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A B S T R A C T

This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a
space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this
paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a
space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary
stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hy-
perbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE
is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-
Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of
the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for
this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed
controller.

1. Introduction

1.1. Summary of prior work

Recent years, the backstepping method has been widely used to
solve a boundary stabilization problem of integer-order distributed
parameter systems (DPSs) modeled by PDEs by designing an appro-
priate integral transformation. The pioneering work on stabilization
problem of DPSs includes, the results on boundary control of linear
partial integro-differential equations (P(I)DEs) via the backstepping
approach [1], its dual backstepping-based output-feedback results [2],
and other results on event-triggered observer-based output feedback
control of spatially distributed processes [3]. Additionally, a predictor-
based infinite-dimensional feedback for ordinary differential equation
(ODE) systems with actuator delay was extended to a class of PDE-ODE
cascades for its stabilization problem in Ref. [4]. The output feeback
control problem of moving boundary parabolic PDEs was considered in
Ref. [5], which formulated the observer design of a 1D unstable heat
equation on the time-varying domain. It is worth to mention that a
breakthrough has been made in extension of the ideas in Ref. [1] for the
system with space-independent diffusivity to the case of space-depen-
dent diffusion in Ref. [6].

1.2. Motivation

As we know, many realistic systems are modeled by fractional-order
differential equations [7], such as fractional diffusion (FD) systems,
FRD systems and etc. FRD systems [8] can exhibit some self-organiza-
tion phenomena in biological and physical systems, and introduce the
fractional derivative into these systems. They have a lot of applications
in simulating process in physical [9], biology [10], and finance [11].
However, the results of the boundary feedback stabilization for the FRD
systems are still relative few except for the work [12,13], which con-
sidered the backstepping-based boundary feedback control only for the
FRD system with space-independent diffusivity. Motivated by the work
on the boundary stabilization problem of PDEs with space-dependent
diffusivity in Ref. [6], we introduce the boundary feedback controller
into the FRD system with space-dependent diffusivity [14], which can
be taken as one of the results to modelling pattern formation in in-
homogeneous media [15].

1.3. Problem formulated

In this paper, we consider the Caputo time FRD system [12] with
non-constant diffusivity, whose dynamics equation and initial condition
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are represented as
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where the space-dependent diffusivity ϑ(x) > 0 for x ∈ [0, 1], a(⋅) ∈
C1[0, 1], and u0(x) is the nonzero initial value, ⋅D ( )t

αC
0 represents the

Caputo time fractional-order derivative [16]
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On the one hand, if the Caputo time fractional-order derivative of the
state u(x, t) is replaced by the integer-order derivative, the problem will
reduce to the PDE with space-dependent diffusivity in Ref. [6]. On the
other hand, if the space-dependent diffusion coefficient reduces to a
constant, the problem will convert to the FRD systems with constant
diffusivity in Refs. [12,13].

The model of a FRD equation (1) with the space-dependent diffu-
sivity can describe inhomogeneous medium. The diffusion in the FRD
process governed by the FRD equation (1) is subdiffusion, which arises
in cases where there are temporal or spatial constraints such as occur in
fractured and porous media [17], nonhomogeneous media [18], etc.
For the spatially varying diffusivity, from the work [19], we know that
a model with it may mimic the diffusion effect in a heterogeneous en-
vironment and describe the heterogeneous diffusion processes. In re-
cent years, some intensive studies [20,21] on fractional differential
equations with the space-dependent diffusivity have been emerged.
Additionally, there are some potential applications of the FRD models
with a space-dependent diffusion coefficient to many biological sys-
tems, for instance, chondrogenesis in the vertebrate limb [14,22]. This
extension to the FRD system with non-constant diffusivity makes the
results in Refs. [12,13] applicable to non-homogeneous media. More-
over, the introduction of FRD systems with space-dependent diffusivity
enriches the family of fractional-order systems.

1.4. Main contribution and structure

The contribution of this paper can be divided into two aspects:

1) The boundary stabilization problem of PDEs with space-dependent
diffusivity was studied in Ref. [6] utilizing the backstepping-based
boundary feedback controller with the kernel under the constraint k
(0, 0)= 0. In this paper, we analyze the kernel with this constraint
replaced by the fact k(0, 0) can be nonzero or zero constant. This can
be seen more relax than the one in Ref. [6].

2) The most striking feature of the backstepping method is that the
designed integral transformation can transform the integer-order
system into the exponentially stable system by the Dirichlet/
Neumann boundary feedback controller in Refs. [1,6]. For the FRD
system with space-dependent diffusivity, in turn, it can Mittag-Lef-
fler converge to the equilibrium point by the Robin boundary
feedback controller, which implies the L2 and H1 Mittag-Leffler
stability of this closed-loop plant. From theory point of the view, this
paper provides some insights into the boundary feedback control of
the fractional-order system with space-dependent diffusivity by the
backstepping method.

This paper is organized as follows. We start in Section 2 with the
problem statement. Section 3 mainly focuses on the well posedness of
the gain kernel PDE. Then we illustrate the Mittag-Leffler stability ar-
guments, and obtain our main theorem and its corollaries for cases of
Dirichlet and Neumann boundary conditions in Section 4. The con-
struction of boundary feedback controller is illustrated in Section 5. In
Section 6, simulation studies are used to demonstrate the Mittag-Leffler
stability of the closed-loop system with space-dependent diffusivity.
Finally, conclusions and future work are contained in Section 7.

