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Design and Optimal Tuning of Nonlinear 
PI Compensators 
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Abstract. In this paper, linear time-invariant single-input single- 
output (SISO) systems that are stabilizable by linear proportional and 
integral (PI) compensators are considered. For such systems, a five- 
parameter nonlinear PI compensator is proposed. The parameters of 
the proposed compensator are tuned by solving an optimization prob- 
lem. The optimization problem always has a solution. 

Additionally, a general nonlinear PI compensator is proposed and 
is approximated by easy-to-compute compensators, for instance, a 
six-parameter nonlinear PI compensator. The parameters of the ap- 
proximate compensators are tuned to satisfy an optimality condition. 
The superiority of the proposed nonlinear PI compensators over linear 
PI compensators is discussed and is demonstrated for two feedback 
systems. 

Key Words. Linear SISO systems, nonlinear PI compensators, track- 
ing of step inputs, optimal tuning of compensators, rational approxi- 
mations of functions, exponential approximation of functions. 

1. Introduction 

The tuning of  linear proportional,  integral, and derivative (PID) 
compensators has received considerable attention by researchers and pro- 
cess control designers. There are numerous tuning techniques for single- 
input single-output (SISO) and to a lesser extent for multi-input multi- 
output (MIMO) PID compensators. For  extensive literature on tuning 
and auto-tuning techniques of  PID compensators, the reader is referred to 
Refs. 1-6. 
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Nonlinear PID compensators (PID compensators with nonconstant 
gains) have been considered by some researchers as a means of improving 
the performance of systems. There are, however, few references considering 
nonlinear PID compensators. In Refs. 7-9,  there are design procedures for 
nonlinear PID compensators mostly based on heuristic rules. In Ref. 10, an 
intelligent integrator is proposed in order to improve the performance of 
linear systems and to avoid the wind-up problem. The proposed integrator 
has a feedback loop around it, which incorporates a dead-zone nonlinear- 
ity. In Ref. 11, the performance of different PI-type compensators with 
nonlinear gains is examined. A sampled-data PI controller is designed in 
Ref. 12, in which the integrator is similar to that proposed in Ref. 10. In 
Ref. 13, a nonlinear PID compensator is designed by the extended lin- 
earization technique, in which the three gains of the compensator are 
functions of the compensator state. More recently, in Ref. 14, a stabilizing 
nonlinear PI compensator is designed for DC-to-DC power converters by 
the extended linearization technique. 

In this paper, we propose and optimally tune nonlinear PI compensa- 
tors for linear time-invariant SISO systems. The organization of the paper 
is as follows. In Section 2, we propose a five-parameter nonlinear PI 
compensator which is a generalization of the linear PI compensator. In 
Section 3, we cast the problem of tuning the parameters of the proposed PI 
compensator into an optimization problem. In Section 4, we propose a 
general nonlinear PI compensator and approximate it by easy-to-compute 
compensators, for instance, a six-parameter nonlinear PI compensator. The 
parameters of the approximate compensators are tuned to satisfy an 
optimality condition. In Section 5, we determine the optimal linear and 
nonlinear PI compensators for two systems, and demonstrate the superior- 
ity of our proposed nonlinear PI compensators over linear PI compensators 
by comparing the performance of the systems in tracking step inputs. 

2. Problem Formulation 

Consider the unity feedback system S(P, H) in Fig. 1. The plant P is 
a strictly proper linear time-invariant SISO system. A minimal state-space 
representation of P is 

Yc(t) =Ax(t) +bu(t), x(0) = On, (la) 

y(t) = cx(t), (lb) 

for all t > 0. In (1), the state vector x(t)~ •", the input to the plant u(t)~ R, 
and the output y(t) ~ R; the coefficient matrices A e R" • b ~ R", and 
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v(.) �9 �9 �9 

Fig. 1. Unity feedback system S(P, H). 

ceN ~ • the vector 0n denotes the zero vector in N n. The transfer function 
of  the system (I)  is denoted by P(s). We assume that: 

(A1) The plant P has no zeros at the origin, i.e., P(0) r 0. 
(A2) There exists a linear PI compensator with the transfer function 

It(s) = kpt + kit Is that places the poles of the closed-loop system S(P, H) in 
a desired region D, given by 

D .-= {s = Re(s) + j  Im(s) eC: Re(s) < -or d, Re(s) + IIm(s)/~l < 0} c CO-, (2) 

where a d > 0 and ~ > 0 are constant real numbers, and C ~ _ denotes the 
complex open left-half plane. The region D is depicted in Fig. 2. 

