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Abstract—In this paper, a fractional order synchronous frame
controller and its equivalent model, stationary frame controller
named fractional order proportional resonant controller, have
been introduced using fractional order theory. Compared to
conventional proportional resonant controller, the proposed con-
troller not only ensures a zero steady-state error for AC control
systems, but also provides more robustness against fluctuations
of resonant (center) frequency. Having a wider bandwidth and
higher gain in the neighborhood of resonant frequency enhance
the capability of this controller to deal with resonant frequency
variations and furthermore, improve the time domain transient
performance of these systems. Analog and digital implementa-
tions of this novel controller have been discussed. In addition,
stability of the proposed controller has been investigated. Finally,
the proposed fractional order control strategy is successfully
applied to a grid-connected system as current regulator.

Index Terms—Proportional resonant controller, Fractional or-
der calculus, Stationary frame, Synchronous frame

I. INTRODUCTION

Generally, in DC control systems (i.e. servo control sys-

tems), where the control quantity under steady state condition

is DC, the steady state error is determined by their open loop

gain at frequencies close to zero (i.e. DC), while their transient

characteristics is determined by the frequency response at the

system cross-over frequency.

However, for AC control systems, such as current regulated

voltage source inverter (VSI), the reference signal and control

quantities are AC. Grid-connected systems, uninterruptible

power supplies and three-phase active filters are some ex-

amples for AC control systems. Due to the inability of DC

control system to provide infinite gain at non-zero frequencies,

employing a DC regulator (e.g. a PI) to control an AC

control system in the same manner as DC control systems

(i.e. stationary frame) is subject to steady state error. [1], [2].

One approach to obtain zero steady state error for AC

control systems is to employ a DC controller (e.g. a PI) in

a synchronous frame. Synchronous frame transfers the AC

reference signal to a DC quantity which provides the capability

for performing DC Controller on both AC and DC control

systems [2]. The synchronous frame with a PI controller is

depicted in Fig. 1 (a). Another method to obtain zero steady

state error in the AC control systems is to derive the equivalent

regulator of aforementioned synchronous frame controller in

stationary frame. This control strategy is illustrated in Fig. 1

(b). In the case of synchronous frame with a PI controller, the

equivalent controller is derived in [2] and called Proportional

Resonant (PR) controller.

Comparing both proposed solutions in Fig. 1, PR controller

offers a fast dynamic response while it does not require the

Phase Lock Loop (PLL) which eliminates its associated error

and failure problems. Moreover, PR controller in stationary

Fig. 1. (a) Synchronous frame current control loop with rotational transform
operators at the input and output, (b) Stationary frame current control loop
equivalent to the synchronous frame model [5]

frame eliminates rotational transformations, thus significantly

reducing the overall computation burden. In addition, this

controller enhances the performance of the system in the

presence of component uncertainty and unbalanced faults. This

would result in diminishing the DC ripple current which leads

to reduced DC capacitor sizing. Detailed comparison of these

two control approaches is discussed in [3], [4].

Although there exist an extensive amount of research on

the synchronous fame with PI controller and its equivalent PR

controller, the scope of these studies are limited to only these

two types of controller. Recently, a new generations of the

PID controller family, called fractional order (FO) controllers,

have been introduced and applied to DC control systems.

These controllers outperform the integer order ones in a wide

range of applications from renewable energy to temperature

control applications [6], [7], [8], [9], [10], [11], [12]. However,

application of FO controllers in the AC control systems has

been narrowly studied in a very limited number of researches.

One of the early studies in this field was presented in [13], [14]

where authors applied a FO-PI and FO-[PI] schemes to a

thee-phase synchronous frame current regulator for a grid-

connected photo-voltaic system in order to improve transient

response and robustness of the system. Other researchers

followed similar path by replacing the PI current regulator

of a grid-connected system with FO-PI and confirmed the

advantages of employing these controllers [15], [16]. Although

these literature demonstrate the superiority of fractional order

controllers in the synchronous frame, the equivalent FO-PI

controller for stationary frame has not been studied.

