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ABSTRACT Refrigeration control is usually realized by means of model-based feedback controllers,
which requires high computational load and time consuming model identification efforts. The implemen-
tation of feedback control requires the compromise between performance and robust stability. Considering
these difficulties, an on-line learning operation controller for one-stage refrigeration cycle is presented,
which consists of two components: a model-based feedback component and a learning feedforward
component. The feedback controller is utilized to guarantee the robustness. Meanwhile, the optimized
performance is reached by the learning feedforward controller including a one-hidden-layer structure with
B-spline basis functions. Comparison results of benchmark problems validate the effectiveness of this
strategy and show that a perfect tracking performance can still be achieved without extensive modelling.

INDEX TERMS Learning control, Refrigeration system, Vapour compression cycle, Convergence analysis

I. INTRODUCTION

THE research of refrigeration systems has received much
attention for over a century due to its cooling property,

which was introduced by industry and research institutes.
Refrigeration is a cooling generation to attain and maintain
a temperature of some product or space below that of the
surroundings. It has many possible uses in food preservation,
chemical and process industries, manufacturing process, cold
treatment of metal, drug manufacturing, ice manufacturing
and so on. With rapid advances in modern technology, vapor
compression refrigeration systems are now the most common
means for commercial and residential space cooling, which
lead to fast growth in energy consumption, negatively energy
and economic balances effects [1].

Recently, there has been extensive research adopted linear
techniques regarding the control of vapor compression re-
frigeration systems. For example, decentralized PID control
[2], decoupling multivariable control [3], optimal control
[4], LQG control [5], [6], model predictive control (MPC)
[7], [8], and robust control [9], [10]. However, there are
many challenges associated with refrigeration systems con-
trol stemming from the components themselves to the funda-
mental characteristics of a heat transfer process, which cause

high thermal inertia, dead times, high coupling between
variables, and strong nonlinearity. Therefore, a less accurate
model of the plant will result in a controller with an unsatis-
fied performance. When the model is not available or when
many parameters cannot be determined, learning feedforward
control (LFFC) may be considered. As shown in Fig. 1, LFFC
can be implemented by using a learning controller that is
comprised of a feedback component (FBC) and a separate
learning component (FFC). The FBC part is designed on
basis of the prior available process model with the aim of
delivering a robust controlled system. Meanwhile, the FFC
part is equipped to compensate reproducible disturbances and
optimize the system performance with process knowledge.

Being a variant of iterative learning control (ILC) [11]–
[13], learning feedforward control (LFFC) [14] shares basic
ideas with ILC. Differ from most existing control methods,
ILC exploits every possibility to incorporate past control
information into the construction of the present control action
which can also be treated as a reverse solution of system
[15]. Due to its simplicity and effectiveness, ILC has received
considerable attention and applications in many areas, such
as piezoelectric actuator [11], multi-agent systems consen-
sus tracking [16], permanent magnet linear motor [17]. A
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FIGURE 1: Learning feedforward control.

comprehensive review of iterative learning control and its
applications can be found in the coming monographs [18].

First proposed for motion systems subjected to repro-
ducible disturbances, LFFC is designed to compensate the
reproducible disturbances as value-added blocks [19]. As an
extra degree of freedom, LFFC generates steering signals that
enhance the feedback control performance [20] and make
the output of the process y follow the reference signal yd,
perfectly. Thus feedforward part can be adapted as a function
approximator that creates a mapping from the reference
signal yd to the steering signal uff . The mapping can be
implemented as follow

uj+1
ff (t) = ujff (t) + γujfb(t), (1)

where ujfb(t) is the output of feedback part, and ujff (t) is
the output of feedforward part at the j-th iteration, γ is the
learning rate, 0 < γ ≤ 1. In previous research, the LFFC
has been widely applied in many areas, such as robotics
[20], linear motor [21], piezoelectric Actuator [22], and UPS
Inverter [23]. These previous research had shown that learn-
ing feedforward control can improve system performance
and acquire enhanced extrapolation capabilities for repetitive
tracking control tasks with little modeling information. The
main contribution of this paper is to apply two-parameter tun-
able LFFC schemes for the control of refrigeration systems
introduced in PID2018 benchmark problem [1]. The detailed
contributions of the paper include the following.