The condition P(0) ~ 0 is necessary for the stabilizability of the system 
S(P, H) by a linear PI compensator. The region D overlaps with the 
complex left-half plane as a d ~ 0 and g ~ ~ .  Thus, (A2) can be considered 
as an assumption on the stabilizability of S(P, H) by a linear PI compensa- 
tor. Some useful sufficient conditions for the stabilizability of linear systems 

Ima ]mary 

~~i~..... 
= Roal 

Fig. 2. Region D in the complex plane specified by (2). 
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by linear PI compensators are given in Ref. 15. It is not our intention to 
discuss these conditions here; we just assume that S(P, H) is stabilizable by 
a linear PI compensator. Note that, if (A2) does not hold, then the linear 
PI compensator is not a n  appropriate compensator for controlling the 
system, and other compensators should be sought. 

In the system S(P, H ) ,  we choose the compensator H to be the 
nonlinear SISO system represented by 

~(t) = e(t)/[1 + #2e2(t)], r = 0, (3a) 

u(t) = ki~(t) + [kp + gp exp(21e(t ) I)]e(t), (3b) 

for all t > 0. In (3), the state ~(t)e~, the input e(t)ER, the output u(t)E~, 
and the parameters k~,, ki, gp, 2,/~ are constant real numbers. The input to 
the compensator is 

e(t) = v(t) -- y(t), 

for all t > 0, where v( ' )  denotes the exogenous input to the feedback 
system. We remark that the nonlinear functions on the right-hand sides of 
(3) are continuously differentiable functions of e; this fact will be used in 
linearizing the closed-loop system S(P, H). 

We consider step inputs v(t)= gU(t), t >_ O, where U(t) denotes the 
unit step function, and ~ e ~ is the amplitude of the input. Our goal is to 
choose the parameters kp, k;, gp, 2, g of the compensator H, so that the 
output y(.  ) of the closed-loop system S(P, H) tracks the step input v(- ), 
while having satisfactory transient behavior. 

The nonlinear compensator H in (3) is a generalization of the linear PI 
compensators; this can be seen by setting # and gp equal to zero in (3). We 
call H the five-parameter nonlinear PI compensator. The motivation for 
choosing the compensator H is given below. 

(i) Suppose that the plant P is heavily damped. If kp, g~,, 2 are 
positive, then the proportional gain ke + gp exp(21el) of the compensator H 
is large for large error e. Thus, right after applying the step input v(-), 
when the error between y( - ) and the desired set point ~ is large, the output 
y(. ) is steered toward ~ at a fast rate. As y(.  ) gets closer to ~ and the error 
decreases, the proportional gain decreases, and y(.  ) is steered toward ~ at 
a slower rate. Thus, the nonlinear proportional gain provides a fast system 
response with minimal overshoot. 

Alternatively, suppose that the plant P is lightly damped. If kp, gp are 
positive and 2 is negative, then the proportional gain kp + gp exp(21el) of 
the compensator H is small for large error e. Thus, right after applying the 
step input v(. ), when the error between y(- ) and the desired set point t5 is 
large, the proportional part of the compensator is inactive, so as not to 
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contribute to overshoot. Since the system is lightly damped, the output 
y( .  ) increases to ~ at a fast rate on its own. As y(.  ) gets closer to t~ and 
the error decreases, the proportional gain increases to increase the damping 
of the closed-loop poles. Thus again, the nonlinear proportional gain 
provides a fast system response with minimal overshoot. 

(ii) The integral gain ki/(1 + 1~2e 2) is small for large error e and is 
large for small error. Thus, right after applying the step input v(.),  when 
the error between y(.  ) and the desired set point t~ is large, the integrator is 
inactive; this helps to reduce the wind-up effect. As y(.  ) gets closer to 
and the error decreases, the integral gain increases to compensate for small 
errors. Thus, the nonlinear integral gain can result in a shorter settling 
time. 

The heuristic arguments above imply that the performance of the 
closed-loop system with the nonlinear compensator H in (3) can be 
superior to that with linear PI compensators, when the parameters 
kp, ki, gp, 2,~ are chosen appropriately. We obtain the parameters 
kp, ki, gp, 2, # by solving an optimization problem whose solution is the 
optimal values of these parameters. 