Notations: L2(0, 1) denotes the Hilbert space of a square integral
function u(x, t), x ∈ (0, 1), t ∈ [0, ∞) with the norm

∫=u x t u x t x( , ) ( ( , )d )0
1 2 1/2

. H1(0, 1) represents the usual Sobolev
space (see, e.g Ref. [23]) with the H1 norm

∫= + +u x t u t u t u x t x( , ) ( (0, ) (1, ) ( , )d )H x
2 2

0
1 2 1/2

1 in Section 4, u(x, t)
∈ H1(0, 1). In addition, ϑmin denotes the minimum value of ϑ(x), x ∈ [0,
1]. ″ϑmax denotes the maximum value of ϑ″(x), x ∈ [0, 1].

2. Mathematical modelling

In this section, we consider the FRD system (1) with the following
boundary conditions

− = >p u t p u t t(0, ) (0, ) 0, 0x1 2 (3)

+ = >q u t q u t U t t(1, ) (1, ) ( ), 0,x1 2 (4)

or in another representation

− = >u t pu t t(0, ) (0, ) 0, 0x (5)

+ = >u t qu t U t t(1, ) (1, ) ( ), 0,x (6)

where =p p
p

2

1
, =q q

q
2

1
, p1, p2, q1, q2, p, q≥ 0 (p1, p2 can not be zero at the

same time, likewise for q1, q2), and U(t) is an input. If p1= 0, q1= 0
(i.e. p = + ∞, q = + ∞), p2= 0, q2= 0 (i.e. p=0, q=0), or p1, p2,
q1, q2 > 0 (i.e. p, q > 0), above boundary conditions can be called
Dirichlet boundary conditions, Neumann boundary conditions or Robin
boundary conditions. Otherwise, it can be viewed as mixed boundary
conditions. In this paper, we want to discuss the case of Robin boundary
conditions, the other case are straightforward.

By the results in Ref. [24], we know that the sufficient and necessary
condition for stability of system (1), (3)–(4) (or (5)–(6) with U(t)= 0) is

+ ≤∼A a x απ| arg (spec( ( )))|
2

, (7)

where the operator Ã is given by =∼ ∂
∂

A u x t( )( , ) x u x t
x

(ϑ ( ) ( , ))2

2 , i.e., the roots
of some polynomial lie outside the closed angular sector. For this open-
loop system, it will be unstable if a(x) is positive and large enough even
in the case that the eigenvalues of the operator Ã are negative. Our
purpose is to use the Robin boundary feedback controller to stabilize
this system in terms of the backstepping method.

We utilize the following integral transformation [25]

∫= +w x t u x t k x y u y t y( , ) ( , ) ( , ) ( , )d
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0 (8)
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or simplified representation

∫
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− +
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k y q k y u y t y
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x
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s
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to transform system (1), (3) (or (5)) into a target system whose dynamic
state equation and initial condition are described by

= − ∈ >
= ∈

D w x t x w x t λw x t x t
w x w x x
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with boundary conditions

− = >p w t p w t t(0, ) (0, ) 0, 0s
x

s
1 2 (12)

+ = >q w t q w t t(1, ) (1, ) 0, 0,s
x

s
1 2 (13)

or in another representation
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− = >w t p w t t(0, ) (0, ) 0, 0x
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s (15)

where λ > 0, =ps p
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s

s
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1
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s

s
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1 2 ), and

∫= +w x u x k x y u y y( ) ( ) ( , ) ( )dx
0 0 0 0 . In order to further specify argu-

ments on the stability of this target system, the notion of Mittag-Leffler
is required.

Definition 1. [26] (Mittag-Leffler stability)

≤ − −u t m u t E M t tIf ( ) ( [ ( )] ( ( ) )) ,α
α b

0 0 (16)

where t0 is the initial value of time, α ∈ (0, 1), M≥ 0, b > 0, m(0)= 0,
m(u) is nonnegative and satisfies locally Lipschitz condition on

 ∈ ∈u n with the Lipschitz constant m0, and
≔ ∑ ∀ > ∈=

∞
+E t α t( ) , 0,α k

t
kα0 Γ( 1)

k
in Ref. [16], then the solution

of the equation

=D u t f t u( ) ( , )t
αC

t0 (17)

is said to be Mittag-Leffler stable. Here, in (17), α ∈ (0, 1), f is piecewise
continuous in t ∈ [t0, ∞) and locally Lipschitz in u.

Remark 1. (Relationship of Mittag-Leffler stability and asymptotical
stability) From above definition (1), we know that the system which
meets the Mittag-Leffler stability is also asymptotically stable [26]. In
addition, the Mittag-Leffler stability is also called the fractional
Lyapunov stability since the role of its Mittag-Leffler function for the
stability of fractional-order differential equations is similar to the one of
exponential function for integer-order cases. More detail about the
relationship between them can be found in [ [13], Remark 1].

Based on above Definition 1, we see this target system can be L2 and
H1 Mittag-Leffler stable under a certain stability condition (see the
Proof of Theorem 1 for more details). Therefore, we need to establish
the stability condition, then find out the kernel k(x, y) in the integral
transformation (8), which makes system (1), (3) (or (5)) with the
controller (9) (or (10)) behave as the target system (11)–(13) (or (11),
(14) and (15)).

Remark 2. If q2= 0 (i.e. q= 0) or q1= 0 (i.e. q=+∞), the controller
(9) or (10) reduces to the Dirichlet boundary feedback controller or the
Neumann boundary feedback controller respectively. The discussion for
boundary stabilization problems of Dirichlet and Neumann cases are
similar to the above Robin case, so we omit them in this paper.