1) Combined with feedback control, learning feedforward
control is utilized to the control of vapor compression sys-
tems which is simple and implementable.

2) No model identification is needed in LFFC design,
and the convergence analysis ensures the convergence of the
proposed strategy.

3) The performance of the proposed controller has been
verified by simulation for reference trajectories of benchmark
problems.

In the rest of this paper, the one-stage vapour-compression
refrigeration system is first discussed in more details in
Section 2. Next, the design of the learning feedforward con-
trol system is discussed (Section 3). Simulation results are
presented in Section 4. We end with conclusions in Section
5.
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FIGURE 2: The refrigeration cycle.

II. ONE-STAGE REFRIGERATION SYSTEM
As shown in Fig. 2, a simplified schematic diagram of
one-stage refrigeration system includes electronic expansion
valve, variable-speed compressor, evaporator, and condenser.
In this thermodynamic refrigeration cycle, refrigerant works
as a circulating fluid enters the compressor as a vapor. Being
compressed at constant entropy, the superheated vapor goes
through the condenser where heat is first exchanged with the
secondary flux and then the vapor is condensed into liquid.
Traveling through the expansion valve, heat is absorbed at
the evaporator by evaporating the liquid refrigerant at low
pressure and temperature. The main control objective is to
provide the desired cooling power, which can be reflected in
a reference for the outlet temperature of evaporator secondary
flux (Tout,sec,e). Furthermore, a low but constant set point on
the degree of superheating (TSH ) is introduced to ensure a
high Coefficient of Performance (COP ). Therefore, control
scheme is designed to get these two variables to track their
references as efficient as possible by operating two manipu-
lated variable (the compressor speedN and the valve opening
Av). Hence, the whole control system would be a two-input,
two-output system.

Concerning this type of process, high thermal inertia, dead
times, high coupling between variables and strong nonlinear-
ities give rise to the control difficulty. Hence, it is difficult to
obtain an accurate model of the process. In previous work,
model-based feedback controller has been used to control
the complex one-stage refrigeration process. To cope with
the coupling and uncertainties neglected in modelling, these
controllers have to make a compromise between performance
and robust stability. Different from the model-based feedback
controller, the feedback component used in the LFFC does
not need an accurate process model.

III. DESIGN OF LEARNING FEEDFORWARD
COMPONENT
One-stage refrigeration systems are mostly controlled by PID
or robust control strategies based on process dynamic model.
A compromise has to be made between performance and
robust stability to cope with the coupling and uncertainties
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that may exist when modelling systems linearly. Herein, the
main disturbances that remain unknown in advance cannot
be compensated for properly. It makes sense to utilize feed-
forward controller as a value-added block for improving the
feedback control performance by taking advantage of the
repetitiveness of these systems’ operation. Therefore, the de-
sign of the learning controller can be divided into two steps:
(1) feedback component design and (2) feedforward com-
ponent design. Since many algorithms have been proposed
considering the former part [2] [3], we will mainly elaborate
upon the design of the learning feedforward controller.

A. LEARNING FEEDFORWARD COMPONENT DESIGN
The learning feedforward component is an ideal function ap-
proximator that can create a mapping between the reference
input and the desired output. The mapping can be realized
by most neural networks [24], [25], such as a multilayer
perceptron [26], a radial basis function network [27], and a
B-spline network (BSN) [28]. The approach we take in this
manuscript is a B-spline network which features a relatively
short evaluation time for learning and computationally at-
tractive. Generally, such network that consists of one-hidden-
layer networks with adaptable weights is a function

ujff (t) =
∑
i

ωj
iµi(t), (2)

where ωj
i is the B-spline weight in iteration j, µi is the

membership function of the ith B-spline (i = 1, · · · , N ),
The output of the BSN at input t, uff (t), is the learning
feedforward control signal in iteration j.