3. Optimal Compensators 

Consider the closed-loop system S(P, H) in Fig. 1. The state-space 
representation of S(P, H) is 

2(t) ] FAx( t )+b[kp+gpexp(2[v-cx( t ) [ ) ] (v -cx( t ) )+bk i~( t )  1 (4a) 
~(t) d = L[ f - cx(t)]/[ 1 + p2(g _ cx(t)) 2] 

~,Fx(t) 7 
y(t) = [c, Ol L~(t ) ], (4b) 

for all t _> 0, with the initial conditions x(0) = On and ~(0) -- 0. 
We denote the equilibrium point of the system (4) by (xe, ~e)e R n x ~. 

Clearly, xe satisfies CXe = g, and the output at the equilibrium is 
Ye := CXe = ~. We denote the constant input to the plant when the system is 
at the equilibrium by Ue. The input ue generates the desired set point f, and 
hence is given by 

U e : =  (/19(0)) -1/~, (5) 

where by (A1), P (0 ) r  Assuming that k,. r  from (3b) and (5) we 
obtain 

(Xe, Ce) ~- (Xe, ki-lue) = (Xe, k~-l(e(0))-iv-). (6) 
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Suppose that the states of the system S(P,  H)  are in a small neighbor- 
hood of the equilibrium point of the system. Then, the system output 
y ( .  ) = cx( .  ) is close to the desired set point ~, i.e., e(. ) = ~ - cx( .  ) ,,~ O. 
In this case, the dynamics of the dosed-loop system (4) can be approxi- 
mated by the dynamics of the linear system obtained by the Jacobian 
linearization of the system (4) at the equilibrium point (Xe, ~e), at which 

e=~--CXe=O. 

The linearized closed-loop system is 

[ ~Yc(t)l=[L~b(k,+g,)c bkilF6x(t)l Fb(kp+g,)]@, (7a) 
Ja#(t) l 

@ ( t )  = [c, ujkar ], (7b) 

for all t > 0, where 

(~x(t) I :  x ( t )  - -  Xe, r~(t) ".= ~(t) -- ~e, ~y(t) := C6x(t). 

It is well known that (see, e.g., Ref. 16, pp. 209-219) in a neighborhood of 
the equilibrium point, the stability of the linearized dosed-loop system (7) 
implies the exponential stability of the system (4). Thus, the stability of the 
system (4) is determined by the eigenvalues of the matrix 

We denote the eigenvalues of Ac by 

2~(Ac) = Re(2i(Ac)) + j  Im(2~(A~)), i = 1, 2 . . . . .  n + 1. 

With this setup, we cast the problem of determining the parameters 
kp, k;, gp, 2, p in (4) into an optimization problem. 

Problem 3.1. Consider the dosed-loop system S(P,  H)  in (4) whose 
solution is t ~-~ [x r(t), ~(t)] r. Let a scalar-valued cost function J be defined 
a s  

J : = J r  + ?Js, (9) 

where 

Jr'.= [qle(t)/O[ + r[(u(t) -- Ue)/V-] 2] ,:It, (10a) 

Js := max max{0, p(Re(2~(Ac) ) + ad), 
1 ~;i_<n+ 1 

[Re(A;(Ac)) + + (10b) 
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and ~ > 0 is a weighting factor. In Jr,  the integration is carried out over 
[0, T] where T < 0% the constants q > 0 and r > 0 are weighting factors, 
e(.  ) and u(. ) are respectively the tracking error and the input to the plant 
P, given by 

e(O =v(O - Y ( O  = f - c x ( O ,  ( l l a )  

u(t) = k,r + [k e + gp exp(2 If - cx(t)1)1(~ - cx(t)), ( l lb )  

for all t > 0, and Ue is that in (5). In J , ,  the matrix Ac is that in (8), the 
constant p > 0 is a weighting factor, O'd > 0 and �9 > 0 are the same as those 
in (2), and 0 < 6 << 1 is a constant real number. 

With the above setup, the optimization problem is as follows: deter- 
mine the parameters kp, ki, gp, 2, #, such that J is minimized. 

