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Abstract— This paper is concerned with the event-driven
boundary state feedback control problem for the subdiffusion
processes governed by time fractional diffusion systems with
unknown time-varying input disturbance. To evaluate the un-
known disturbance, we propose an estimator through filtering,
which only requires that the Laplace transformation of the
disturbance signal exists and is finite. Moreover, we study the
stability of the closed-loop system using a state feedback event-
driven control strategic via Backstepping technique. A positive
lower bounded minimum inter-event time of the event-driven
strategic is then presented to avoid the occurrence of Zeno
phenomenon. Finally, we work out a numerical example to test
the proposed method.

Index Terms— Time fractional diffusion systems; Event-
driven control; Time-varying input disturbance; Backstepping.

I. INTRODUCTION

Recently the studies of subdiffusion transport dynamics
in complex systems have attracted a great deal of attention
[1], [2], [3] and time fractional diffusion systems have been
proved to be valuable tools to model them [4]. This is due
to the fact that fractional derivative is defined as a kind
of convolution and good at characterizing the subdiffusion
processes. Note that the boundary feedback control for
conventional parabolic distributed parameter systems (DPSs)
has been widely studied in control communities. Realize
that time fractional diffusion systems can be regarded as an
extension of conventional parabolic DPSs, where the first
order time derivative is generalized to a fractional derivative
of order α ∈ (0,1). Together with the fact that disturbances
can not be negligible for all practical applications, research
on the boundary feedback control problem of time fractional
diffusion systems with time-varying input disturbance should
be interesting and challenging.

Motivated by the above considerations, in this paper, we
investigate the boundary control problem of the following
time fractional diffusion systems with a Caputo fractional
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derivative C
0 Dα

t of order α ∈ (0,1)
C
0 Dα

t y(x, t) =4y(x, t)+σ(x)y(x, t)
in (0,1)× [0,∞),

y(0, t) = 0, y(1, t) = u(t)+d(t) in [0,∞),
y(x,0) = y0(x) in (0,1),

(1)

where 4 := ∂ 2/∂x2 is the Laplace operator, σ ∈ C1(0,1)
and y0 ∈ L2(0,1). Here L2(0,1) represents the usual square
integrable function space endowed with the inner product
(·, ·) and the norm ‖ · ‖. Moreover, u(t) is the control input
which is to be designed to stabilize the system and d(t)
denotes the time-varying boundary input disturbance.

The applications of system (1) are rich in real world.
As cited in [5], it is usually used to describe the reaction-
diffusion processes in a spatially inhomogeneous environ-
ment. For example, the chemical reaction processes in
dispersive transport media [6], reheating processes of the
heterogeneous metal slabs [7], or the flow through porous
media with a source [8]. Then here (1) can be viewed as a
model of a thin rod with not only the heat loss on the right-
sided (x = 1) but also the heat generation inside the rod in
a spatially inhomogeneous environment.

To deal with the disturbances, several methods have been
widely used for the conventional parabolic DPSs. A sliding
mode control strategic has been applied in [9] to stabilize
heat equations with boundary disturbances, which shows a
good robust performance. In [10], the authors designed a
combined backstepping and sliding mode controller for one-
dimensional unstable heat equation with boundary uncertain-
ties. To investigate the quasilinear parabolic DPSs with time-
varying uncertain variables, an extended Kalman filter based
controller and a Galerkin’s finite dimensional approximation
method have been given in [11] and in [12] respectively.
However, there is a need for further studies on the sliding
mode control theory of time fractional diffusion systems.
New approaches to estimate the boundary disturbances of
system (1) are needed. Note that another method called
uncertainty and disturbance estimator (UDE) based control
has received much attention in the past two decades as
shown in [13], [14], which has been extended to discuss the
parabolic DPSs [15]. The UDE-based method only requires
that the Laplace transformation of the disturbance signal
exists and is finite. Then we shall adopt the UDE to estimate
the time-varying input disturbance in system (1).