In a different study, authors tackled this problem by ap-

plying a nonlinear control methodology (FO sliding mode

control) to the current regulator of grid-connected wind turbine
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to achieve zero steady state error [17]. Despite the promis-

ing features of applying FO nonlinear control, it intensifies

complexity to the implementation stage. Furthermore, sliding

mode control adds undesirable chattering by its nature. Due to

these issues, this approach raises concerns for aforementioned

applications. Most importantly, in proposed hybrid structures,

obtaining an equivalent stationary frame (similar to PR con-

troller which is derived for integer order PI in synchronous

frame) is theoretically impossible, since the developed theories

in the field of hybrid systems are very limited.

To address all the aforementioned open questions and

concerns with respect to other proposed approaches, in this

paper, initially, a new fractional order synchronous frame

using Mittag-Leffler function is proposed. Following that, an

equivalent stationary frame for introduced fractional order

synchronous frame is offered. As will be discussed, this equiv-

alent structure offers various benefits including enhancement

of computational time by eliminating PLL and transformation

blocks compared to fractional order synchronous frame. Ad-

ditionally, this new controller shows the overall performance

improvement compare to its older generation of integer order

PR (IO-PR). Furthermore, Stability analysis and realization of

this controller as well as its performance are discussed and

compared vs. integer order PR.

The rest of the paper is organized as follows: Section II

briefly introduces the fractional order operators. Section III

presents an overview of synchronous and stationary control

strategies. In Section IV, the proposed FO structure is

presented. Section VI, the performance of new proposed con-

troller is compared to integer order PR controller. Concluding

remarks are presented in section VII.

II. FRACTIONAL ORDER DERIVATIVES AND INTEGRAL

DEFINITIONS

The idea of fractional calculus has been known since the

development of the regular calculus, with the first reference

probably being associated with letter between Leibniz and

L’Hospital in 1695 [6]. One of the most popular continu-

ous definitions used for fractional differintegral is Riemann-

Liouville (RL) which is defined as [18]

Dµ f (t) =
1

Γ(n− µ)

dn

dtn

∫ t

0

f (τ)

(t − τ)µ−n+1
dτ, (1)

where (n−1< µ < n), n∈N and Γ(.) is the Gamma function.

Since introduction of fractional calculus, modeling of phys-

ical phenomena using fractional order operators and con-

trolling various plants using fractional order controllers have

been widely investigated among researchers and scientists in

this field. All these researches imply the superiority of the

fractional order operators from robustness and performance

point of view [19], [20], [21]. Furthermore, wide range

of applications and properties of fractional operators have

been investigated in many literature including in [22], [23],

[24], [25], [26], [23], [27].

A. Generalized Exponential Function

Special functions such as Mittag-Leffler plays a significant

role in solving fractional order differential equations. This

function is as important as regular exponential function in

the case of integer order differential equations. Two general

definitions for Mittag-Leffler function are

Eµ(z) = Σ∞
k=0

zk

Γ(µk+ 1)
µ ,ν ∈ R, z ∈C, (2)

Development of fractional differential equations has urged

scientists to define new trigonometric functions, e.g. gen-

eralized cosine and sine functions (cosµ(x),sinµ(x)) [28],

[29], [30].

Before going into more detailed discussions, one important

relation between generalized exponential and fractional order

trigonometric functions needs to be introduced. As will be

shown later, the following corollary plays a key role in

the definition of fractional order synchronous and stationary

frames.

Corollary: For 0 < µ < 1 and any x ∈ R, the relationship

between Mittag-Leffler function and trigonometric functions

can be defined as

Eµ(± jµ xµ) = cosµ xµ ± jµ sinµ xµ , (3)

Proof: Replacing trigonometric functions of (3) with their

equivalent series gives

cosµ xµ ± jµ sinµ xµ =
∞

∑
k=0

(−1)k x2kµ

Γ(2kµ + 1)
±

jµ
∞

∑
k=0

(−1)k x(2k+1)µ

Γ((2k+ 1)µ + 1)

=
∞

∑
k=0

( j)µk (±x)kµ

Γ(kµ)+ 1
=

∞

∑
k=0

(± jx)kµ

Γ(kµ)+ 1
= Eµ(± jµ xµ)⋄ (4)

B. Laplace Transform Of Fractional Order

In the case of fractional order differential equations, if f (x)
has a derivative from order of µ but no integer order derivative,

[31] and [32] propose Laplace transform of fractional order,

which is defined as

Fµ(s)
.
= Lµ{ f (x)}

.
=

∫ ∞

0
Eµ(−sµxµ) f (x)(dx)µ

= lim
M→∞

∫ M

0
(M− x)µ−1Eµ(−sµxµ) f (x)dx,

(5)

where Lµ{.} is the fractional order Laplace transform and

Eµ(.) is Mittag-Leffler function.