Remark 3.1. The cost Jr  has two terms. The first term is the weighted 
Ll-norm of e(. )/~ over [0, T]. We have chosen this norm, and not the 
Lz-nOrm, in order to take small tracking errors into account, and hence 
achieve higher tracking accuracy. By penalizing the tracking error e(. )[~ 
substantially, i.e., choosing the weighting factor q large, we expect small 
error, and hence fast tracking of desired step inputs. The second term is the 
weighted L2-norm of (u( . )  - ue)/~ over [0, T]. We have chosen this norm 
in order to avoid large control energy. By penalizing the input (u( . )  - ue)/ 

substantially, i.e., by choosing the weighting factor r large, we expect 
small control effort. 

Remark 3.2. The cost Js has two nonzero terms. By penalizing the 
term (Re(2;(Ac)) + trd) substantially (large p), we expect the poles of the 
linearized closed-loop system not to be far to the right of the vertical line 
Re(s) = - aa in the complex plane. By penalizing the other nonzero term in 
J~ substantially (small p), we expect the ratios [Im(2g(Ac))[/[Re(2;(Ac))[ not 
to be much smaller than - ~ ,  when Re(2i (A~)) < 0 and Ira(2; (A~)) > 0, and 
not to be much larger than ~, when Re(2;(Ac)) < 0 and Im(2;(A~)) < 0. 

We note that, if the poles of the linearized closed-loop system 
2/(Ac)eD, for all i = 1, 2 . . . . .  n + 1, then Js =0 .  

Remark 3.3. The cost Js provides a measure of the stability of the 
closed-loop system. We have incorporated J, in J in order to guarantee the 
stability of  the closed-loop system. If  Js were not considered, then the 
solution of  Problem 3.1 can be a set of parameters for which J = Jr  is 
minimum, but yet the closed-loop system is unstable. The minimum of 
J = Jr  can be achieved while the closed-loop system is unstable, because Jr  
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is computed over a finite interval of time and is always finite, even when the 
closed-loop system is unstable. 

Remark 3.4. When a linear PI compensator is used in the system 
S(P, H), the magnitudes of e ( . )  and u(. ) - u e  are proportional to the 
amplitude f of the step input. Since e(. ) and u(. ) - Ue are normalized by 

in Jr, and since J, is independent of ~, the optimal parameters of linear 
PI compensators obtained by minimizing J are independent of ~. 

By (A2), there exists a linear PI compensator with the transfer 
function H(s)= kpt + kst/s that stabilizes the equilibrium point of the 
system S(P, H). We can solve Problem 3.1 with gp = # = 0, in order to 
obtain the optimal kpt and kst, denoted by k*t and k*, respectively. The 
optimal parameters achieve the minimum value of  the cost J in (9), denoted 
by J*.  Our goal, however, is to solve Problem 3.1: we are to determine the 
set of optimal parameters re* .-= {kp = k*, k~ = k*, gp = g*, 2 = 2", # = #*} 
of the nonlinear PI compensator, for which g* and p* are not necessarily 
zero. The set of optimal parameters n* achieves the minimum of J, denoted 
by J*.  Since the set of nonlinear PI compensators includes that of linear PI 
compensators, J* < J*. Thus, the search for the set of optimal parameters 
n* can do no worse than to return to k~, = k' l ,  ks = ks*, and gp =/~ = 0, 
which corresponds to the optimal linear PI compensator. That is, Problem 
3.1 always has a solution. 

Problem 3.1 can be solved efficiently when standard numerical pack- 
ages are used. We use the fact that J s = 0 ,  when 2~(Ac)eD, for all 
i = 1, 2 , . . . ,  n + 1, to devise an efficient algorithm for solving Problem 3.1. 
In the remainder of  this section, we designate the dependence of J, Jr, J~ on 
the set of parameters n = {kp, ki, gp,2,/~} by J(Tr),Jr(~),J~(n), respec- 
tively. We first establish the following proposition. 

Proposition 3.1. Consider the closed-loop system S(P, H) in (4) and 
the cost function J in (9). Let E > 0 be given. There exists a 7' > 0 such 
that, for all ~ > 7', the set of optimal parameters ~* minimizing the cost 
function J results in Jr(z*) < e. 