In addition, to reduce the workload of network and so as
to save resources, an implementation where the transmission
instants are defined based on a state-dependent criterion has
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been introduced as an alternative [16], [17]. This is the event-
driven control, where the control action is done only when
the designed driven event is breached. Compared with the
time-driven control scheme, event-driven control provides
a natural way to efficiently reduce the number of control
updates, which could lead to a lower (average) workload of
network while guaranteeing the desired performance [18].
Besides, an event-driven scheme can save computation re-
sources, energy resources for wireless communication via
battery-powered devices and limited network resources. With
these advantages, an idea of event-driven control has been
widely performed to deal with several control and filtering
issues finite-dimensional systems governed by ordinary dif-
ferential equations [16], [17], [19].

The contribution of this paper is to consider the event-
driven boundary feedback control for the infinite-dimensional
time fractional diffusion system (1). To the best of our
knowledge, no result is available on this topic. To realize this,
it is supposed that the full-states of system (1) are available.
Then we design an event-driven boundary state feedback
controller based on the measured states via backstepping
technique to asymptotically stabilize the closed-loop system.
Besides, for the event-driven implementation, it is important
to guarantee the existence of a positive lower bounded
minimum inter-event time. Not only is this requirement
significant to obtain our stabilization results, it also avoids
the occurrence of Zeno phenomenon, i.e., to prevent the
existence of an infinite number of transmissions in a finite
time [20]. Moreover, we realize that in many practical cases,
the availability of full-state measurements may be impossible
due to the difficulties in measuring. To solve this limitation,
some new methods should be introduced to estimate the
whole states of studied systems. While interesting, we shall
discuss these problems in our forthcoming work.

This paper is proceed as follows. Some basic results to be
used thereafter are recalled in the next section. In Section 3,
our main results on the design and implementation of event-
driven controller are presented using backstepping technique.
A numerical example is finally included.

II. PRELIMINARY RESULTS

We first recall some basic results to be used thereafter.
Definition 1: [21] The Riemann-Liouville fractional inte-

gral of order α > 0 for y(·, t) : [0,∞)→ R on t is given by

0Iα
t y(·, t) =

∫ t

0

(t− s)α−1

Γ(α)
y(·,s)ds (2)

provided that the right side is pointwise defined on [0,∞).
Here Γ(α) :=

∫
∞

0 τα−1e−τ dτ denotes the Gamma function.
Definition 2: [21] The Caputo fractional derivative of

order α ∈ (0,1) for y(·, t) : [0,∞)→ R on t is defined as

C
0 Dα

t y(·, t) =

{
∂

∂ t y(·, t), α = 1,

0I1−α
t

∂y
∂ t (·, t), 0 < α < 1

(3)

provided that the right side is pointwise defined on [0,∞).

Consider the Laplace operator 4 with Dirichlet boundary
conditions y(0) = y(1) = 0, let λn = −n2π2 and ξn(x) =√

2sin(nπx). We obtain that
i) λn is the eigenvalue of 4;
ii) ξn(x) is the eigenfunction of 4 corresponding to λn.

By [22], system (1) can not be stable if some eigenvalues of
4+σ(x) are bigger than zero. Then we conclude that the
system (1) is unstable if σ is positive and large enough.

To discuss the stabilization problem of system (1), we
introduce the following special function

Eα,β (t) =
∞

∑
k=0

tk

Γ(αk+β ) , R(α)> 0, t ∈ C, (4)

which is known as the Mittag-Leffler function in two pa-
rameter and in particular, we write Eα,1(t) = Eα(t) for short
when β = 1. If α = β = 1, it reduces to the conventional
exponential function. Then Mittag-Leffler function is usually
regarded as an extension of the exponential function.

Next, we present some useful lemmas, which play a key
role to obtain our results.

Lemma 1: [23] Let α < 2, β be an arbitrary real number
and πα

2 < θ < min{π,πα}. If θ 6 |arg(z)|6 π , |z|> 0, then∣∣Eα,β (z)
∣∣6 M

1+ |z|
(5)

holds for some constants M > 0.
By Lemma 1, if α ∈ (0,1), β = 1, t ∈ R and t > 0, we

have |arg(−t)|= π ∈ [θ ,π] and

|Eα(−t)|6 M
1+ t

6 Mt−1, α ∈ (0,1), t > 0. (6)

This shows that Mittag-Leffler stability could imply asymp-
totical stability.