3. Analysis of kernel PDE

Next, we will find the kernel PDE. Based on the integral transfor-
mation (8) and its derivative on x, we easily find that w(0, t)= u(0, t)
and wx(0, t)= ux(0, t) + k(0, 0)u(0, t). This, together with (5) and (14)
implies k(0, 0)= ps− p. Taking the second derivative of the integral
transformation (8) on x, we get

∫
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Aside, finding the Caputo time fractional-order derivative of (8), it
leads that
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Substituting (18) and (19) into the first equation of (11), and
combining the first equation of (1)/ce:cross-ref> and the boundary
condition (5), we get

∫
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This, together with the notations = +k x x k x x k x x( , ) ( , ) ( , )x x y
d

d
(kx(x, x)= kx(x, y)|y=x, ky(x, x)= ky(x, y)|y=x) and k(0, 0)= ps− p,
shows that k(x, y) satisfies the below kernel PDE

⎧
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for (x, y) ∈Ξ={0≤ y≤ x≤ 1}.
Solving the third equation of (21) together with k(0, 0)= ps− p, we

obtain

∫= + + − −k x x
x

a τ λ
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τ p p x( , ) 1
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d ( )ϑ ( )ϑ (0).
x s

0
1/2 1/2
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Next, we want to convert (21) into one for applying the analysis
derived from Ref. [13] to it. Similar to the argument in Ref. [6], we also
convert this kernel PDE (21) into the canonical form utilizing the
method of changes of variables. In order to simply the manipulation, we
conclude the following changes of variables

= −k x y x y k x y̌ ( ̌, )̌ ϑ ( )ϑ ( ) ( , ),1/4 3/4 (23)

∫= = =x ϕ x y ϕ y ϕ ξ τ
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.
ξ

0 (24)

After a series of transformation and computation, the kernel PDE
(21) becomes

⎧
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where ϕ−1(⋅) is the inverse function of ϕ(⋅), and
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⎝

′
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16
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1
4

(ϑ ( ) ϑ ( )) ( ) .
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Note that, by a series of derivation and transformation, k(x, x) (22)
becomes

∫= + + −−k x x a ϕ η λ η p p̌ ( ̌, ̌) 1
2 ϑ(0)

( ( ( )) )d ϑ (0)( ),
x s

0

̌
1 1/2

(27)

which is matched with the third equation of above kernel PDE (25) and
ǩ(0, 0)= ϑ1∕2(0)(ps− p).

We can see that the coefficient a x y̌ ( ̌, )̌ in (25)–(26) depends on x ̌
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and y ,̌ if the diffusion coefficient ϑ(x) takes a constant, a x y̌ ( ̌, )̌ depends
only on y .̌ Furthermore, by using the bound on this coefficient of the
kernel PDE (25), the same Proof provided in [ [13], Lemma 2] can
apply to the well posedness of the PDE (25). As is illustrated above, we
can obtain the following result.

Lemma 1. Suppose that a(y) ∈ C1[0, 1], the kernel PDE (21) with k(x, y)
given by (23) also has a unique solution which is bounded and twice
continuously differentiable in 0≤ y≤ x≤ 1.

Remark 3. It is noticeable that the difference between the kernel PDE
provided in [ [6], Section 2.3] and ours is the constraint k(0, 0) for the
kernel k(x, y) can be nonzero or zero constant while the counterpart for
the kernel is zero in Ref. [6]. It can be viewed as an extension of the one
in Ref. [6].

4. Discussion on Mittag-Leffler stability

In this section, we will provide the Mittag-Leffler stability analysis
for the controlled FRD system (1), (3) (or (5)), and (9) (or (10)). For the
benefit of our theorem later, let us give an important definition and a
crucial lemma first, which will be used for the Proof of our main the-
orem.

Definition 2. [26] (Equilibrium point) For the Caputo time fractional
dynamic system =D u t f t u t( ) ( , ( ))t

αC
0 , the constant u0 is an equilibrium

point of it if and only if f(t, u0)= 0.

From above Definition 2, it is easy to find the equilibrium point of
the plant (1) is u(x, t)= 0.

Lemma 2. [27] If ∈u t( ) is a continuous and differentiable function, for
any time t≥ t0≥ 0, it is easy to get

≤ < <D u t u t t t α1
2

( ) ( ) ( ), 0 1.t
αC

t α
ut

C
2

00

As we know, the invertibility of the integral transformation (8) is
needed to prove the Mittag-Leffler stability. Thanks to the Lemma 2.4 in
Ref. [25], the existence of inverse transformation has been obtained.
Then, we will illustrate our main theorem below.

Theorem 1. Assume that a(x) ∈ C1[0, 1] and the Laplace transform of
w2(x, t) exists for (x, t) ∈ (0, 1)× [0, ∞).

(1) For any initial value u0(x) ∈ L2(0, 1), system (1), (3) (or (5)) under the
Robin boundary feedback controller (9) (or (10)) with the gain kernel k
(x, y) described by (23), (25) is Mittag-Leffler stable at u(x, t)=0
(equilibrium point) in the L2(0, 1) norm if the non-constant diffusion
coefficient ϑ(x) and parameter λ satisfy the following constraint con-
dition

⎧

⎨

⎪

⎩
⎪

+ >
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4
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max min
(28)

(2) For any initial value u0(x) ∈ H1(0, 1), system (1), (3) (or (5)) under the
controller (9) (or (10)) with the gain kernel k(x, y) described by (23),
(25) is Mittag-Leffler stable at u(x, t)=0 (equilibrium point) in the
H1(0, 1) norm.