Proof. By (A2), there exist a linear PI compensator with the transfer 
function H(s) = kpt + kst Is that places the poles of the system S(P, H) in 
the region D in (2). That is, for kp =kpt, ki = k;t, and gp = 0, all the 
eigenvalues of the matrix Ac in (8) are in D. Using the theory of perturba- 
tion of the eigenvalues of a matrix due to the perturbation in its elements 
(see, e.g., Refs. 17 and 18), we conclude that, for kp = kpl, ki = k u, and 
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ge = E # 0, when [E I is sufficiently small, all the eigenvalues of  the matrix Ac 
are in D. Thus, there exists a set of  parameters rr, such that Js(TrA = 0, and 
hence J(Tr,) = JT(Tr,). Let J*  = J *  be the minimum of  J when ~ = 0. Then, 
for any 1' > 0, we have 

J* = J*  = rain Jr(it)  <_ Jr(its) = J(rr~). (12) 

Thus, J(n,) - J *  > 0. Let 

~ ' . .=  ( J ( , r A  - J~ )/~ >_ o. (13) 

For any n and ~ > y', we have 

J(Tr) = Jr(n)  + ~,J~(rr) > J*  + (J(7r~) - J*  )J~(rO[r (14) 

Now, suppose that rr = 7r* is the set of  optimal parameters minimizing J. 
For the sake of  contradiction, suppose that J~ (rr*) > E. Then, from (14), we 
obtain J(~r*) > J(Tr~), which is a contradiction to the optimality of  7r*. 
Thus, J,(rr*) < ~. [] 

Remark 3.5. Proposition 3.1 implies that regardless of  the values of  
T, q, r, the poles of  the linearized closed-loop system can be placed inside 
and/or arbitrarily close to the region D by choosing y in (9) sufficiently 
large. 

Using the result in Proposition 3.1, we devise the following efficient 
algorithm for solving Problem 3.1. 

Algorithm 3.1. 

Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Computing the Optimal Parameters of  Compensators. 

Choose a cost function as J in (9). 

Set V = 0 in J. 

Start with the initial guesses kp ~ O, kl ~ O, which corresponds 
to a stabilizing linear PI compensator, and gp = p = 0. 

Use a program that solves ordinary differential equations to 
compute [xr(t), ~(t)] r, e(t), u(t) in (4), ( l la ) ,  ( l ib ) ,  respec- 
tively, over [0, T]. Then, use an integration program to 
compute J r  in (10a). 

Use a program that computes the eigenvalues of  matrices to 
compute Js in (10b). 

Compute J in (9), and use a minimization program to 
compute the optimal parameters that minimize J. 
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Step 7. Use a program that computes the eigenvalues of matrices to 
compute Js in (10b) for the optimal parameters computed in 
Step 6. If 0 < J~ < 1, then stop. In this case, the poles of the 
linearized dosed-loop system are inside and/or close to the 
region D, and the system has satisfactory tracking and stabil- 
ity. If J~ >> 1, then increase y, and go to Step 3. By Proposi- 
tion 3.1, for a sufficiently large y, the cost J~ will be smaller 
than 1. 

Remark 3.6. For the optimal parameters the cost J in (9) is mini- 
mized, and the following is achieved: 

(i) the cost Jr  is small, and so is the tracking error e(. ), while large 
control effort u ( ' )  is avoided; 

(ii) the cost J~ is small, and hence the poles of the linearized 
closed-loop system, )~,-(Ac), i = 1, 2 . . . . .  n + 1, are placed inside 
and/or close to the region D in Fig. 2. 

Remark 3.7. Suppose that the exogenous step input to the closed- 
loop system v(t)= ~U(t), t > O, can assume different amplitudes; more 
precisely, ~ e [Vmi,, Vm~] =: I C R. In this ease, Problem 3.1 can be solved for 
the parameters kp, ki, gp, 2, # at a finite number of points in L Then, the 
optimal parameters can be tabulated as functions of ~. Let gi and ~+1 be 
two adjacent points in I at which the optimal parameters of the nonlinear 
PI compensator are computed. At a point fe[~,., ~;+~], the value of the 
parameters can be taken as the linear interpolation of those computed at ~; 
and ~+~. If this linear interpolation is carried out between all adjacent 
points in I at which the parameters kp, ks, gp, 2, # are computed, then these 
parameters will be piecewise linear functions of 13 on L 

4. Generalization and Other Nonlinear PI Compensators 

In Section 2, we proposed a specific nonlinear PI compensator for 
controlling the system (1). In this section, we formulate the design of a 
general nonlinear PI compensator. We then propose an approximate 
technique for determining such a compensator. 