Lemma 2: Given ε > 0, t > 0, α ∈ (0,1), it follows that∫ t

0

Eα,α(−ε(t− s)α)

(t− s)1−α
s−α ds = Γ(1−α)Eα(−εtα). (7)

Proof: Given ε > 0, one has∫ t
0

Eα,α (−ε(t−s)α )

(t−s)1−α s−α ds

=
∞

∑
k=0

(−ε)k

Γ(αk+α)

∫ t
0 (t− s)αk+α−1s−α ds

=
∞

∑
k=0

(−ε)ktαk+α−1−α+1

Γ(αk+α)

∫ 1
0 (1− τ)αk+α−1τ−α dτ

=
∞

∑
k=0

(−ε)k

Γ(αk+α)B(αk+α,1−α)tαk

= Γ(1−α)
∞

∑
k=0

(−ε)ktαk

Γ(αk+1)

= Γ(1−α)Eα(−εtα),

(8)

where B(p,q) =
∫ 1

0 (1− t)p−1tq−1dt = Γ(p)Γ(q)
Γ(p+q) represents the

Beta function. This completes the proof.
Lemma 3: [24] Let φ : [0,∞) → R be a differentiable

function. Then, for any given t > 0,

1
2

C
0 Dα

t φ
2(t)6 φ(t)C0 Dα

t φ(t), α ∈ (0,1). (9)
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III. EVENT-DRIVEN CONTROLLER DESIGN AND
IMPLEMENTATION

In this section, from a practical point of view, the control
input u is assumed to be not continuously implemented, but
is updated at certain instants {tk}k>1, which form a sequence
of strictly increasing positive instants to be specified later.

In the sequel, for simplicity, we write A :=4+σ(x) with
Dom(A) = {φ ∈ L2(0,1) : φ ,φ ′ are absolutely continuous and
φ(0) = φ(1) = 0}.

Consider system (1), if the control inputs are updated in
event-driven cases, it can be can be reformulated as follows

C
0 Dα

t y(x, t) = Ay(x, t) in (0,1)× [tk, tk+1),
y(0, t) = 0 in [tk, tk+1),
y(1, t) = u(tk)+d (t) in [tk, tk+1),
y(x,0) = y0(x) in (0,1).

(10)

A. Equivalent transform via backstepping

Similar to the argument in [25], the integral transformation

ω(x, t) = y(x, t)−
∫ x

0
g(x,ξ )y(ξ , t)dξ (11)

with ω0(x) = y0(x)−
∫ x

0 g(x,ξ )y0(ξ )dξ is adopted to trans-
form the system (10) into a target system. Then we obtain
the following proposition, whose proof can be found in
Appendix V −A.

Proposition 1: Suppose that the kernel g(x,ξ ) is chosen
satisfying

gxx(x,ξ )−gξ ξ (x,ξ ) = (σ(ξ )−λ )g(x,ξ ), 0 < ξ < x < 1,
2 d

dx g(x,x) = λ −σ(x), 0 < x < 1,
g(x,0) = 0, 0 < ξ < 1,

(12)
the integral transformation (11) can equivalently convert the
error dynamic (10) into

C
0 Dα

t ω(x, t) =4ω(x, t)−λω(x, t)
in (0,1)× [tk, tk+1),

ω(0, t) = 0 in [tk, tk+1),

ω(1, t) = u(tk)+d (t)−
∫ 1

0 g(1,ξ )y(ξ , t)dξ

in [tk, tk+1),
ω(x,0) = ω0(x) in (0,1).

(13)

B. Event-driven Controller design

Before designing the event-driven controller, we first give
an estimation of the disturbance following the idea of uncer-
tainty and disturbance estimator [13], [14], which has been
extended to study the parabolic DPSs [15].

Consider the boundary conditions of systems (10) and
(13), let

d (t) = y(1, t)−u(tk)
= ω(1, t)+

∫ 1
0 g(1,ξ )y(ξ , t)dξ −u(tk) .

