIONAL-ORDER SYSTEM 
Let the FO system be presented by the following differential 

equation:  

 ( ) ( , )qD x t f t x  

with initial condition x(t0), where (0,1)q  is the fractional 

derivative order and the system’s dynamic is piecewise 

continuous in t and locally Lipschitz in x. 

It is proved that the equilibrium points of system (7) are 

asymptotically stable if condition  

 niqJeig i ,...,2,1,
2

)arg())(arg( 


  

is satisfied for all eigenvalues 1 2, , ... , n    of Jacobian matrix 

J f x    where  Tnffff 21 , evaluated at the 

equilibrium *E [13].  

 

Theorem 1. [25] Let x=0 be an equilibrium point for the 

nonautonomous fractional-order system (7). Assume that there 

exist a Lyapunov function V(t,x(t)) and class-K functions αi 

(i=1, 2, 3) satisfying 

 1 2( ) ( , ) ( )x V t x x    

and 

 3( , ( )) ( )D V t x t x    

where (0,1)  . Then the system (7) is asymptotically stable. 

 

MAIN RESULTS 
In what follows, some stability theorems for FO systems and 

their detailed proof are given out. The stability conditions are 

derived based on the Lyapunov stability theorem. 

Theorem 2. Let x=0 be an equilibrium point for the system (7) 

and nRD   be a domain containing the origin. Let 

RDtxtV ),0[:))(,(  be a continuously differentiable 

function and locally Lipschitz with respect to x such that 
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 1 2( , ( ))x V t x t x   , 

 ( , ( )) 0qD V t x t  , 

where 0<q<1, α1 and α2 are arbitrary positive constants. The 

x=0 is asymptotically stable for any 0x  .  

Proof. Taking the concept of fractional integral operator into 

account and using (12), one obtains  


1

1

0
( , ( )) ( , ( )) 0

( )

q
q

t

t
V t x t D V t x t

q






  
  

 

Substituting (11) into (13), one has 
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It follows from Lemma (1) that 
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Now, replacing (15) into (14), it can be concluded that 


1

1 1

0
1 1

( , ( ))
( ) ( )

q
q q

t

t
x D V t x t t

q q 


 




  
   

 

Therefore, x  tends to zero as t  from which the 

asymptotical stability of system (7) can be inferred.  

 

Remark 1. In Theorem 2, the condition for the fractional 

derivative of the Lyapunov candidate take a more general form 

when compared with the work in [25]; i.e. the limitation on the 

derivative of the Lyapunov candidate in Eq. (12) is less 

conservative that the one in Eq. (10). 

 

Theorem 3. Let x=0 be an equilibrium point for the system (7) 

and 
nD   be a domain containing the origin. Let 

 DtxtV ),0[:))(,(  be a continuously differentiable 

function and locally Lipschitz with respect to x such that 

 1 2( , ( ))x V t x t x    

 3( , ( ))qD V t x t x   

where 0<q<1, α1, α2 and α3 are arbitrary positive constants. The 

x=0 is asymptotically stable for any 0x  .  

Proof. Integrating both sides of (18), one has 
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Substituting (19) into (17) yields 
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Now, let us define 
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So, according to Lemma (2) and from (15), one can obtain 
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The inner integral in (22) is equal to 


13 3
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Hence, 



 

3

1

1

1

1 ( )
( )3

2 1
0

1

( )

( )( )

q

q

q tt
q q

q

t
x

q

t
e d

tq















  









 
  

 
 


 

Consequently, one has 
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It follows from the above inequality (25) and Definition (2) that 

system (7) is exponentially stable. It should be noticed that 

regarding to (25), the system satisfying the conditions of 

Theorem (4) shows a faster convergence speed than the 

exponential stability (3).  

 

Remark 2. Based on the Theorem 3, the equilibrium point x=0 

of  

 ( , ),qD x f t x  

where )1,0(q , is exponentially stable if there exist positive 

constants c, k, and λ such that 

 0( )1
0 0 0( ) ( ) ( ) , ( )

t tqx t k x t t t e x t c
     . 

 

Remark 3. For q=1, Eq. (27) will be the same as Eq. (3). In 

other words, the notion given for the exponential stability of the 

fractional order systems will be the same as the definition of 

exponential stability for integer order systems in the case q=1 

(Definition 1). 

 

Remark 4. Equation (27) implies that exponential stability for 

FO systems shows a faster convergence speed than exponential 

stability of integer order systems (Definition 1) near the origin; 

i.e.  
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where λ and γ positive constants. 

NUMERICAL EXAMPLE 

Example 1. Suppose the following system [25] 

 qD x x   

Let the Lyapunov candidate to be defined as 

 ( , ( ))V t x t x  

with α1=0.5 and α2= 2. So, we have 

 q qD V D x x    

where α3=1. Therefore, from Theorem (4), FO system (29) is 

exponentially stable.  

Based on the results presented in [25], solution of system (29) 

satisfies the following condition 

 ( ) (0) ( )q
qx t x E t   

On the other hand, applying the result of Theorem 3 to system 

(29) gives 



2

1 ( )(0)
( )

( )

qt
q q qk x

x t t e
q


 


 

where )1,0(q  and k>0. Comparing the right hand side of Eq. 

(32) and (33), it can be concluded that the second inequality 

decreases more rapidly when t . 

 

Example 2. Consider the following FO system 

 qD x x   

where 0<q<1 and x(0)≠0. Here, qD  represents the Caputo 

fractional derivative. Choosing the Lyapunov candidate as 
2( ) ( )V x x t , we have 

 2 1(2 )q q qD V D x D xx   

On the other hand, applying the fractional integral operator to 

the system (34) yields 



1 1
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Since x(0)x(t)>0 for all t>0, one can easily conclude that 
2(0) ( ) (0)x x t x . Using this inequality, it follows from (36) 

that 


2 1(0)

(0) ( ) 0
( )

qx t
x x t

q



  


 

Substituting (37) in (35) and assuming that there exists a 

positive constant δ which satisfies )()0( txx gives 

 1 1 1

2

2 2
(0) 2 0

( )(0)

q q q qD V D x x D t
qx

 
       




However, from Eq. (38), it can be concluded that 

)()( 2 txxV  is a decreasing function and 0)(lim 2 


tx
t

 which 

contradicts the assumption )()0( txx . Hence, the 

equilibrium point x=0 is asymptotically stable. The solutions of 

FO system (34) for different values of q are depicted in Fig. 1.  

 

Remark 5. Asymptotic stability of the origin (x=0) for a class 

of fractional systems noted as 

NnnmxxD mq  ,12, can be easily verified using the 

same procedure as example 2.  

 

 

Figure 1.  The solution of FO system (34) for q = 0.1, 0.6, and 0.9 

 

CONCLUSION 
This paper has introduced a new concept for exponential 

stability of fractional order systems and presented sufficient 

conditions to guarantee the asymptotical and exponential 

stability of FO dynamic systems utilizing Lyapunov stability 

theorem. Our results for asymptotical stability are less 

conservative than those existed in the literature and 

consequently, using them in practice is easier.  
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