Consider the feedback system S(P, H) in Fig. 1, and recall that the 
plant P is represented by (1). We choose the compensator H to be the 
nonlinear SISO system represented by 

~(t) =f(e(t)), r = 0, (15a) 

u(t) = g(~(t)) + h(e(t)), (15b) 
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for all t > 0. In (15), the state ~(t)~ R, the input e(t)~ R, and the output 
u(t) e R; the functions f :  R ~ R and h: R ~ R are odd and continuously 
differentiable functions of e, hence f (0)  = h(0) = 0, and g: R ~ R is an odd 
and continuously differentiable function of ~ whose inverse exists. The 
system H is a general nonlinear PI compensator. Note that, if f ( e )  = e, 
g(O =ki~, and h(e )=kpe ,  then the system (15) represents a linear PI 
compensator. 

The state-space representation of the system S(P, H)  with the non- 
linear compensator H in (15) is 

[~(t) ] _  l A x ( t ) +  bh(~ - cx(t)) + bg(~(t)) ], 
~(t)[ - I_f(O - cx(t)) (16a) 

I x(t) ] (16b) y(t) = [c, 0] ~(t) ' 

for all t > 0, with the initial conditions x (0 )=  0. and 4(0)= 0. The 
equilibrium point of the system (16), denoted by (x e, ~e)~R" X R, is 

(Xe, ~e) "~- (Xe, g-l(Ue)) ~-" (Xe, g-'((P(0)) -'tT)), (17) 

where xe satisfies CXe = ~ and Ue is that in (5). Therefore, the output of the 
closed-loop system at the equilibrium is Ye '= cxe = ~. 

Our goal is to determine the optimal functions f,  g, h, denoted respec- 
tively by f* ,  g*, h*, that minimize a cost function such as J in (9), with Ac 
obtained by linearization of (16) at the equilibrium point, subject to (16). 
The task of determining the optimal functions f* ,  g*, h* is difficult; these 
function, however, can be computed approximately. 

We propose to approximate g by 

g ( r  ,~ g ( ~ )  = k i ~  , (18) 

and f and h by their rational approximations (see, e.g., Ref. 19, p. 107) 

F "'s I . r  -] 
f (e )  ~ f ( e ) = k j ~ =  ~ ejlePlj=~ ~ b/,,lepJe, (19a) 

h(e) ~Fi(e) = ahjI e b~jI e e, (19b) 
J 

where the coefficients k i and af, j, j = 0 . . . . .  my, bfd > O, j = 0 . . . . .  nf, ahu, 
j = 0 , . . . ,  mh, and bh,s > 0, j = 0 . . . . .  nh, are constant real numbers. Note 
that f and ~ are odd and continuously differentiable functions of e. The 
function g is obviously an odd and continuously differentiable function of 

whose inverse exists. We substitute the approximate representations of 
f ,  g, h from (18) and (19) into (16). Then, we determine the optimal 
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parameters k~, afj,  by.j, aha, bh d, denoted respectively by k*, a~j, b~j, a ' j ,  
b~,/, for which the minimum value of a cost function such as J in (9) with 
the appropriate At  is achieved. The optimal parameters in (18) and (19) 
result in the optimal functions f* ,  ~*, h'*, which are approximations of the 
optimal functions f* ,  g*, h*, respectively. 

It is clear that, if more terms are considered in (19), then the functions 
f and h" are better approximations of f and h, respectively. However, 
including more terms increases the computation time of the optimal 
parameters i n l a n d  h'. The following procedure can be used to compute the 
optimal parameters efficiently: 

Algorithm 4.1. 

Step 1. 

Step 2. 

Step 3. 

Computing the Optimal Parameters in f, g, h'. 

Let m I = nf = m h = nh = 1. 

Use Algorithm 3.1 to compute the optimal parameters k*, 
a~j, b~j, a*.j, b~j ,  j = O, 1 . . . .  , my, for which the minimum 
value of a cost function such as J in (9) with 

A c = [  - A - b ( k p + a h ' ~ 1 7 6  bokJle ~~ + 1) • ~ a) (20) 
_ - (a f ,  o/by, o)C 

is achieved. 