(14)

To estimate the disturbance, we introduce a low-pass filter
as follows:

d̂ (t) = L −1{F(s)}(t)∗d(t)
= L −1{F(s)}(t)∗ (y(1, t)−u(tk)) ,

(15)

where d̂ denotes the estimation of d, L −1 is the inverse
Laplace operator, ∗ represents the convolution operator and
F satisfying

lim
s→0

s(1−F(s)) = 0 (16)

is a low-pass filter in the frequency domain.
Design the event-driven boundary controller as

u(tk) =
∫ 1

0 g(1,ξ )y(ξ , tk)dξ − d̂ (tk) , (17)

it follows that

u(tk) =
∫ 1

0 g(1,ξ )y(ξ , tk)dξ − d̂ (tk)+ d̂ (t)− d̂ (t)
=
∫ 1

0 g(1,ξ )y(ξ , tk)dξ − d̂ (tk)+ d̂ (t)
−L −1{F(s)}(t)∗ (y(1, t)−u(tk))

= L −1
{

1
1−F(s)

}
(t)∗

∫ 1
0 g(1,ξ )y(ξ , tk)dξ

−L −1
{

1
1−F(s)

}
(t)∗

(
d̂ (tk)− d̂ (t)

)
−L −1

{
F(s)

1−F(s)

}
(t)∗ y(1, t).

(18)

Let d̃(t) = d(t)− d̂(t). Substituting the controller (17) into
the boundary condition of system (13), it yields that

ω(1, t) = d̃ (t)+
∫ 1

0 g(1,ξ )(y(ξ , tk)− y(ξ , t))dξ

− d̂ (tk)+ d̂ (t) .
(19)

Assume that the first event happens at t0 = 0. Since
Eα(−tα)∈ (0,1) when t > 0. We design that the next instant
tk, k = 1,2, · · · is determined by

tk+1 = min
{

t > tk :
δu(tk, t)

Eα(−tα)
> ĕ
}
, (20)

where ĕ is the event threshold,

δu(tk, t) = ‖y(·, tk)− y(·, t)‖+
∣∣d̂ (tk)− d̂ (t)

∣∣ (21)

and {tk}k∈N represents the event-driven instants to show
when the actuator signal is updated.

The following theorem gives the stability of considered
closed-loop system.

Theorem 1: Suppose that (16) and all conditions of Lem-
ma 3, Proposition 1 are satisfied. If both ωx(1, t) and d(t)
are bounded, the Laplace transforms of ω2(·, t), ωx(·, t) and
d exit and are finite. Then the closed loop system (1) under
the event-driven rule (20) is asymptotically stable.

Proof: Note that system (10) can be equivalently
converted to (13) via the inevitable integral transform (11)
if the boundary controller is chosen as (17). From the
statements in Appendix V −A, if σ ∈C1[0,1], there exists a
positive constant ν such that

‖y(·, t)‖6 ν‖ω(·, t)‖, ‖ω0‖6 ν‖y0‖. (22)

In what follows, we therefore, focus on studying the stability
of system (13) with

ω(1, t) = d̃ (t)+
∫ 1

0 g(1,ξ )(y(ξ , tk)− y(ξ , t))dξ

− d̂ (tk)+ d̂ (t)
(23)

under the event-driven rule (20).
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Since d(t) is bounded and L {d}(s) is finite, by (15),

lim
s→0

sL
{

d̃
}
(s) = lim

s→0
sL
{

d− d̂
}
(s)

= lim
s→0

s(1−F(s))L {d}(s) = 0.
(24)

It then follows from the final value theorem that lim
t→∞

d̃(t)= 0.
Consider that ω(·, t) is a differentiable function, let

W (t) = 1
2
∫ 1

0 ω(x, t)2dx. (25)

Lemma 3 yields that

C
0 Dα

t W (t) = 1
2
∫ 1

0
C
0 Dα

t ω(x, t)2dx
6
∫ 1

0 ω(x, t)C0 Dα
t ω(x, t)dx

=
∫ 1

0 ω(x, t)ωxx(x, t)dx−λ
∫ 1

0 ω(x, t)2dx
= ωx(1, t)d̃ (t)+ωx(1, t)

[
d̂ (t)− d̂ (tk)

]
+ωx(1, t)

∫ 1
0 g(1,ξ )(y(ξ , tk)− y(ξ , t))dξ

−
∫ 1

0 ωx(x, t)2dx−λ
∫ 1

0 ω(x, t)2dx
6 ωx(1, t)d̃(t)+ωx(1, t)ρ(t)−2λW (t),

(26)

where

ρ(t) =
[
d̂ (t)− d̂ (tk)

]
+
∫ 1

0 g(1,ξ )(y(ξ , tk)− y(ξ , t))dξ .