According to the same references, “shifting property” holds

for fractional order Laplace transform and is defined as

Lµ [ f (t)Eµ(−cµtµ)] = Lµ [ f (t)]s+c = Fµ(s+ c), (6)

where f (t) is an arbitrary function in time domain, c ∈R and

Fµ is the fractional order Laplace transform of f (t) from the

3087



✍✌
✎☞

✲

❄

✻

❄

✻

HDC(s
µ)

✲

Eµ(− jµθ µ) Eµ( jµ θ µ)

Eµ( jµ θ µ) Eµ(− jµθ µ)

−→
εαβ

V ∗
αβ

✍✌
✎☞

✍✌
✎☞

✲

✲

HDC(s
µ)✲

✍✌
✎☞

✍✌
✎☞

❄

✻

✲

✲

Modulation Demodulation

✍✌
✎☞❄

✲

−−−→
Iαβ ,re f

−→
Iαβ

εq

εd

−

λq

λd

Fig. 2. Block diagram of modulation/demodulation of FO-PR controller using
Mittag-Leffler function

order of µ ∈ (0,1]. In next section, to establish FO stationary

and synchronous frame, a quick review of conventional frame

is done.

III. OVERVIEW OF SYNCHRONOUS AND STATIONARY

FRAMES

In [2], a stationary AC regulator, HAC(s), has been derived

from a DC regulator, HDC(s), in synchronous frame, so that

it has the same frequency response characteristic in the band-

width of concern. The performance of this stationary regulator

is identical to the DC regulator in synchronous frame.

In the case of having PI controller in synchronous frame,

HDC = Kp +
Ki

s
, the equivalent stationary AC compensator is

HAC = Kp +
2Kis

s2 +ω2
0

. (7)

In the practical world, due to the component tolerances and

finite precision in digital systems, the ideal PI controller is not

implementable and it is approximated by HDC = Kp +
Kiωc

s+ωc
.

The equivalent AC regulator for this practical controller is

HAC = Kp +
2Kiωcs

s2 + 2ωcs+ω2
0

, (8)

where ωc is the bandwidth of the AC regulator around the AC

frequency ω0.

IV. FRACTIONAL ORDER PROPORTIONAL RESONANT

CONVERTER

As mentioned before, a very limited efforts to adopt frac-

tional order controllers into synchronous frame have been

started in the last couple of years. Various literature have

reported improvement in time domain responses of current

regulated VSI by employing fractional order PI controller in

the synchronous frame [17], [33]. The main stream in these

research works is to replace the DC regulator of synchronous

frame, HDC(s) = Kp +Ki/s of Fig. 2 with a fractional order

PI (HDC(s) = Kp+Ki/sµ ,0 < µ ≤ 1). This replacement shows

some improvement in the system performance. However, the

αβ and dq frame rotational speed (synchronous speed), ω0 is

assumed to be the same as integer order case. Therefore, the

required resonance behavior in this structure is not achievable.

To address this issue and utilize the maximum advantages of

employing fractional order operators, one needs to redefine the

relationship between the synchronous and stationary frames.

The proposed structure in Fig. 2 is believed to be a better

way of implementing fractional order operators for AC control

systems. As shown in this figure, exponential functions in

integer order synchronous frame is replaced by Mittag-Leffler

functions.