Increase m f ,  nf ,  mh, n h by one; repeat Step 2. If the minimum 
value of J does not change appreciably by increasing rnf, then 
stop; otherwise, repeat Step 3, 

Remark 4.1. Our experiments with the funct ionsfand h indicate that 
the following nonlinear PI compensator can result in satisfactory step 
responses: 

~(t) = e(t)/[1 +/~2e2(t)], ~(0) = 0, (21a) 

u(t) = kj~(t) + [(ao + aa [e(t)[)/(b0 + b, [e(t)[)]e(t). (21b) 

The nonlinear compensator in (21) has six parameters #, ki, ao, al, bo > 0, 
b~ > 0 to be computed. This compensator is derived from the general 
nonlinear PI compensator in (15) by letting f ( e )  "~ e/(1 + ~Ze2), g (O ~ kj~, 
and h as that in (19b) with mh = nh = 1. 

When the six-parameter nonlinear compensator in (21) is used in the 
system S(P,  H) ,  the coefficient matrix A c whose eigenvalues determine the 
stability of the linearized closed-loop system is 
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Remark 4.2. Another technique to approximate the functions f, g, h 
is by exponential sums (see, e.g., Ref. 19, p. 167). For instance, h in (15) 
can be approximated by 

h(e) ~ ~(e) = kp + gp exp(2 [e I) + 2 hj exp(2/le [) e, (23) 
j = l  

where kp, gp, 2, hj, 2j, j -- 1 . . . .  , mh, are constant real numbers. Clearly, 
the five-parameter nonlinear PI compensator in (3), which was constructed 
based on a heuristic argument, is an approximation to the general non- 
linear PI compensator in (15): in order to obtain the compensator in (3) 
from that in (15), approximate f by the rational function el(1 +1~2e2), 
replace g by k~, and approximate h by the function in (23) while keeping 
only the first two terms. 

5. Examples 

In this section, we consider the unity feedback system S(P, H)  for two 
different plants P. For each of these systems, we determine the optimal 
linear PI compensator as well as the optimal nonlinear PI compensators in 
(3) and (21) via Algorithm 3.1. We demonstrate the superiority of our 
nonlinear PI compensators over the optimal linear PI compensator by 
comparing the performance of the closed-loop systems in tracking step 
inputs. 

Example 5.1. We consider a lightly damped linear SISO plant whose 
transfer function is 

P(s) = (s + 1)/(s z + 0.01s + 1). (24) 

Our goal is to determine the optimal linear and nonlinear PI compensators 
that achieve satisfactory tracking and stability for the closed-loop system 
S(P, H).  

We chose the cost functions JT in (10a) with T = 10, q = 30, r = 9, and 
Js in (10b) with p = 1000, ad = 0.1, a = l, ~ = 0.001. 

First, we computed the optimal parameters of the linear PI compensa- 
tor H(s) = kl, t + ka/s  via Algorithm 3.1. The optimal parameters are 

k~*, = 3.15, k~ = 3.38, (25) 

when ~ = 0 in J given in (9). For the parameters in (25), Jr  = 32.77 and 
Js = 0.61, where in computing J~ we used Ac in (8) with gp = 0. Small J~ 
implies that the closed-loop system has satisfactory stability. 



194 JOTA: VOL. 83, NO. 1, OCTOBER 1994 

Next, we computed the optimal parameters of the five-parameter 
nonlinear PI compensator in (3) via Algorithm 3.1. The optimal parame- 
ters, when the amplitude of the step input ~ = 3, are 

k* = 2.36, g* = 171.00, 2 '  = -90.99,  (26a) 

k* = 267.39, /~* = 37.01, (26b) 

when y = 0 in J. For the parameters in (26), Jr  = 18.91 and J~ = 0, where 
in computing Js we used Ac in (8). Zero J, implies that all poles of the 
linearized closed-loop system are in the region D. 

Finally, we computed the optimal parameters of the six-parameter 
nonlinear PI compensator in (21) via Algorithm 3.1. The optimal parame- 
ters, when the amplitude of  the step input T5 = 3, are 

a* = 19.36, a* = 19.04, b* = 0.5748, b* = 13.01, (27a) 

k* = 270.00, #* = 30.17, (27b) 

when y = 0 in J. For the parameters in (27), J r  = 19.12 and J,  = 0, where 
in computing J, we used Ac in (22). Zero J, implies that all poles of the 
linearized dosed-loop system are in the region D. 