Let

M(t) = ωx(1, t)(d̃(t)+ρ(t))−2λW (t)−C
0 Dα

t W (t)> 0. (27)

Since L (ω2)(·,s) exists and ω(x, t) is the solution of system
(13), taking the Laplace transform on both sides of (27) gives

L (M)(s) = L (ωx(1, ·)(d̃ +ρ))(s)−2λL (W )(s)
− sαL (W )(s)+ sα−1W (0),

(28)

where W (0) = 1
2
∫ 1

0 ω(x,0)2dx > 0. Hence,

L (W )(s) =
sα−1W (0)+L (ωx(1, ·)(d̃ +ρ))(s)−L (M)(s)

sα +2λ
.

It then follows from the uniqueness, existence theorem [23]
that the unique solution of (27) is

W (t) = Eα(−2λ tα)W (0)
+
[
ωx(1, t)(d̃(t)+ρ(t))

]
∗
[
tα−1Eα,α(−2λ tα)

]
−M(t)∗

[
tα−1Eα,α(−2λ tα)

]
.

(29)

Moreover, since tα−1 and Eα,α(−2λ tα) are two nonnegative
functions,

W (t)6 Eα(−2λ tα)W (0)

+
[
ωx(1, t)(d̃(t)+ρ(t))

]
∗
[

Eα,α (−2λ tα )

t1−α

]
.

(30)

The boundedness of ωx(1, t) implies that there exits a con-
stant such that |ωx(1, t)| 6 Mω . From the event-driven rule
(20), Lemma 1 and 2, we obtain that

[ωx(1, t)ρ(t)]∗
[
tα−1Eα,α(−2λ tα)

]
=
∫ t

0
Eα,α (−2λ (t−s)α )

(t−s)1−α ωx(1,s)ρ(s)ds

6 ĕmax{Cg,1}Mω

∫ t
0

Eα,α (−2λ (t−s)α )

(t−s)1−α Eα(−sα)ds

6 ĕmax{Cg,1}MMω

∫ t
0

Eα,α (−2λ (t−s)α )

(t−s)1−α s−α ds
6 ĕmax{Cg,1}MMω Γ(1−α)Eα(−2λ tα),

(31)

where Cg =max |g(x,ξ )| is a constant defined as in Appendix
V −A. Moreover, lim

t→∞
d̃(t) = 0 and

lim
t→∞

∫ t
0

Eα,α (−2λτα )

τ1−α dτ = lim
t→∞

∞

∑
k=0

∫ t
0
(−2λ )k

ταk+α−1

Γ(αk+α) dτ

= lim
t→∞

1−Eα (−2λ tα )
2λ

= 1
2λ

(32)

imply that tα−1Eα,α(−2λτα) ∈ L1[0,∞) and

d̃(t)∗
[

Eα,α (−2λ tα )

t1−α

]
→ 0 as t→ ∞. (33)

This is true following from the fact that the convolution of
an L1 function with a function tending to zero does, itself,
tend to zero [26]. Observing that Eα(−2λ tα)→ 0 as t→∞.
We conclude that system (1) is asymptotically stable under
the event-driven rule (20) and the proof is finished.

C. Minimum inter-event time

To avoid the Zeno phenomenon, a positive lower bounded
minimum inter-event time should be guaranteed [27].

Theorem 2: Suppose that all conditions of Theorem 1
hold. Then the minimum inter-event time Tmin given by

Tmin = min
k=0,1,2,···

{tk+1− tk} (34)

is lower bounded provided that tk is defined as (20).
Proof: For any k = 0,1,2, · · · , let

ê(x, t) = y(x, t)− y(x, tk), (35)

where t ∈ [tk, tk+1). It follows that ê(x, tk) = ê(x,0) = 0.
Consider system (10), the definition of Caputo fractional
derivative lead to

C
0 Dα

t ê(x, t) = C
0 Dα

t y(x, t) = Ay(x, t) = Aê(x, t)+Ay(x, tk)

with boundary conditions êx(0, t) = 0, ê(1, t) = d(t)− d(tk)
and initial condition ê0(x) = 0.

Based on the solution expression in [7], [28], where the
solution of system (36) can be given using the spectral theory
of operator A, i.e., one has

ê(x, t) =
∞

∑
n=1

∫ t
0

Eα,α ((σ(x)+λn)τ
α )

τ1−α dτ(Ay(·, tk),ξn)ξn(x)

+
∞

∑
n=1

∫ t
0

Eα,α ((σ(x)+λn)(t−τ)α )

(t−τ)1−α (d(τ)−d(tk))dτ
∂ξn
∂x (1)ξn(x).