Using (3), fractional order synchronous frame can be rewrit-

ten as

εd = (xα + jxβ )(cosµ(θ
µ)− jµ sinµ(θ

µ))

εq = (xα + jxβ )(cosµ(θ
µ)+ jµ sinµ(θ

µ)) (9)

Assuming a balanced three-phase system, synchronous

frame regulator of Fig. 2 can be described as

λq(t) = [εαβ (t)Eµ(− jµθ µ)]∗ hDC(t)

λd(t) = [εαβ (t)Eµ( jµ θ µ)]∗ hDC(t) (10)

where ’*’ denoted the convolution operator. Knowing θ =ω0t,

and going through a lengthy mathematical calculations includ-

ing applying fractional order Laplace transform of (10) and

using shifting property gives

HAC(s) = HDC(s
µ + jµθ µ)+HDC(s

µ − jµθ µ). (11)

Thus, if the DC regulator in the proposed synchronous frame is

a common fractional order PI controller, HDC(s) =Kp+Ki/sµ ,

the equivalent AC regulator in the stationary frame, HAC(s) is

obtained as

HAC(s) =Kp +
Ki

sµ + jµω
µ
0

+
Ki

sµ − jµω
µ
0

=Kp +
2Kis

µ

s2µ − ( jω0)2µ
. (12)

Using Hankel integral introduced in [34], one can conclude

that

sµ

s2µ − ( jω0)2µ
=

sµ sin(µπ/2)

s2µ − 2cos(µπ/2)sµω
µ
0 +ω

2µ
0

(13)

Substituting second term of (12) with (13) gives

HAC(s) = Kp +
2Kis

µ sin(µπ/2)

s2µ − 2cos(µπ/2)sµω
µ
0 +ω

2µ
0

(14)

In the next sections, implementation of this new born

controller will be discussed.

V. IMPLEMENTATION OF FO-PR CONTROLLER

After derivation of FO-PR controller, the implementation of

this controller becomes the next question. One way to look at

this problem is to rewrite the second term of (14) as of the

following format

Y1(s)

U(s)
= 2Ki

1
sµ sin(µπ/2)

1−
2cos(µπ/2)ω

µ
0

sµ +
ω

2µ
0

s2µ

(15)
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Fig. 3. Block diagram of FO-PR controller implementation

Rearranging equation gives

Y1(s) =
2cos(µπ/2)ω

µ
0

sµ
Y (s)−

ω
2µ
0

s2µ
Y1(s)+U(s)

2Ki

sµ
sin(µπ/2),

(16)

which shows that Y1(s) can be resulted as the summation of

three terms. Two of them are dependent on Y1(s) which can be

created by employing a feedback loop and one is dependent on

U(s) which is made by a feedforward loop. Complete block

diagram of FO-PR controller of (14), including Kp term, can

be concluded as shown in Fig. 3.

By looking at this block diagram, after tuning the controller,

parameters such as µ and ω0 are determined and known.

To conclude this section, implementation of FO-PR con-

troller, introduced in Fig. 3, can be achieved by employing

analog or digital implementation of s−µ and obtaining µ , Ki

and Kp through the tuning process which will be discussed

later.

VI. SIMULATION RESULTS AND DISCUSSION

In this section, before applying the proposed controller to a

real-world system and comparing the results vs. integer order

version, lets investigate the conceptual differences between

integer order and fractional order controllers. Figure (4) il-

lustrates the frequency responses of IO-PR and FO-PR con-

trollers of (12) and (14). ω0 = 2∗π ∗60rad/s, ωc = 0.1rad/s,

Kp = 0.1, Ki = 1 and µ = 0.8 are the considered parameters

for these frequency responses. As shown in this figure, (12)

and (14) introduce identical gain to the system and this gain

at desired frequency (ω0) is significantly higher than IO-PR

even when the damping factor for this controller is as low as

ωc = 0.1rad/s.

The other advantages of FO-PR is the wider bandwidth

of this controller compare to integer order one. The wider

bandwidth helps controller to tolerate more variations around

center frequency, ω0. In the real-world applications, for in-

stance, grid-connected systems, the center frequency of the

grid always varies around ω0. For this reason, having a

controller which introduces higher gain for frequencies other

than center frequency is highly desirable. As Fig. 4 demon-

strates, FO-PR introduces larger gain compare to IO-PR for
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Fig. 4. Frequency responses of FO-PR and IO-PR controllers with ω0 =
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Fig. 5. Frequency responses of FO-PR controller for different values of µ
with ω0 = 2∗ pi∗60rad/s and ωc = 0.1rad/s

all frequencies. Although, IO-PR bandwidth can be widened

by increasing the value of ωc, this will largely reduce the gain

at center frequency, ω0, which is undesirable. On the other

hand, reducing ωc to compensate for the gain will decrease

the bandwidth. The main advantages of FO-PR are providing

wider bandwidth and larger gain simultaneously.