Proof. The proof can be viewed as a generalization of the proof in [
[13], Theorem 3] and [ [6], Theorem 2], since it is for the Mittag-Leffler
stability of the FRD system with non-constant diffusivity.

(1). We will prove the L2 Mittag-Leffler stability in the following steps.

Step 1. Considering the below Lyapunov function
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Then finding the Caputo time fractional-order derivative of the
above function (29) by the integration by parts and using Lemma 2, we
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x w x t w x t

ϑ ( ) ( , )d ( , ) ϑ (1) (1, ) ϑ (0) (0, )

ϑ ( ) ( , )d

ϑ ( ) ( , )d ( , ),

0
1 2 2

0
1 2

0
1

then we get

∫
∫

′ = ′ − ′

− ″

x w x t w x t w t w t

x w x t x

ϑ ( ) ( , )d ( , ) ϑ (1) (1, ) ϑ (0) (0, )

ϑ ( ) ( , )d .
0
1 1

2
2 1

2
2

1
2 0

1 2
(31)

Substituting above equality (31) into (30), we further obtain

∫ ∫

= − + ′ − − ′

− − − ″

( ) ( )
( )

D V t w x t

q w t p w t

x w x t x λ x w x t x

( , ( , ))

ϑ(1) ϑ (1) (1, ) ϑ(0) ϑ (0) (0, )

ϑ( ) ( , )d ϑ ( ) ( , )d .

t
αC

s s

x

0
1
2

2 1
2

2

0
1 2

0
1 1

2
2

(32)

Applying Poincare's equality [ [28], Lemma 2.1] to (32), it follows
that

∫

≤ − + ′

− − −

− − +

′

″( )
( )

( )
D V t w x t

q w t

p w t

λ w x t x

( , ( , ))

ϑ(1) ϑ (1) (1, )

ϑ(0) (0, )

( , )d .

t
αC

s

s

0
1
2

2

ϑ (0)
2

ϑ
2

2

ϑ
2

ϑ
4 0

1 2

min

max min

(33)

Due to the assumption (28), we can further obtain

∫≤ − − +

≤ −

″( )D V t w x t λ w x t x

MV t

( , ( , )) ( , )d

2 ( ),

t
αC

0
ϑ

2
ϑ

4 0
1 2max min

(34)

where = − + >″M λ 0ϑ
2

ϑ
4

max min .
Step 2. Note that w(⋅, t) is continuously differentiable on t ∈ [0, ∞)

as it satisfies the state equation of target system (11) and the definition
of Caputo time fractional derivative [16]. Thus, V (t, w(x, t)) and
D V t w x t( , ( , ))t

αC
0 are continuously differentiable on t ∈ [0, ∞). Since the
Laplace transform of w2(x, t) exists, by the argument in [ [29], Proof of
Theorem 5], we can also get

≤ −V t V E Mt( ) (0) ( 2 )α
α (35)

due to the fact of tα−1≥ 0 and Eα,α(−2Mtα)≥ 0 (see Ref. [30]),
∀α > 0, M > 0. Note that V (t)= V (t, w(x, t)), V (0)= V (0, w(x, 0)).

By the equalities (29), (35) and ∫=w x t w x t x( , ) ( ( , )d )0
1 2 1/2

, it is
readily to show

≤ −w x t V E Mt( , ) (2 (0) ( 2 )) ,α
α 1

2 (36)

where V (0)= V (0, w(x, 0)) > 0 for w(x, 0≠ 0 and V (0, w(x, 0))= 0
if and only if w(x, 0)= 0. Based on Definition 1 and the facts
V t w x t( , ( , )) is locally Lipschitz with respect to w(x, t) and V (0, 0)= 0
(i.e. V (0, w(x, 0))= 0 when w(x, 0)= 0), it is easily obtain 2 V(0, w(x,
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0)) is also Lipschitz on w(x, 0) and 2 V(0, 0)= 0. Therefore, we can get
the target system (11), (12) and (13) (or (14) and (15)) is Mittag-Leffler
stable at u(x, t)= 0 in the L2(0, 1) norm.

Step 3. Based on Lemma 2.4 in Ref. [25], there exists constants γ,
β > 0 to make the following inequalities true

≤ ≤u x t γ w x t w x γ u x( , ) ( , ) , ( , 0) ( , 0) (37)

and

≤
≤

u x t β w x t
w x β u x

( , ) ( , ) ,
( , 0) ( , 0) .

H H

H H

1 1

1 1 (38)

The inequality (37), together with (36), deduces that

≤ −u x t T u x E Mt( , ) ( , 0) ( 2 ),α
α2

1
2 (39)

where T1= γ4, 0≤ t < ∞.
Last, using Definition 1 and the fact V (t, w(x, t)) is locally Lipschitz

with respect to w(x, t), we can get system (1), (3) and (9) (or (5) and
(10)) is L2 Mittag-Leffler stable at u(x, t)= 0.