Moreover, since σ is positive and large enough, without loss
of generality, suppose that σ∗ = max

x∈[0,1]
σ(x) > π2. By [29],

since Eα,α(tα) is an increasing function, it follows from the
event-driven rule (20) that |d(τ)−d(tk)| 6 ĕEα(−τα), τ ∈
[tk, tk+1) and then

‖ê(·, t)‖6
∫ t

0
Eα,α ((b∗−π2)τα )

τ1−α dτ‖Ay(·, tk)‖

+
√

2ĕ
∥∥∥∥ ∞

∑
n=1

∫ t
0

Eα,α ((b(x)−λn)τ
α )

τα−1 dτ
(
n− 1

2

)
πξn(x)

∥∥∥∥
6 tα

α
Eα,α((b∗−π2)tα)‖Ay(·, tk)‖

+
√

2ĕπ
[
Eα((b∗−π2)tα)−1

]( ∞

∑
n=1

(n− 1
2 )

2

(n2π2−b∗)
2

) 1
2

.
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Therefore, by (20), a lower bound time T∗ > 0 can be found
such that

‖Ay(·, tk)‖
Eα,α ((b∗−π2)T α

∗ )
αEα (−T∗α ) T α

∗

+

√
2ĕπ

(
∞

∑
n=1

(n− 1
2 )

2

(n2π2−b∗)
2

)1/2

Eα (−T∗α )

[
Eα((b∗−π2)T α

∗ )−1
]
= ĕ.

(36)

This implies that the minimum inter-event time Tmin(Tmin >
T∗) is lower bounded and the proof is finished.

IV. NUMERICAL EXAMPLE

In system (1), let α = 0.5, σ(x) = 15 and y0(x) =
x(1−x)

2 e−x. By 15 > π2, then system (1) with u ≡ 0 is
unstable. Let λ = 1 be in the target system (13). From the
Chapter 4 of [30], the solution of hyperbolic PDE (12) is
given by

m(x,ξ ) =−14ξ

I1

(√
14(x2−ξ 2)

)
√

14(x2−ξ 2)
, (37)

where I1 represents the modified Bessel functions of order
one.

To test our event-driven control method, let d(t) = sin(t)
and ĕ = 0.005. We plot the spatial L2-norm of the solution
y(x, t) to system (1) with event-trigged controller in 1) of Fig.
1. Moreover, 2) of Fig. 1 shows the event-driven instants
when the control input is updated. It then can be seen
that the event-driven scheme can significantly asymptotically
stabilize the considered system.

V. CONCLUSIONS
In this paper, the idea of using state feedback event-driven

control to asymptotically stabilize anomalous subdiffusion
processes governed by time fractional diffusion systems with
unknown time-varying input disturbance is presented. To
address the problems, a UDE-based estimator is proposed to
evaluate the unknown time-varying input disturbance through
filtering. The main stability results are then obtained using
a state feedback event-driven control strategic via Backstep-
ping technique.

However, in many practical cases, the availability of full-
state measurements may be impossible due to the difficulties
in measuring. To solve this limitation, some new methods
should be introduced to estimate the whole states of studied
system. While interesting, we shall discuss these problems in
our forthcoming work. Moreover, the results studied here can
also be extended to more complex nonlinear fractional DPSs
and various open questions are still under consideration.
For more potential challenging topics concerning fractional
DPSs, we refer the readers to [31] and the references therein.

APPENDIX.
A. Proof of Proposition 1

Proof: Denote gξ (x,x) = ∂

∂ξ
g(x,ξ )|ξ=x, gx(x,x) =

∂

∂x g(x,ξ )|ξ=x and d
dx g(x,x) = gx(x,x)+ gξ (x,x). Differenti-

ating (11) with respect to x, we see

ωx(x, t) = yx(x, t)+g(x,x)y(x, t)+
∫ x

0
gx(x,ξ )y(ξ , t)dξ (38)
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Fig. 1. Evolution of solution to system (1) with event-trigged controller
and the Event-driven instants.

and

ωxx(x, t) = yxx(x, t)− d
dx g(x,x)y(x, t)−g(x,x)yx(x, t)