The B-spline network weights change according to er-
ror results in minimizing the summed squared error of the
network. Whenever the learning feedforward component
mapping imperfectly, tracking errors will occur and can be
compensated for by feedback component. Therefore, the
feedback controller can be interpreted as an error measure
for the feedforward steering. Hence, it is reasonable to utilize
feedback control signals as the output error measure for
feedforward controller. The value of the learning weighs
changes according to the following updating rule

∆ωj
i = γuj−1fb (t)µi1···ik(t). (3)

Apply equation (3) to equation (2) yields

ujff (t) = uj−1ff (t) + γuj−1fb (t)µi1···ik(t). (4)

Clearly, the linear manipulation of the signal uj−1fb can be in
any filter form. Hence, the above equation can be written as
the following filter form:

ujff = uj−1ff + γH(z, z−1)uj−1fb . (5)

The membership functions of nth-order BSN are piece-
wise polynomial functions of order n − 1. As shown in Fig.
3, we use a second-order BSN to obtain continuous control
signals with bounded time derivatives. The support of the B-
spline d corresponding to the input space that µi(t) is not

FIGURE 3: Second-order dilated B-splines and the filtering
process.

equal to zero. For this LFFC problem, suppose there are N
equally-spaced B-splines within [0, T ] time interval. Then the
B-spline support can be gotten as d = 2T/(N − 1). Hence,
for the learning feedforward controller, there are mainly two
parameters remaining to be determined. That is the learning
rate γ and the support of splines d. The support of splines
need to be determined according to the input signal to ensure
the mapping with a certain smoothness. The learning rate is
chosen as a compromise between fast learning and assuring
stability. These two parameters are chosen by the rule of the
thumb.

B. CONVERGENCE ANALYSIS
For convergence analysis, we first assume that the transfer
function of the plant P be linear. The plant may be nonlinear
with uncertainty, but it can certainly be approximated by a
linear model for frequencies below a frequency of interest.
The convergence analysis of the LFFC scheme is in the
sense that uff approaches to a fixed signal and the output
approaches to reference r from trial to trial. The convergence
of learning feedforward control is given in Theorem 1 and
proved as follows, where F denotes the standard Fourier
transform.

Theorem 1: For the linear system as shown in Fig. 1
with an existing feedback controller performs a given task
repeatedly. A learning feedforward scheme is added to utilize
process knowledge to optimize system performance. Further-
more, there exist a real constant γ and learning feedforward
approximator H(z, z−1) such that the learning process is
convergent,

lim
j→∞

U j
ff (jω)→ R(jω)/P (jω), (6)

where U j
ff (jω) = F [ujff (t)] and R(jω) = F [r(t)]. The

convergence rate can be derived as

|ρ(ω, γ)| , |1− γH(jω)G(jω)| ≤ 1, (7)

where G(jω) is the closed-loop transfer function, let
C(jω) denotes feedback controller, herein G(jω) =
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C(jω)P (jω)/(1 + C(jω))P (jω). Considering frequency
domain notion, the mapping (5) becomes

U j
ff (jω) = U j−1

ff (jω) + γH(jω)U j−1
fb (jω), (8)

where U j−1
fb (jω) = F [uj−1fb (jω)].

Proof: According to Fig.1, the feedback signal can be
denoted as

Ufb(jω) = −G(jω)Uff (jω) +G(jω)R(jω)/P (jω). (9)

Substituting equation (9) into equation (8) yields

U j
ff (jω) = [1− γH(jω)G(jω)]U j−1

ff (jω)

+γH(jω)G(jω)R(jω)/P (jω). (10)

Iterating equation (10) yields

U j
ff (jω) = [1− γH(jω)G(jω)]j−1U0

ff (jω)

+{1− [1− γH(jω)G(jω)]j}R(jω)/P (jω). (11)

Since G(jω) has a low pass filter characteristics, hence, we
can conclude that it is possible to choose a suitable γ and
H(jω) such that equation (6) is true. That is, the output y(t)
converge to the reference r(t) for all t ∈ [0, T ] as j →∞.