(2). The Proof of the H1 Mittag-Leffler stability will be presented. First,
consider this below Lyapunov function

∫= + +K t w x t w x t x p w t q w t( , ( , )) ( , )d (0, ) (1, ).x x
s s

0

1 2 2 2
(40)

Taking the Caputo time fractional-order derivative of above equality
(40) and using Lemma 2, we get

∫

∫

=

+ +

≤

+
+

D K t w x t D w x t x

p D w t q D w t

w x t D w x t x

p w t D w t
q w t D w t

( , ( , )) ( , )d

(0, ) (1, )

2 ( , ) ( , )d

2 (0, ) (0, )
2 (1, ) (1, ).

t
αC

x t
αC

x

s
t
αC s

t
αC

x t
αC

x

s
t
αC

s
t
αC

0 0
1

0
2

0
2

0
2

0
1

0

0

0 (41)

For computing the term of ∫ w x t D w x t x( , ) ( , )dx t
αC

x0
1

0 , we multiply
wxx(x, t) by the first equation of (11) and integrate the product from 0 to
1, then we obtain

∫
∫

∫
∫

= +

+ +

= +

w x t D w x t x

x w x t x λq w t

λp w t λ w x t x

x w x t x λK t w x t

( , ) ( , )d

ϑ( ) ( , )d (1, )

(0, ) ( , )d

ϑ( ) ( , )d ( , ( , )),

xx t
αC

xx
s

s
x

xx x

0
1

0

0
1 2 2

2
0
1 2

0
1 2

(42)

since wx(0, t)= psw(0, t) and wx(1, t)=−qsw(1, t).
By the aside of integration by parts, we compute the integration of

above product again. Together with wx(0, t)= psw(0, t) and wx(1,
t)=−qsw(1, t), then one can easily show that

∫
∫
= −

− −

w x t D w x t x q w t D w t

p w t D w t w x t D w x t x

( , ) ( , )d (1, ) (1, )

(0, ) (0, ) ( , ) ( , )d .

xx t
αC s

t
αC

s
t
αC

x t
αC

x

0
1

0 0

0 0
1

0 (43)

Comparing (42) with (43), it is easy to obtain

∫
∫

= −

− − −

w x t D w x t x q w t D w t

p w t D w t x w x t x λK t w x t

( , ) ( , )d (1, ) (1, )

(0, ) (0, ) ϑ( ) ( , )d ( , ( , )).

x t
αC

x
s

t
αC

s
t
αC

xx x

0
1

0 0

0 0
1 2

(44)

Then substituting (44) into (41), we have

∫≤ − −
≤ −

D K t w x t x w x t x λK t w x t
λK t w x t

( , ( , )) 2 ϑ( ) ( , )d 2 ( , ( , ))
2 ( , ( , )),

t
αC

x xx x

x

0 0
1 2

(45)

since ϑ(x) > 0 for x ∈ [0, 1].
Similarly, we can further get

≤ − ∀ ∈ ∞K t K E λt t( ) (0) ( 2 ), [0, ).α
α (46)

where K(t)= K(t, wx(x, t)) and K(0)= K(0, wx(x, 0)). The remainder
Proof is the same as the one of (1) except ∫=w x t w x t x( , ) ( ( , )d )0

1 2 1/2

and the inequality (39) replaced by
∫= + +w x t w t w t w x t x( , ) ( (0, ) (1, ) ( , )d )H x

2 2
0
1 2 1/2

1 and

≤ −u x t T u x E λt( , ) ( , 0) ( 2 )
H H α

α2
2

2
1 1 ( =T βM

m2
4, M=max{1, ps, qs} > 0

and m=min{1, ps, qs} > 0) respectively. Thus, we have proved system
(1), (3) and (9) (or (5) and (10)) is Mittag-Leffler stable at u(x, t)= 0 in
the H1(0, 1) norm.□

Remark 4. The hypothesis condition (28) in above theorem is relatively
conservative. If we take a specific ϑ(x), the conservation can be relax or
improved. And if the system parameter ϑ(x) is constant, the Mittag-
Leffler stability results has been studied in [ [13], Section 3.3, Section
4.2, Section 5.2].

Corollary 1. (Mittag-Leffler Convergence for Dirichlet Boundary
Conditions): Suppose that a(x) ∈ C1[0, 1] and the Laplace transform of
w2(x, t) exists for (x, t) ∈ (0, 1)× [0, ∞).

(1) For any initial value u0(x) ∈ L2(0, 1), system (1), (3) or (5) (with
p1= 0 or p = + ∞) under the controller (9) or (10) (with

= =q q0, 0s
1 1 or q = + ∞, qs = + ∞) with the gain kernel k(x, y)
provided by (23), (25) is L2 Mittag-Leffler stable at u(x, t)= 0 (equi-
librium point) if the non-constant diffusion coefficient ϑ(x) and para-
meter λ satisfy the following constraint condition

−
″

+ >λ
ϑ

2
ϑ

4
0.max min

(47)

(2) For any initial value u0(x) ∈ H1(0, 1), system (1), (3) or (5) (with
p1= 0 or p = + ∞) under the controller (9) or (10) (with

= =q q0, 0s
1 1 or q = + ∞, qs = + ∞) with the gain kernel k(x, y)
provided by (23), (25) is H1 Mittag-Leffler stable at u(x, t)= 0
(equilibrium point).

Corollary 2. (Mittag-Leffler Convergence for Neumann Boundary
Conditions): Suppose that a(x) ∈ C1[0, 1] and the Laplace transform of
w2(x, t) exists for (x, t) ∈ (0, 1)× [0, ∞).

(1) For any initial value u0(x) ∈ L2(0, 1), system (1), (3) or (5) (with
p2= 0 or p=0) under the controller (9) or (10) (with = =q q0, 0s

2 2
or q=0, qs=0) with the gain kernel k(x, y) given by (23), (25) is L2

Mittag-Leffler stable at u(x, t)= 0 (equilibrium point) if the non-con-
stant diffusion coefficient ϑ(x) and parameter λ satisfy the following
constraint condition

⎧

⎨

⎪

⎩
⎪

>

+ <

− + >

′

′

″λ

0

0

0.