Responses of the closed-loop system to the step input of amplitude 
= 3, when the optimal linear and nonlinear compensators are used, are 

depicted in Fig. 3a. The control inputs to the plant, generated by the 
optimal linear and nonlinear compensators, are shown in Fig. 3b. The 
superior performance of the system controlled by the optimal nonlinear PI 
compensators while applying smaller control inputs is evident from Figs. 3a 
and 3b. 

Example 5.2. We consider a nonminimum phase linear SISO plant 
whose transfer function is 

P(s) = 2(s 2 - 1.2s + 0.48)/(s 2 + 4s + 2)(s 2 + 1.2s + 0.48). (28) 

The transfer function P(s) is an approximate representation of the delayed 
system 2 exp( -0.2s)/(s 2 + 4s + 2). 

We set the same goals as those in Example 5.1 for the system (28). We 
chose the same cost functions as those in Example 5.1, except that we set 
r = 0.9 in Jr. 

First, we computed the optimal parameters of the linear PI compensa- 
tor H(s) = kpt + ku [s via Algorithm 3.1. The optimal parameters are 

k*, = 2.313, k* = 1.181, (29) 

when y = 1 in J. For the parameters in (29), J r  = 32.07 and Js = 0.465, 
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Fig. 3a. Responses of the closed-loop system S(P, H) with the lightly damped plant P in (23) 
to the step input of amplitude 3, when the compensator H is the optimal linear PI 
compensator, the optimal five-parameter nonlinear compensator in (3), and the 
optimal six-parameter nonlinear compensator in (21). 
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Fig. 3b. Control inputs to the plant P in (23), when the compensator is the optimal linear 
PI and the optimal five- and six-parameter nonlinear PI compensators. 
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Fig. 4a. Responses of the closed-loop system S(P, H) with the nonminimum phase plant P 
in (27) to the step input of amplitude 3, when the compensator H is the optimal 
linear PI compensator, the optimal five-parameter nonlinear compensator in (3), 
and the optimal six-parameter nonlinear compensator in (21). 
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Control inputs to the plant P in (27), when the compensator is the optimal linear 
PI and the optimal five- and six-parameter nonlinear PI compensators. 
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where in computing J, we used Ac in (8) with gp = 0. Small d, implies that 
the closed-loop system has satisfactory stability. 

Next, we computed the optimal parameters of the five-parameter 
nonlinear PI compensator in (3) via Algorithm 3.1. The optimal parame- 
ters, when the amplitude of the step input ~ = 3, are 

k* = 0.2309, g* = 0.4366, 2* = 0.6403, (30a) 

k* = 1.2312, #* = 0.0312, (30b) 

when ? = 1 in J. For the parameters in (30), Jr = 28.656 and Js = 1.527, 
where in computing J~ we used Ac in (8). Small J~ implies that the linearized 
closed-loop system has reasonable stability. 

Finally, we determined the optimal parameters of the six-parameter 
nonlinear PI compensator in (21) via Algorithm 3.1. The optimal parame- 
ters, when the amplitude of the step input f = 3, are 

a* = 0.8924, a~ = 0.2925, b* = 0.6674, b* = 0.0008, (31a) 

k* = 1.1442, #* -- 0.0016, (31b) 

when ? = 1 in J. For the parameters in (31), Jr = 29.90 and Js = 0, where 
in computing Js we used Ac in (22). Zero Js implies that all poles of the 
linearized closed-loop system are in the region D. 

Responses of the closed-loop system to the step input of amplitude 
f = 3, when the optimal linear and nonlinear compensators are used, are 
depicted in Fig. 4a. The control inputs to the plant, generated by the 
optimal linear and nonlinear compensators, are shown in Fig. 4b. 

6. Conclusions 

In this paper, we provided a technique of designing and tuning 
high-performance nonlinear PI compensators for linear time-invariant 
SISO systems that are stabilizable by linear PI compensators. We proposed 
different nonlinear PI compensators. We tuned the parameters of the 
proposed compensators by solving an optimization problem via an easy- 
to-implement algorithm. Our design methodology can be viewed as a 
computer-aided design technique, by which optimal nonlinear PI compen- 
sators are designed and tuned. The optimal nonlinear compensators 
achieve superior tracking and stability for closed-loop systems as compared 
to what is achieved by the optimal linear PI compensators; this is evident 
from the examples provided in the paper. 
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