−gx(x,x)y(x, t)−
∫ x

0 gxx(x,ξ )y(ξ , t)dξ .
(39)

Similar to the argument in [25], by∫ x
0 g(x,ξ )yξ ξ (ξ , t)dξ =

∫ x
0 gξ ξ (x,ξ )y(ξ , t)dξ

+g(x,x)yx(x, t)−g(x,0)yx(0, t)
−gξ (x,x)y(x, t)+gξ (x,0)y(0, t),

(40)

C
0 Dα

t y(x, t) = Ay(x, t) and y(0, t) = 0, it follows that

0 = C
0 Dα

t ω(x, t)−ωxx(x, t)−λω(x, t)
= C

0 Dα
t y(x, t)−

∫ x
0 g(x,ξ )C0 Dα

t y(ξ , t)dξ − yxx(x, t)
+ [
∫ x

0 g(x,ξ )y(ξ , t)dξ ]xx−λy(x, t)
+λ

∫ x
0 g(x,ξ )y(ξ , t)dξ

= C
0 Dα

t y(x, t)− yxx(x, t)−
∫ x

0 gξ ξ (x,ξ )y(ξ , t)dξ

−g(x,x)yx(x, t)+g(x,0)yx(0, t)+gξ (x,x)y(x, t)
−gξ (x,0)y(0, t)−

∫ x
0 g(x,ξ )σ(ξ )y(ξ , t)dξ

+ d
dx g(x,x)y(x, t)+g(x,x)yx(x, t)+gx(x,x)y(x, t)

+
∫ x

0 gxx(x,ξ )y(ξ , t)dξ −λy(x, t)
+λ

∫ x
0 g(x,ξ )y(ξ , t)dξ
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=
∫ x

0 y(ξ , t)
{

gxx(x,ξ )−gξ ξ (x,ξ )+(λ −σ(ξ ))g(x,ξ )
}

dξ

+ y(x, t)
(
σ(x)−λ +gξ (x,x)+

d
dx g(x,x)+gx(x,x)

)
+ yx(0, t)g(x,0).

The boundary conditions yield that ω(0, t) = y(0, t) = 0 and

ω(1, t) = y(1, t)−
∫ 1

0 g(1,ξ )y(ξ , t)dξ . (41)

This, together with gx(x,x)+gξ (x,x)=
d
dx g(x,x), implies that

if g(x,ξ ) is chosen satisfying (12), we get system (13).
Next, we show both the integral transformation (11) and

its inverse are bounded.
By [30], the following existence results holds.
Lemma 4: [30] If σ ∈ C1[0,1], then system (12) has

a unique bounded solution which is twice continuously
differentiable in 0 < ξ < x < 1.

Define G : L2(0,1)→ L2(0,1) as

ω(x, ·) = (Gy)(x, ·) := y(x, ·)−
∫ x

0
g(x,ξ )y(ξ , ·)dξ , (42)

where g(x,ξ ) is the solution of (12). By Lemma 4, since g
is bounded, denote Cg = max |g(x,ξ )|, it is not difficult to
get that G is a bounded operator.

Set ϕ(x, t) =
∫ x

0 g(x,ξ )y(ξ , t)dξ . Then ω(x, t) = y(x, t)−
ϕ(x, t) and

ϕ(x, t) =
∫ x

0 g(x,ξ )ω(ξ , t)dξ +
∫ x

0 g(x,ξ )ϕ(ξ , t)dξ . (43)

Let ϕ0(x, t) =
∫ x

0 g(x,ξ )ω(ξ , t)dξ and ϕn(x, t) =∫ x
0 g(x,ξ )ϕn−1(ξ , t)dξ . We obtain that

|ϕ0(x, t)|6Cg‖ω(·, t)‖, |ϕ1(x, t)|6C2
g‖ω(·, t)‖x, (44)

|ϕ2(x, t)|6
C3

g‖ω(·,t)‖
2! x2, |ϕn(x, t)|6

Cn+1
g ‖ω(·,t)‖

n! xn. (45)

Therefore, the series ϕ(x, t)=
∞

∑
n=0

ϕn(x, t) is absolutely and u-

niformly convergent and that its solution of (43). This means
that G−1 exists and is bounded. The proof is completed.
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