ϑ (1)
2

ϑ (0)
2

ϑ
2

ϑ
2

ϑ
4

min

max min
(48)

(2) For any initial value u0(x) ∈ H1(0, 1), system (1), (3) or (5) (with
p2= 0 or p=0) under the controller (9) or (10) (with = =q q0, 0s

2 2
or q=0, qs=0) with the gain kernel k(x, y) given by (23), (25) is H1

Mittag-Leffler stable at u(x, t)= 0 (equilibrium point).

Remark 5. Some discussion on mixed boundary conditions.

i) If p2= 0 (p=0), q1= 0 (q = + ∞), p1, q2 > 0 or q1= 0 (q = +
∞), p1, p2, q2 > 0, i.e. ux(0, t)= 0, u(1, t)=U(t) or p1ux(0, t)− p2u
(0, t)= 0 (ux(0, t)− pu(0, t)= 0), u(1, t)=U(t). That is, the mixed
boundary conditions are Neumann or Robin boundary condition at
x=0 and Dirichlet actuation at x=1. Then, we can obtain the L2

Mittag-Leffler stability of this closed-loop system under the fol-
lowing constraint condition
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⎧

⎨
⎩

<

− + >

′

″λ

0

0,

ϑ (0)
2

ϑ
2

ϑ
4

max min
(49)

or

⎧

⎨
⎩

− >

− + >

′

″

p

λ

ϑ(0) 0

0,

s ϑ (0)
2

ϑ
2

ϑ
4

max min
(50)

respectively.

ii) If p1= 0 (p = + ∞), q2= 0 (q=0), p2, q1 > 0 or q2= 0 (q=0),
p1, p2, q1 > 0, i.e. u(0, t)= 0, ux(1, t)=U(t) or

− = − = =p u t p u t u t pu t u t U t(0, ) (0, ) 0 ( (0, ) (0, ) 0, (1, ) ( )x x x1 2 .
That being said, the mixed boundary conditions are Dirichlet or
Robin boundary condition at x=0 and Neumann actuation at
x=1. Further, this closed-loop system is L2 Mittag-Leffler stable
under the following constraint condition

⎧

⎨
⎩

>

− + >

′

″λ

0

0,

ϑ (1)
2

ϑ
2

ϑ
4

max min
(51)

or

⎧

⎨

⎪

⎩
⎪

>

− − >

− + >

′

′

″

p

λ

0

ϑ(0) 0

0,

s

ϑ (1)
2
ϑ (0)

2
ϑ

2
ϑ

2
ϑ

4

min

max min
(52)

respectively.

iii) If p1= 0 (p = + ∞), p2, q1, q2 > 0 or p2= 0 (p=0), p1, q1,
q2 > 0, i.e. u(0, t)= 0, q1ux(1, t) + q2u(1, t)=U(t) (ux(1, t) + qu
(1, t)=U(t)) or ux(0, t)= 0, q1ux(1, t) + q2u(1, t)=U(t) (ux(1,
t) + qu(1, t)=U(t)). In other words, the mixed boundary condi-
tions are Dirichlet or Neumann boundary condition at x=0 and
Robin actuation at x=1. In this case, the L2 Mittag-Leffler stability
of the closed-loop system can be obtained under the following
constraint condition

⎧

⎨
⎩

+ >

− + >

′

″

q

λ

ϑ(1) 0

0,

s ϑ (1)
2

ϑ
2

ϑ
4

max min
(53)

or

⎧

⎨

⎪

⎩
⎪

+ >

+ <

− + >

′

′

″

q

λ

ϑ(1) 0

0

0,

s ϑ (1)
2

ϑ (0)
2

ϑ
2

ϑ
2

ϑ
4

min

max min
(54)

respectively.

5. Construction of boundary feedback controller

In this section, we want to show how to use our proposed method to
obtain a gain kernel k(x, y) for the corresponding boundary feedback
controller through a specific case. We let a(x) ≡ a ≡ const, p= ps, then
system (1), (5) can turn into the following form

= + ∈ >
= ∈

− = >

D u x t x u x t au x t x t
u x u x x

u t pu t t

( , ) ϑ( ) ( , ) ( , ), (0, 1), 0
( , 0) ( ), [0, 1]

(0, ) (0, ) 0, 0.

t
αC

xx

x

0

0

(55)

The open-loop system (55) with ux(1, t) + qu(1, t)= 0, q > 0 is
unstable when the constant a is positive and large enough (see the

corresponding analysis in Section 2). Then, the corresponding target
system is considered as follows

= − ∈ >
= ∈

− = >

D w x t x w x t λw x t x t
w x w x x

w t pw t t

( , ) ϑ( ) ( , ) ( , ), (0, 1), 0
( , 0) ( ), [0, 1]

(0, ) (0, ) 0, 0.

t
αC

xx

x

0

0

According to the results of Section 3, the kernel PDE (21) becomes

⎧

⎨

⎪⎪

⎩
⎪⎪

− = +
= − ′

= − ′ + +

=

x k x y y k x y a λ k x y
k x p k x

x k x x x k x x a λ

k

ϑ( ) ( , ) (ϑ( ) ( , )) ( ) ( , )
( , 0) ( ϑ (0)/ϑ(0)) ( , 0)

2ϑ( ) ( , ) ϑ ( ) ( , )

(0, 0) 0

xx yy

y

x
d

d

(56)

for (x, y) ∈Ξ={0≤ y≤ x≤ 1}.
Using (23) and (24), we can also transform (56) into the following

form

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

− =

= −

=

=

′

+

( )
k x y k x y k x y

k x p k x

k x x

k

̌ ( ̌, )̌ ̌ ( ̌, )̌ ̌ ( ̌, )̌

̌ ( ̌, 0) ̌ ( ̌, 0)