Figure 5 illustrates the effect of µ on the frequency response

of FO-PR controller. Clearly, lower order for FO-PR results in

wider bandwidth for controller. Having a tune-able order in the

structure of controller provides one more degree of freedom

for design engineer to adjust Ki,Kp and µ according to the

requirement of the system.
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Fig. 6. Block diagrams of design example current regulator [35]

A. Design Example:Comparison of FO-PR and IO-PR Cur-

rent Regulators

In this section, a case study of current regulator using sta-

tionary frame from [35] is considered. Block diagram for this

example is depicted in Fig. 6. This block diagram is applicable

to grid-connected systems or motor drive applications (in this

case the transformer on the AC side is not required).

In this system, the R-L load admittance is usually modeled

using a first order transfer function 1
Lss+Rs

. Since inverter

switching frequency is generally order of magnitude higher

than Es frequency, inverter is modeled using a constant gain.

Current transducer is considered as a gain, GT I , as well.

The current control system with following parameter values

is considered; DC voltage, Vdc = 250V , desired frequency

(central frequency), f0 = 60Hz, load inductance, Ls = 3.5mH,

load resistance, Rs = 1Ω, switching frequency, fs = 10kHz,

current transducer gain, GTI = 0.1V/A. The current reference

signal is Ire f = 20sin(2π ∗ 60t). In this simulation, the con-

troller parameters are set to be Kp = 0.1, Ki = 1.2 and µ = 0.8.

Figure 7 represents the performance of fractional order

proportional resonant controller (red line) vs. integer order pro-

portional resonant controller (blue line). As can be seen from

this figure, FO-PR converges to the reference signal (green

dash line) faster than IO-PR. This is the direct consequence

of significant higher gain of FO-PR at f0 = 60Hz compare to

IO-PR gain.

For the next set of simulation, it is assumed that the fre-

quency of the reference signal deviates 1Hz from its nominal

value at f0 = 60Hz. The effect of frequency fluctuation is

presented in Fig. 8. FO-PR can still follow the reference with a

phase shift which is caused by frequency fluctuation but IO-PR

is not able to follow this new reference signal and the output

of the system exceeds the peak value of the reference signal

and as time goes, the peak value increases. This difference

in behaviors of IO-PR and FO-PR is due to the difference in

the bandwidth of these two controllers. As it discussed before,

having a wider bandwidth in FO-PR provides a more robust
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Fig. 7. Comparison of FO-PR (red line) vs. IO-PR (blue line). Reference
signal is depicted in green dash line
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Fig. 8. Comparison of FO-PR (red line) vs. IO-PR (blue line) in the presence
of frequency fluctuation. Reference signal is depicted in green dash line.

behavior against system parameter value fluctuations including

frequency variation. It is worth mentioning that frequency

variation is very common in grid-connected systems.

VII. CONCLUSION

Conventional PR controller has been proposed with the abil-

ity to alleviate the previously known shortcomings associated

with conventional PI controller. Despite offering structural

simplification, the PR controller provides high-gain at a very

narrow range of frequencies, the resonant frequency can be

easily missed and captured in the no-gain or low-gain zone in

the presence of any noise or uncertainty in the system.

In this paper, employing fractional order theory, firstly, a

fractional order synchronous frame structure was introduced

and then a FO stationary frame controller (i.e. FO-PR) was

derived. Although these two structures have identical perfor-
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mance, FO-PR has less implementation complexity compared

to FO-synchronous frame, similar to the integer order case.

By comparing the frequency response of FO-PR with con-

ventional PR, the main advantage of FO-PR is revealed. The

proposed controller provides significantly higher gain at reso-

nant frequency while its gain in the acceptable neighborhood

of this frequency is higher than IO-PR. It is worth mentioning

that high-gain at resonant frequency results in zero steady state

error.

This higher gain can accommodate more fluctuations around

resonant frequency which makes FO-PR a more desirable

controller since in real world applications, resonant frequency

variation is inevitable. Furthermore, having a wider bandwidth

in FO-PR, compared to IO-PR, helps this controller to achieve

a better transient response feature. These benefits of FO-PR

were confirmed through an AC current regulator application.
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