Remark: According to the above proof, the learning con-
vergence is independent on the initial feedforward control
u0ff . Therefore, u0ff can be chosen arbitrarily. In practice, as
no prior knowledge available, u0ff is usually set to be 0.

IV. SYSTEM SETUP AND NUMERICAL SIMULATIONS
In this section, we use benchmark examples to demonstrate
feasibility of learning control for one-stage refrigeration cy-
cle.

The Benchmark PID 2018 is first introduced in brief to
give the necessary information for the control system design
process [1]. In the Benchmark PID 2018 a particular applica-
tion of one-stage refrigeration systems as shown in Fig. 2 is
considered. Working with R404a as refrigerant, the cycle is
expected to provide a certain cooling power to a continuous
flow entering the evaporator as secondary flux. As shown
in Fig. 4, a standard simulation of the refrigeration control
system has been scheduled for testing any control systems,
considering also the disturbances, which are included in
Table 1. As shown in Fig. 5-6, the simulation includes step
changes in the references on Te,sec,out and TSH and in the
most important disturbances: the inlet temperature of the
evaporator secondary flux Te,sec,in inlet temperature of the
condenser secondary flux Tc,sec,in. It is important to note that
the manipulated variables, Av and N , are subjected to limits,
Av ∈ [10, 100] and N ∈ [30, 50], and are saturated within
the system block.

The Benchmark PID 2018 provides a default discrete de-
centralized feedback controller, where the outlet temperature
of the evaporator secondary flux is controlled by means of the
expansion valve, meanwhile the compressor speed controls
the degree of superheating. Simulations are performed with
the MATLAB program to demonstrate feasibility of learning
control. The sampling time is 1s and the simulation time
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FIGURE 5: The standard simulation for Benchmark PID
2018 generates changes in the references Te,sec,out and TSH .
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FIGURE 6: The standard simulation for Benchmark PID
2018 generates changes in two disturbances: Te,sec,in and
Tc,sec,in.

is 1200s. The qualitative and quantitative comparisons are
explored between our LFFC scheme with controller provided
in the Benchmark PID 2018. In the quantitative comparison,
the discrete decentralized PID controller plays the role of
controller of reference (labelled as Controller 1 in Fig. 7-9)
and our proposed controller plays the role of controller to e-
valuate (labelled as Controller 2 in Fig. 7-9). Moreover, eight
individual performance indices and one combined index are
applied to further evaluate in comparison which are listed as
follows

IAEi =

∫ time

0

|ei(t)|dt, (12)

IAV Ui =

∫ time

0

∣∣∣∣dui(t)dt

∣∣∣∣ dt, (13)

RIAEi(C2, C1) =
IAEi(C2)

IAEi(C1)
, (14)

RITAEi(C2, C1, tc, ts) =
ITAEi(C2, tc, ts)

ITAEi(C1, tc, ts)
, (15)
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TABLE 1: Disturbance vector

Disturbance Mathematical symbol Units
Inlet temperature of the condenser secondary flux Tc,sec,ini

◦C
Mass flow of the condenser secondary flux ṁc,sec gs−1

Inlet pressure of the condenser secondary flux Pc,sec,in bar
Inlet temperature of the evaporator secondary flux Te,sec,in

◦C
Mass flow of the evaporator secondary flux ṁe,sec gs−1

Inlet pressure of the evaporator secondary flux Pe,sec,in bar
Compressor surroundings temperature Tsurr

◦C

6 

 

 
Fig. 4. Refrigeration Control System. 

 
Fig. 5. The discrete decentralized controller included by default in the Refrigeration Control 

System. 

 

Controller Transfer function 

𝑇𝑒,𝑠𝑒𝑐,𝑜𝑢𝑡  𝐴𝑣 
−1.0136 − 0.0626𝑧−1 + 0.9988𝑧−2

1 − 1.9853𝑧−1 + 0.9853𝑧−2
 

𝑇𝑆𝐻  𝑁 
0.42 − 0.02𝑧−1

1 − 𝑧−1
 

 

Table 2. Discrete transfer functions used within the default controller. 