̌ ( ̌, ̌)

̌ (0, 0) 0,

xx yy
a x y

y

x
a λ

̌ ̌ ̌ ̌
̌ ( ,̌ )̌
ϑ (0)

̌
ϑ (0)
4 ϑ (0)

d
d ̌ 2 ϑ (0)

(57)

where

⎜ ⎟= ⎛
⎝

′
−

′ ⎞
⎠

+ ″ − ″ + +a x y x
x

y
y

y x a λ̌ ( ̌, )̌ 3
16

ϑ ( )
ϑ( )

ϑ ( )
ϑ( )

1
4

(ϑ ( ) ϑ ( )) .
2 2

(58)

Similar to the arguments in [ [6], Section 3.1], we also assume

− = =′ ″ D constx
x

x3 ϑ ( )
16 ϑ ( )

ϑ ( )
4

2
, likewise, for ϑ(y), −′ y

y
3 ϑ ( )
16 ϑ ( )

2
= =″ D constyϑ ( )

4 .
It has two solutions, and in this case we take one solution like

= + −x ρ x xϑ( ) ϑ (1 ( ) ) ,0 0 0
2 2 (59)

where ϑ0, ρ0 > 0, and x0 is an arbitrary constant.
Then from (58) and above assumption, we can obtain

= +a x y a λ̌ ( ̌, )̌ . The solution for the PDE (57) can be written as the
following form based on [ [1], Section VIII.B]

∫

⎜ ⎟

= − ×

+ − − ⎛
⎝

⎞
⎠

−

− +

− −

+

k x y λx e I

λ x y x y τ τ τ

̌ ( ̌, )̌ ϑ(0) ̌ ̌

( ̌ ( ̌ )̌ ( ̌ ̌ ) )sinh d ,

I λ x y

λ x y

p λ

λ p

x y pτ

λ p

( ̌ ( ̌ ̌ ) )
̌ ( ̌ ̌ )

̌ ϑ (0) ̌

̌ ̌ 0
̌ ̌ ̌ /2

0

̌ ̌
2

1 2 2

2 2 2

2

(60)

where = +λ ̌ a λ
ϑ (0) , = − ′p p̌ ϑ (0)

4 ϑ (0) , and Ii denotes a modified Bessel function
of order i (i=0, 1).

This, together with (23) and (59), also implies that

∫

⎜ ⎟

= ⎡
⎣⎢

×

− × + − −

× ⎛
⎝

⎞
⎠

⎤
⎦⎥

+ −

+ −

−

−

+

− −

+

k x y λx

e I λ x y x y τ

τ τ

( , ) ϑ(0) ̌ ̌

( ̌ ( ̌ )̌ ( ̌ ̌ ) )

sinh d ,

ρ x x

ρ y x

I λ x y

λ x y

p λ

λ p

x y pτ

λ p

(1 ( ) )

ϑ (1 ( ) )

( ̌ ( ̌ ̌ ) )
̌ ( ̌ ̌ )

̌ ϑ (0) ̌

̌ ̌ 0
̌ ̌ ̌ /2

0

̌ ̌
2

0 0 2 1/2

0 0 0 2 3/2
1 2 2

2 2

2

2

(61)

where = − ++x ρ x x ρ x̌ (atan( ( )) atan( ))ρ x
ρ

1
0 0 0 0

0 0
2

0
, and

= − ++y ρ y x ρ x̌ (atan( ( )) atan( ))ρ x
ρ

1
0 0 0 0

0 0
2

0
.

According to (61), we get the control kernels

∫

⎜ ⎟

= ⎡
⎣⎢

×

− × + − −

× ⎛
⎝

⎞
⎠

⎤
⎦⎥

+ −

+ −

−

−

+

− −

+

k y λx

e I λ x y x y τ

τ τ

(1, ) ϑ(0) ̌ ̌

( ̌ ( ̌ )̌ ( ̌ ̌ ) )

sinh d ,

ρ x

ρ y x

I λ x y

λ x y

p λ

λ p

x y pτ

λ p

(1 0 (1 0)2)1/2

ϑ0 (1 0 ( 0)2)3/2
1 ( ̌ ( 2̌ 2̌) )

̌ ( 2̌ 2̌)

̌ ϑ (0) ̌

̌ 2̌ 0
̌ ̌ ̌ /2

0

̌ 2̌

2 (62)

and
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∫

∫

⎜

⎜ ⎟

⎜ ⎟

=

× −

× + − − ⎛
⎝

× + ⎡
⎣⎢

× − +

× −

× ⎛
⎝

− ⎞
⎠

× −

× ⎛
⎝

⎞
⎠

+ − −

× ⎤

⎦
⎥

− + −

+ −

−

− +

− −

+

+ −

+ − −

+
+ −

−

−

+
+ −

+
− − +

+
+ − +

− −

+

−

+ − −

+
+ −

−
k y λx

e

I λ x y x y τ

τ τ

I λ x y λ

I

e x y

e

τ I λ x y x y τ

(1, ) [ ϑ(0) ̌ ̌

( ̌ ( ̌ )̌ ( ̌ ̌ ) )sinh

)d ]

( ̌ ( ̌ ̌ ) ) ϑ(0) ̌

(0)

sinh ( ̌ )̌

sinh ( ̌ ( ̌ )̌ ( ̌ ̌ ) )

,

x
ρ x ρ x

ρ y x

I λ x y

λ x y

p λ

λ p

x y pτ

λ p

ρ x

ρ y x

λx
x y

ρ x
ρ x

I λ x y

λ x y

ρ x
ρ x

p λ

λ p
p x y λ p

ρ x
ρ x

p λ

λ p

x y pτ

λ p

λx λτ

λ x y x y τ

ρ x
ρ x

(1 )(1 (1 ) )

ϑ (1 ( ) )

( ̌ ( ̌ ̌ ) )
̌ ( ̌ ̌ )

̌ ϑ (0) ̌

̌ ̌ 0
̌ ̌ ̌ /2

0
̌ ̌
2

(1 (1 ) )
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(63)

where = − ++x ρ x ρ x̌ (atan( (1 )) atan( ))ρ x
ρ

1
0 0 0 0

0 0
2

0
, and

= − ++y ρ y x ρ x̌ (atan( ( )) atan( ))ρ x
ρ

1
0 0 0 0

0 0
2

0
. They will be used in

numerical simulations in Section 6.
As is illustrated in above Theorem 1, we obtain the controller (10)

with gain kernels (62) and (63) can make system (55) Mittag-Leffler
stable in the L2(0, 1) and H1(0, 1) norms.

6. Study on numerical simulation

We will present the boundary feedback controller for the Mittag-
Leffler stability of the FRD system with space-dependent diffusivity. For
this case, the numerical algorithm for Caputo-type advection-diffusion
in Ref. [31], together with finite-difference approximation method and
the approach of using difference to estimate differential, is used to solve
the FRD system. We take the spatial stepsize =h S

X and temporal

stepsize =μ R
T , i.e., the space domain 0 < x < S, grid points X + 1,

and the time domain 0 < t < R, grid points T + 1.
In this non-constant diffusivity case, we let discretization para-

meters S=1, R=0.6, X=20, T=300, and ϑ0= 1, ρ0= 1, x0= 0 for
the space-dependent diffusivity, i.e. = +x xϑ( ) (1 )2 2 which meets the
constraint condition (28). The system parameters are chosen as α=0.7,
a(x) ≡ 10, ps= p=1, λ=10, qs= q=2 together with the initial
condition u0(x)= 10x(1− x). For better understanding our simulation
implementation, we present the relevant algorithm below.

Algorithm 1
Implementation of the controlled FRD system with space-dependent
diffusivity.

Step 1: Solving kernel k(1, y), kx(1, y) based on (62), (63)
respectively, then obtain the controller (10).

Step 2: Inputting parameters u0(x), ϑ(x) and t0.
Step 3: Computing function u(x, t) with u0(x)= u(x, t0) according to

(1), (5), (10).
Step 4: Initializing n=0, n=0, 1, ⋅⋅⋅, T − 1;
while n≥ 0 do tn+1= tn + R∕T, tn= t0 + nR∕T;

then update un+1(x)= u(x, tn+1), n= n + 1;
end.

With this algorithm and above given parameters, we show our si-
mulation results. Fig. 1 shows the space-dependent diffusivity ϑ(x). The
gain kernels (62) and (63) for the controller (10) are presented in Fig. 2.

It is noticeable that we removed kx(1, y) at end y=1 (i.e. kx(1, 1)) to
avoid its denominator being zero (in other words, we set kx(1, 1)= 0
see Fig. 2). The simulation results on state L2 norm in logarithmic scale
of the open-loop system (1), (5) (with ux(1, t) + 2u(1, t)= 0) and the
closed-loop system (1), (5), (10) are shown in Fig. 3, which illustrates
the Robin boundary feedback controller (10) can make this closed-loop
system L2 Mittag-Leffler stable (state norm converge to zero). In
Fig. 4(b), we can see this closed-loop system can be H1 Mittag-Leffler
stabilized (state converges to zero for all x) under the controller (10).
The state's space curve's projection on XOZ plane further verify the
Mittag-Leffler convergence of the closed-loop system, as shown in Fig. 5
(b). Obviously, the proposed Robin boundary feedback controller has
good control effects for the FRD system with space-dependent diffu-
sivity.

Fig. 1. The space-dependent diffusion efficient (parameter function
= +x xϑ( ) (1 )2 2) of system (1), (3).

Fig. 2. The gain kernels k(1, y) and kx(1, y) from (62) and (63).
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7. Conclusions and future work

This paper discussed the boundary feedback control problem of the
FRD system with a space-dependent diffusion coefficient via the back-
stepping method, which can be taken as the extension of the boundary
feedback stabilization problem of the FRD system with a space-in-
dependent diffusion coefficient. With the help of integral transforma-
tion, the closed-loop system under the Robin boundary feedback con-
troller was mapped into a Mittag-Leffler stable target system. It is worth
pointing out that the well posedness of the gain kernel PDE with the

nonzero-value or zero-value k(0, 0) was solved with the help of the
results in [ [13], Lemma 2]. Extensive simulation studies on the closed-
loop system with space-dependent diffusivity revealed that the Robin
boundary feedback controller can be used to stabilize this system, i.e.
this system can approach to Mittag-Leffler stable in the L2(0, 1) and
H1(0, 1) norms.

Future work is devoted to observer-based output feedback control
for the FRD system with a non-constant diffusion coefficient by the
backstepping approach, and boundary control for the FRD system with
a time-varying reaction coefficient.
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Fig. 4. Evolution of state of the open-loop system (1), (5) (ux(1, t) + 2u(1,
t)= 0) and the closed-loop system (1), (5) under the Robin boundary feedback
controller (10).
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