 

 

 

FIGURE 4: Refrigeration control system.

RIAV Ui(C2, C1) =
IAV Ui(C2)

IAV Ui(C1)
, (16)

J(C2, C1) =
1∑8
1 wi

{w1RIAE1(C2, C1)

+w2RIAE2(C2, C1)

+w3RITAE1(C2, C1, tc1, ts1)

+w4RITAE2(C2, C1, tc2, ts2)

+w5RITAE2(C2, C1, tc3, ts3)

+w6RITAE2(C2, C1, tc4, ts4)

+w7RIAV U1(C2, C1)

+w8RIAV U2(C2, C1)} . (17)

Guidelines for Tuning The learning feedforward scheme
offers considerable flexibility with the number of tuning
knobs that it provides. To fit a mapping accurately, B-splines
need to be implemented with a small support d. In terms
of the learning gain r, a cautiously small learning gain can
ensure the convergence of this scheme. The width of the B-
splines and the learning gain were tuned by starting from
value 0 and changing the values by try and error in the
direction that reduces the combined index J .

TABLE 2: Quantitative Comparisons of Controller 2 with
Controller 1

Index Controller2 vs Controller1
RIAE1(C2, C1) 0.5389
RIAE2(C2, C1) 0.6068

RITAE1(C2, C1, tc1, ts1) 0.6915
RITAE2(C2, C1, tc2, ts2) 0.9157
RITAE2(C2, C1, tc3, ts3) 0.5753
RITAE2(C2, C1, tc4, ts4) 0.6583

RIAV U1(C2, C1) 1.0383
RIAV U2(C2, C1, tc1, ts1) 1.0514

J(C2, C1, tc1, ts1) 0.6536

For a BSN LFFC with m=9 and γ=0.1, labelled as Con-
troller 2, Fig. 7-Fig. 10 show its tracking performance after
10th learning iterations compared with the discrete decentral-
ized PID controller. As shown in Fig. 7, Controller 2 achieves
better tracking performance on the outlet temperature of the
evaporator secondary flux and the degree of superheating
than Controller 1, specially regarding the disturbance rejec-
tion, which is demonstrated in almost all indices. Fig. 10
depicts combined index J versus learning iteration number
where the monotonic convergence is obvious. The eight
performance indices shown in Table 2 further testify the
control effort in BSN LFFC. Although the relative indices
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RIAVU1(C2,C1) and RIAVU2(C2,C1) are greater than one
which indicate that control effort in Controller 2 is higher.
Considering the index weighting, Controller 2 significantly
outperforms Controller 1 as it improves the overall index J
by 35%. The improvement in results can be explained by the
comparison results as shown in Fig. 8-9. As the blue lines
go smaller, the feedforward controller undertakes more work
with iterations.

0 5 10 15 20
−24

−22

−20

T
em

pe
ra

tu
re

 [° C
]

Control on T
sec,evap,out

 

 Reference
Controller 1
Controller 2

0 5 10 15 20
0

20

40

Time [min]

T
em

pe
ra

tu
re

 [° C
]

Control on TSH

 

 
Reference
Controller 1
Controller 2

FIGURE 7: Tracking performance at 10th iteration compared
decentralized PID control system under BSN LFFC.

V. CONCLUSIONS
In this paper, we demonstrated the effectiveness of a learn-
ing feedforward control participated scheme for vapour-
compression refrigeration system. Combined with feedback
PID controller, the BSN based learning feedforward con-
trollers are applied. The learning controller is able to improve
system performance drastically with only two parameters to
adjust: the support of B-spline and learning gain. Simulation
results suggests that the proposed LFFC with B-spline net-
work scheme can achieve satisfied tracking control perfor-
mance on difficult dynamical systems without extensive and
time-consuming modelling. It is noteworthy that the network
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FIGURE 8: Manipulated variables comparison between de-
centralized PID control system and BSN LFFC.

we applied during simulations was obtained by the rule of
the thumb. Hence, an optimized tuning of parameters can
help to improve the performance of the discussed control
system. Our future work includes systematic design methods
for learning feedforward control.
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